mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 22:59:16 +08:00
be63ce723f
updated links in cheatsheet renamed directory for Mat tutorial changed links from willow docs to opencv.itseez.com, from Trac to current Redmine
105 lines
2.7 KiB
ReStructuredText
105 lines
2.7 KiB
ReStructuredText
.. _feature_description:
|
|
|
|
Feature Description
|
|
*******************
|
|
|
|
Goal
|
|
=====
|
|
|
|
In this tutorial you will learn how to:
|
|
|
|
.. container:: enumeratevisibleitemswithsquare
|
|
|
|
* Use the :descriptor_extractor:`DescriptorExtractor<>` interface in order to find the feature vector correspondent to the keypoints. Specifically:
|
|
|
|
* Use :surf_descriptor_extractor:`SurfDescriptorExtractor<>` and its function :descriptor_extractor:`compute<>` to perform the required calculations.
|
|
* Use a :brute_force_matcher:`BruteForceMatcher<>` to match the features vector
|
|
* Use the function :draw_matches:`drawMatches<>` to draw the detected matches.
|
|
|
|
|
|
Theory
|
|
======
|
|
|
|
Code
|
|
====
|
|
|
|
This tutorial code's is shown lines below. You can also download it from `here <http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_descriptor.cpp>`_
|
|
|
|
.. code-block:: cpp
|
|
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
#include "opencv2/core/core.hpp"
|
|
#include "opencv2/features2d/features2d.hpp"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
|
|
using namespace cv;
|
|
|
|
void readme();
|
|
|
|
/** @function main */
|
|
int main( int argc, char** argv )
|
|
{
|
|
if( argc != 3 )
|
|
{ return -1; }
|
|
|
|
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
|
|
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
|
|
|
|
if( !img_1.data || !img_2.data )
|
|
{ return -1; }
|
|
|
|
//-- Step 1: Detect the keypoints using SURF Detector
|
|
int minHessian = 400;
|
|
|
|
SurfFeatureDetector detector( minHessian );
|
|
|
|
std::vector<KeyPoint> keypoints_1, keypoints_2;
|
|
|
|
detector.detect( img_1, keypoints_1 );
|
|
detector.detect( img_2, keypoints_2 );
|
|
|
|
//-- Step 2: Calculate descriptors (feature vectors)
|
|
SurfDescriptorExtractor extractor;
|
|
|
|
Mat descriptors_1, descriptors_2;
|
|
|
|
extractor.compute( img_1, keypoints_1, descriptors_1 );
|
|
extractor.compute( img_2, keypoints_2, descriptors_2 );
|
|
|
|
//-- Step 3: Matching descriptor vectors with a brute force matcher
|
|
BruteForceMatcher< L2<float> > matcher;
|
|
std::vector< DMatch > matches;
|
|
matcher.match( descriptors_1, descriptors_2, matches );
|
|
|
|
//-- Draw matches
|
|
Mat img_matches;
|
|
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
|
|
|
|
//-- Show detected matches
|
|
imshow("Matches", img_matches );
|
|
|
|
waitKey(0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** @function readme */
|
|
void readme()
|
|
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
|
|
|
|
Explanation
|
|
============
|
|
|
|
Result
|
|
======
|
|
|
|
#. Here is the result after applying the BruteForce matcher between the two original images:
|
|
|
|
.. image:: images/Feature_Description_BruteForce_Result.jpg
|
|
:align: center
|
|
:height: 200pt
|
|
|
|
|
|
|