mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 01:39:10 +08:00
532 lines
23 KiB
C++
532 lines
23 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#ifndef OPENCV_DNN_SRC_OP_CUDA_HPP
|
|
#define OPENCV_DNN_SRC_OP_CUDA_HPP
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "cuda4dnn/csl/stream.hpp"
|
|
#include "cuda4dnn/csl/event.hpp"
|
|
#include "cuda4dnn/csl/cublas.hpp"
|
|
#include "cuda4dnn/csl/cudnn.hpp"
|
|
#include "cuda4dnn/csl/tensor.hpp"
|
|
#include "cuda4dnn/csl/memory.hpp"
|
|
#include "cuda4dnn/csl/workspace.hpp"
|
|
#include "cuda4dnn/kernels/fp_conversion.hpp"
|
|
#endif
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
#include <opencv2/core.hpp>
|
|
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <iterator>
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
constexpr bool IS_DNN_CUDA_TARGET(int id) {
|
|
return id == DNN_TARGET_CUDA_FP16 || id == DNN_TARGET_CUDA;
|
|
}
|
|
|
|
constexpr bool haveCUDA() {
|
|
#ifdef HAVE_CUDA
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
namespace cuda4dnn { namespace csl {
|
|
struct CSLContext {
|
|
Stream stream;
|
|
cublas::Handle cublas_handle;
|
|
cudnn::Handle cudnn_handle;
|
|
};
|
|
|
|
/** @brief creates Tensor object from cv::Mat (only the header is created, i.e. no data is copied)
|
|
*
|
|
* \tparam T element type for the tensor
|
|
* \param[in] mat cv::Mat from which the shape must be inferred
|
|
*
|
|
* \return a Tensor object with the shape of \p mat
|
|
*/
|
|
template <class T>
|
|
Tensor<T> makeTensorHeader(const Mat& mat) {
|
|
auto sizes = shape(mat);
|
|
return Tensor<T>(std::begin(sizes), std::end(sizes));
|
|
}
|
|
|
|
/** @brief copies data from a cv::Mat to TensorType
|
|
*
|
|
* \tparam T the type of the elements contained in TensorType object
|
|
*
|
|
* \param[in] srcMat source matrix
|
|
* \param[out] destTensor destination tensor
|
|
* \param stream CUDA stream to use for the memory transfer
|
|
*
|
|
* The memory copy starts from beginning \p srcMat. The number of elements copied is
|
|
* equal to the number of elements in \p destTensor.
|
|
*
|
|
* Pre-conditions:
|
|
* - \p srcMat must contain elements of type CV_32F
|
|
* - the size of \p srcMat must be larger than or equal to the size of \p destTensor
|
|
*
|
|
* @note best performance when \p srcMat is continuous and page-locked
|
|
* @note blocks calling thread if \p srcMat is not page-locked
|
|
*/
|
|
template <class T>
|
|
void copyMatToTensor(const Mat& srcMat, const TensorSpan<T> destTensor, const Stream& stream);
|
|
|
|
template <> inline
|
|
void copyMatToTensor(const Mat& srcMat, const TensorSpan<half> destTensor, const Stream& stream) {
|
|
/* should perhaps convert cv::Mat of different type to the required type and copy */
|
|
CV_Assert(srcMat.type() == CV_32F);
|
|
CV_Assert(srcMat.total() >= destTensor.size());
|
|
|
|
Mat temp;
|
|
srcMat.convertTo(temp, CV_16F);
|
|
CV_Assert(temp.isContinuous());
|
|
|
|
memcpy<half>(destTensor.get(), reinterpret_cast<half*>(temp.data), destTensor.size(), stream);
|
|
}
|
|
|
|
template <> inline
|
|
void copyMatToTensor(const Mat& srcMat, const TensorSpan<float> destTensor, const Stream& stream) {
|
|
/* should perhaps convert cv::Mat of different type to the required type and copy */
|
|
CV_Assert(srcMat.type() == CV_32F);
|
|
CV_Assert(srcMat.total() >= destTensor.size());
|
|
|
|
Mat temp = srcMat.isContinuous() ? srcMat : srcMat.clone();
|
|
CV_Assert(temp.isContinuous());
|
|
|
|
memcpy<float>(destTensor.get(), reinterpret_cast<float*>(temp.data), destTensor.size(), stream);
|
|
}
|
|
|
|
/** @brief copies data from a TensorType to a cv::Mat
|
|
*
|
|
* \tparam T the type of the elements contained in TensorType object
|
|
*
|
|
* \param[in] srcTensor source tensor
|
|
* \param[out] destMat destination matrix
|
|
* \param stream CUDA stream to use for the memory transfer
|
|
*
|
|
* The entire memory block held by the \p srcTensor is copied to \p destMat.
|
|
*
|
|
* Pre-conditions:
|
|
* - \p destMat must contain elements of type CV_32F
|
|
* - the size of \p destMat must be larger than or equal to the size of \p srcTensor
|
|
*
|
|
* @note best performance when \p destMat is continuous and page-locked
|
|
* @note blocks calling thread if \p destMat is not page-locked
|
|
*/
|
|
template <class T>
|
|
void copyTensorToMat(TensorView<T> srcTensor, Mat& destMat, const Stream& stream);
|
|
|
|
template <> inline
|
|
void copyTensorToMat(TensorView<half> srcTensor, Mat& destMat, const Stream& stream) {
|
|
CV_Assert(destMat.type() == CV_32F);
|
|
CV_Assert(destMat.total() >= srcTensor.size());
|
|
|
|
Mat temp(shape(destMat), CV_16F);
|
|
CV_Assert(temp.isContinuous());
|
|
|
|
memcpy<half>(reinterpret_cast<half*>(temp.data), srcTensor.get(), srcTensor.size(), stream);
|
|
|
|
temp.convertTo(destMat, CV_32F);
|
|
}
|
|
|
|
template <> inline
|
|
void copyTensorToMat(TensorView<float> srcTensor, Mat& destMat, const Stream& stream) {
|
|
CV_Assert(destMat.type() == CV_32F);
|
|
CV_Assert(destMat.total() >= srcTensor.size());
|
|
|
|
Mat temp = destMat.isContinuous() ? destMat : destMat.clone();
|
|
CV_Assert(temp.isContinuous());
|
|
|
|
memcpy<float>(reinterpret_cast<float*>(temp.data), srcTensor.get(), srcTensor.size(), stream);
|
|
|
|
if (temp.data != destMat.data)
|
|
temp.copyTo(destMat);
|
|
}
|
|
}} /* namespace cuda4dnn::csl */
|
|
|
|
/** base class for CUDA operation nodes (for all supported targets) */
|
|
class CUDABackendNode : public BackendNode {
|
|
public:
|
|
CUDABackendNode() : BackendNode(DNN_BACKEND_CUDA) { }
|
|
virtual ~CUDABackendNode() { }
|
|
|
|
virtual void forward(
|
|
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
|
|
cuda4dnn::csl::Workspace& workspace) = 0;
|
|
|
|
virtual std::size_t get_workspace_memory_in_bytes() const noexcept { return 0; }
|
|
};
|
|
|
|
/** @brief utility function which creates CUDA node of correct type from `targetId`
|
|
*
|
|
* CUDA operation nodes take the type of data they operate on as a template parameter.
|
|
* For example, ConcatOp<float> is an operation node which concats tensors of `float` type
|
|
* into a tensor of `float` type.
|
|
*
|
|
* This utility function aids the creation of nodes of different types and eliminates the
|
|
* need for CUDA target constants (`DNN_TARGET_XXX`) to appear in the operation code which
|
|
* reduces coupling between modules.
|
|
*
|
|
* Example:
|
|
* template <class T>
|
|
* class ConcatOp : public CUDABackendNode;
|
|
*
|
|
* // returns a cv::Ptr to a ConcatOp<half> object
|
|
* auto node = make_cuda_node<ConcatOp>(DNN_TARGET_CUDA_FP16, axis);
|
|
*
|
|
* // returns a cv::Ptr to a ConcatOp<float> object
|
|
* auto node = make_cuda_node<ConcatOp>(DNN_TARGET_CUDA, axis);
|
|
*/
|
|
template <template <class> class NodeType, class ...Args>
|
|
cv::Ptr<BackendNode> make_cuda_node(int targetId, Args&& ...args) {
|
|
switch (targetId)
|
|
{
|
|
case DNN_TARGET_CUDA_FP16:
|
|
return Ptr<BackendNode>(new NodeType<half>(std::forward<Args>(args)...));
|
|
case DNN_TARGET_CUDA:
|
|
return Ptr<BackendNode>(new NodeType<float>(std::forward<Args>(args)...));
|
|
default:
|
|
CV_Assert(IS_DNN_CUDA_TARGET(targetId));
|
|
}
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
/* base class for all CUDA backend/target wrappers */
|
|
class CUDABackendWrapper : public BackendWrapper {
|
|
public:
|
|
CUDABackendWrapper(int targetId) : BackendWrapper(DNN_BACKEND_CUDA, targetId) { }
|
|
virtual ~CUDABackendWrapper() { }
|
|
|
|
void copyToHost() override = 0;
|
|
virtual void copyToHostInBackground() = 0;
|
|
void setHostDirty() override = 0;
|
|
|
|
virtual void copyToDevice() = 0;
|
|
virtual void setDeviceDirty() = 0;
|
|
|
|
virtual MatShape getShape() const noexcept = 0;
|
|
virtual std::size_t getRank() const noexcept = 0;
|
|
|
|
/** @note setting the stream updates the stream for all wrappers which use the same tensor */
|
|
virtual void setStream(cuda4dnn::csl::Stream stream, cuda4dnn::csl::Stream h2d_stream) noexcept = 0;
|
|
|
|
virtual void update(const MatShape& shape, std::size_t offset) = 0;
|
|
};
|
|
|
|
namespace cuda4dnn { namespace detail {
|
|
|
|
template <class U>
|
|
void convert_D2H(const cv::Mat& mat, cuda4dnn::csl::View<U> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream);
|
|
|
|
template <> inline
|
|
void convert_D2H<half>(const cv::Mat& mat, cuda4dnn::csl::View<half> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
|
|
if (device_temp.size() < view.size())
|
|
device_temp.reset(view.size());
|
|
auto temp_span = cuda4dnn::csl::Span<float>(device_temp.get(), view.size());
|
|
|
|
cuda4dnn::kernels::fp16_to_fp32(stream, temp_span, view);
|
|
cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), temp_span.data(), view.size(), stream);
|
|
}
|
|
|
|
template <> inline
|
|
void convert_D2H<float>(const cv::Mat& mat, cuda4dnn::csl::View<float> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
|
|
cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), view.data(), view.size(), stream);
|
|
}
|
|
|
|
template <class U>
|
|
void convert_D2H_background(const cv::Mat& mat, cuda4dnn::csl::View<U> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream, const cuda4dnn::csl::Stream& d2h_stream, cuda4dnn::csl::Event& d2h_event);
|
|
|
|
template <> inline
|
|
void convert_D2H_background<half>(const cv::Mat& mat, cuda4dnn::csl::View<half> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream, const cuda4dnn::csl::Stream& d2h_stream, cuda4dnn::csl::Event& d2h_event) {
|
|
if (device_temp.size() < view.size())
|
|
device_temp.reset(view.size());
|
|
auto temp_span = cuda4dnn::csl::Span<float>(device_temp.get(), view.size());
|
|
|
|
/* The conversion kernel should can be executed in the background stream for better
|
|
* performance. We do it in the inference stream to prevent an unexplained performance
|
|
* regression on RTX 2080 Ti. Executing conversion kernel in the background stream causes
|
|
* everything to slow down (even operations that appear before the background transfer).
|
|
*
|
|
* TODO: identify the cause and move conversion kernel to the background stream
|
|
*/
|
|
cuda4dnn::kernels::fp16_to_fp32(stream, temp_span, view);
|
|
|
|
d2h_event.record(stream); // mark position in inference stream
|
|
cuda4dnn::csl::StreamWaitOnEvent(d2h_stream, d2h_event); // don't start transfer until data is available
|
|
cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), temp_span.data(), view.size(), d2h_stream);
|
|
}
|
|
|
|
template <> inline
|
|
void convert_D2H_background<float>(const cv::Mat& mat, cuda4dnn::csl::View<float> view, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream, const cuda4dnn::csl::Stream& d2h_stream, cuda4dnn::csl::Event& d2h_event) {
|
|
d2h_event.record(stream);
|
|
cuda4dnn::csl::StreamWaitOnEvent(d2h_stream, d2h_event);
|
|
cuda4dnn::csl::memcpy<float>(reinterpret_cast<float*>(mat.data), view.data(), view.size(), d2h_stream);
|
|
}
|
|
|
|
template <class U>
|
|
void convert_H2D(cuda4dnn::csl::Span<U> span, const cv::Mat& mat, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream);
|
|
|
|
template <> inline
|
|
void convert_H2D<half>(cuda4dnn::csl::Span<half> span, const cv::Mat& mat, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
|
|
if (device_temp.size() < span.size())
|
|
device_temp.reset(span.size());
|
|
auto temp_span = cuda4dnn::csl::Span<float>(device_temp.get(), span.size());
|
|
|
|
cuda4dnn::csl::memcpy<float>(temp_span.data(), reinterpret_cast<float*>(mat.data), span.size(), stream);
|
|
cuda4dnn::kernels::fp32_to_fp16(stream, span, temp_span);
|
|
}
|
|
|
|
template <> inline
|
|
void convert_H2D<float>(cuda4dnn::csl::Span<float> span, const cv::Mat& mat, cuda4dnn::csl::ManagedPtr<float>& device_temp, const cuda4dnn::csl::Stream& stream) {
|
|
cuda4dnn::csl::memcpy<float>(span.data(), reinterpret_cast<float*>(mat.data), span.size(), stream);
|
|
}
|
|
}} /* namespace cuda4dnn::detail */
|
|
|
|
template <class T, int TargetID>
|
|
class GenericCUDABackendWrapper final : public CUDABackendWrapper {
|
|
public:
|
|
using value_type = T;
|
|
using tensor_span_type = cuda4dnn::csl::TensorSpan<value_type>;
|
|
using tensor_view_type = cuda4dnn::csl::TensorView<value_type>;
|
|
|
|
/* Pre-conditions:
|
|
* - there must be no other instance of `GenericCUDABackendWrapper` which wraps the host memory used by `m`
|
|
* - the host memory must remain allocated throughout the lifetime of this object
|
|
*
|
|
* Post-conditions:
|
|
* - the host memory used by \p m "may" be page-locked
|
|
*/
|
|
GenericCUDABackendWrapper(Mat& m)
|
|
: CUDABackendWrapper(TargetID)
|
|
{
|
|
shape = cv::dnn::shape(m);
|
|
offset = 0;
|
|
|
|
shared_block = std::make_shared<shared_block_type>();
|
|
shared_block->host_dirty = true;
|
|
shared_block->device_dirty = false;
|
|
|
|
shared_block->host = m;
|
|
|
|
try {
|
|
shared_block->memGuard = cuda4dnn::csl::MemoryLockGuard(m.data, m.total() * m.elemSize());
|
|
} catch (...) {
|
|
/* a common reason for failure is that the host system (for example, a Jetson device) does not support it */
|
|
/* we ignore the failure as this is just an optimization and not a requirement */
|
|
}
|
|
|
|
shared_block->device = cuda4dnn::csl::ManagedPtr<T>(m.total());
|
|
}
|
|
|
|
GenericCUDABackendWrapper(const Ptr<BackendWrapper>& base_, const MatShape& shape_)
|
|
: CUDABackendWrapper(TargetID)
|
|
{
|
|
const Ptr<GenericCUDABackendWrapper> base = base_.dynamicCast<GenericCUDABackendWrapper>();
|
|
CV_Assert(base);
|
|
|
|
shape = shape_;
|
|
offset = 0;
|
|
shared_block = base->shared_block;
|
|
|
|
auto numel = total(shape_);
|
|
if (numel > shared_block->device.size())
|
|
{
|
|
/* if the host memory was already page-locked, release it and register again with the new size */
|
|
shared_block->memGuard = cuda4dnn::csl::MemoryLockGuard();
|
|
try {
|
|
CV_Assert(shared_block->host.type() == CV_32F);
|
|
shared_block->memGuard = cuda4dnn::csl::MemoryLockGuard(shared_block->host.data, numel * sizeof(float));
|
|
} catch (...) {
|
|
/* a common reason for failure is that the host system (for example, a Jetson device) does not support it */
|
|
/* we ignore the failure as this is just an optimization and not a requirement */
|
|
}
|
|
shared_block->device.reset(numel);
|
|
}
|
|
}
|
|
|
|
static Ptr<BackendWrapper> create(Mat& m) {
|
|
return Ptr<BackendWrapper>(new GenericCUDABackendWrapper(m));
|
|
}
|
|
|
|
static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& base, const MatShape& shape) {
|
|
return Ptr<BackendWrapper>(new GenericCUDABackendWrapper(base, shape));
|
|
}
|
|
|
|
void copyToHost() override {
|
|
if (shared_block->device_dirty) {
|
|
CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */
|
|
|
|
shared_block->host_dirty = false;
|
|
shared_block->device_dirty = false;
|
|
|
|
/* If the wrapper is being reused, the device tensor might be larger in size than the wrapper.
|
|
* Using the device tensor does not give incorrect code but leads to unused region of memory being copied.
|
|
*
|
|
* We use a view to ensure that only the required region of memory is copied.
|
|
*/
|
|
auto view = tensor_view_type(shared_block->device.get(), std::begin(shape), std::end(shape));
|
|
|
|
auto& mat = shared_block->host;
|
|
CV_Assert(mat.isContinuous());
|
|
CV_Assert(mat.type() == CV_32F);
|
|
|
|
cuda4dnn::detail::convert_D2H<T>(mat, view, shared_block->device_temp, shared_block->stream);
|
|
shared_block->stream.synchronize();
|
|
} else if(shared_block->d2h_event && shared_block->d2h_event.busy()) {
|
|
/* wait for the background copy to finish */
|
|
shared_block->d2h_event.synchronize();
|
|
}
|
|
}
|
|
|
|
void copyToHostInBackground() override {
|
|
CV_Assert(shared_block->d2h_stream);
|
|
if (shared_block->device_dirty) {
|
|
shared_block->host_dirty = false;
|
|
shared_block->device_dirty = false;
|
|
|
|
auto view = tensor_view_type(shared_block->device.get(), std::begin(shape), std::end(shape));
|
|
|
|
auto& mat = shared_block->host;
|
|
CV_Assert(mat.isContinuous());
|
|
CV_Assert(mat.type() == CV_32F);
|
|
|
|
if (!shared_block->d2h_event)
|
|
shared_block->d2h_event = cuda4dnn::csl::Event(true);
|
|
cuda4dnn::detail::convert_D2H_background<T>(mat, view, shared_block->device_temp, shared_block->stream, shared_block->d2h_stream, shared_block->d2h_event);
|
|
shared_block->d2h_event.record(shared_block->d2h_stream); // record position so that we can check status later
|
|
}
|
|
}
|
|
|
|
void setHostDirty() override {
|
|
shared_block->device_dirty = false;
|
|
shared_block->host_dirty = true;
|
|
}
|
|
|
|
void copyToDevice() override {
|
|
if (shared_block->host_dirty) {
|
|
CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */
|
|
|
|
shared_block->host_dirty = false;
|
|
shared_block->device_dirty = false;
|
|
|
|
auto span = tensor_span_type(shared_block->device.get(), std::begin(shape), std::end(shape));
|
|
|
|
auto& mat = shared_block->host;
|
|
CV_Assert(mat.isContinuous());
|
|
CV_Assert(mat.type() == CV_32F);
|
|
|
|
cuda4dnn::detail::convert_H2D<T>(span, mat, shared_block->device_temp, shared_block->stream);
|
|
}
|
|
}
|
|
|
|
void setDeviceDirty() override {
|
|
shared_block->device_dirty = true;
|
|
shared_block->host_dirty = false;
|
|
}
|
|
|
|
MatShape getShape() const noexcept override { return shape; }
|
|
|
|
std::size_t getRank() const noexcept override { return shape.size(); }
|
|
|
|
void setStream(cuda4dnn::csl::Stream stream, cuda4dnn::csl::Stream d2h_stream) noexcept override {
|
|
shared_block->stream = std::move(stream);
|
|
shared_block->d2h_stream = std::move(d2h_stream);
|
|
}
|
|
|
|
void update(const MatShape& shape_, std::size_t offset_) override {
|
|
auto total = std::accumulate(std::begin(shape_), std::end(shape_), 1, std::multiplies<MatShape::value_type>());
|
|
if (offset_ + total > shared_block->device.size()) {
|
|
CV_Error(Error::BadOffset, "shape and offset provided can potentially leads to OOB access");
|
|
}
|
|
shape = shape_;
|
|
offset = offset_;
|
|
}
|
|
|
|
cv::Mat getMutableHostMat() noexcept {
|
|
CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */
|
|
copyToHost();
|
|
setHostDirty();
|
|
return shared_block->host;
|
|
}
|
|
|
|
const cv::Mat getImmutableHostMat() const noexcept {
|
|
CV_Assert(offset == 0); /* we cannot track each piece of the memory separately */
|
|
copyToHost();
|
|
return shared_block->host;
|
|
}
|
|
|
|
/* Optimization Note: use getSpan() and getView() judiciously
|
|
*
|
|
* getSpan() is meant to be used when the memory is going to be modified
|
|
* getView() is meant to be used when the memory is only going to be read
|
|
*
|
|
* getSpan() marks the device memory as dirty but getView() does not
|
|
*
|
|
* getView() implicitly performs host to device memory transfer if required
|
|
* getSpan() does not perform any synchronization (use copyToDevice if sync. is required)
|
|
*/
|
|
tensor_span_type getSpan() noexcept {
|
|
setDeviceDirty();
|
|
return tensor_span_type(shared_block->device.get() + offset, std::begin(shape), std::end(shape));
|
|
}
|
|
|
|
tensor_view_type getView() noexcept {
|
|
copyToDevice();
|
|
return tensor_view_type(shared_block->device.get() + offset, std::begin(shape), std::end(shape));
|
|
}
|
|
|
|
private:
|
|
/* The same tensor memory can be reused by different layers whenever possible.
|
|
* Hence, it is possible for different backend wrappers to point to the same memory.
|
|
* However, it may use only a part of that memory and have a different shape.
|
|
*
|
|
* We store the common information such as device tensor and its corresponding host memory in
|
|
* a shared block. The shared block is shared by all backend wrappers which use the same memory.
|
|
* The shape, which can be different for different wrappers, is stored as a member object.
|
|
*/
|
|
|
|
MatShape shape;
|
|
std::size_t offset;
|
|
|
|
struct shared_block_type {
|
|
bool host_dirty;
|
|
bool device_dirty;
|
|
|
|
cv::Mat host;
|
|
cuda4dnn::csl::MemoryLockGuard memGuard; /* keeps host memory page-locked if possible */
|
|
|
|
cuda4dnn::csl::ManagedPtr<T> device;
|
|
cuda4dnn::csl::ManagedPtr<float> device_temp; /* use for conversions */
|
|
cuda4dnn::csl::Stream stream;
|
|
|
|
cuda4dnn::csl::Event d2h_event;
|
|
cuda4dnn::csl::Stream d2h_stream;
|
|
};
|
|
|
|
std::shared_ptr<shared_block_type> shared_block;
|
|
};
|
|
|
|
using CUDABackendWrapperFP16 = GenericCUDABackendWrapper<half, DNN_TARGET_CUDA_FP16>;
|
|
using CUDABackendWrapperFP32 = GenericCUDABackendWrapper<float, DNN_TARGET_CUDA>;
|
|
|
|
template <class T> struct GetCUDABackendWrapperType_ { };
|
|
template <> struct GetCUDABackendWrapperType_<half> { typedef CUDABackendWrapperFP16 type; };
|
|
template <> struct GetCUDABackendWrapperType_<float> { typedef CUDABackendWrapperFP32 type; };
|
|
|
|
template <class T>
|
|
using GetCUDABackendWrapperType = typename GetCUDABackendWrapperType_<T>::type;
|
|
|
|
#endif
|
|
}} /* namespace cv::dnn */
|
|
|
|
#endif /* OPENCV_DNN_SRC_OP_CUDA_HPP */
|