mirror of
https://github.com/opencv/opencv.git
synced 2025-01-02 15:18:00 +08:00
059cef57e6
added additional tests for gpu filters fixed gpu features2D tests
411 lines
12 KiB
C++
411 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace cvtest;
|
|
using namespace testing;
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// random generators
|
|
|
|
int randomInt(int minVal, int maxVal)
|
|
{
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
return rng.uniform(minVal, maxVal);
|
|
}
|
|
|
|
double randomDouble(double minVal, double maxVal)
|
|
{
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
return rng.uniform(minVal, maxVal);
|
|
}
|
|
|
|
Size randomSize(int minVal, int maxVal)
|
|
{
|
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
|
|
}
|
|
|
|
Scalar randomScalar(double minVal, double maxVal)
|
|
{
|
|
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
|
|
}
|
|
|
|
Mat randomMat(Size size, int type, double minVal, double maxVal)
|
|
{
|
|
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// GpuMat create
|
|
|
|
cv::gpu::GpuMat createMat(cv::Size size, int type, bool useRoi)
|
|
{
|
|
Size size0 = size;
|
|
|
|
if (useRoi)
|
|
{
|
|
size0.width += randomInt(5, 15);
|
|
size0.height += randomInt(5, 15);
|
|
}
|
|
|
|
GpuMat d_m(size0, type);
|
|
|
|
if (size0 != size)
|
|
d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));
|
|
|
|
return d_m;
|
|
}
|
|
|
|
GpuMat loadMat(const Mat& m, bool useRoi)
|
|
{
|
|
GpuMat d_m = createMat(m.size(), m.type(), useRoi);
|
|
d_m.upload(m);
|
|
return d_m;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Image load
|
|
|
|
Mat readImage(const string& fileName, int flags)
|
|
{
|
|
return imread(string(cvtest::TS::ptr()->get_data_path()) + fileName, flags);
|
|
}
|
|
|
|
Mat readImageType(const string& fname, int type)
|
|
{
|
|
Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
|
|
if (CV_MAT_CN(type) == 4)
|
|
{
|
|
Mat temp;
|
|
cvtColor(src, temp, cv::COLOR_BGR2BGRA);
|
|
swap(src, temp);
|
|
}
|
|
src.convertTo(src, CV_MAT_DEPTH(type));
|
|
return src;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Gpu devices
|
|
|
|
bool supportFeature(const DeviceInfo& info, FeatureSet feature)
|
|
{
|
|
return TargetArchs::builtWith(feature) && info.supports(feature);
|
|
}
|
|
|
|
const vector<DeviceInfo>& devices()
|
|
{
|
|
static vector<DeviceInfo> devs;
|
|
static bool first = true;
|
|
|
|
if (first)
|
|
{
|
|
int deviceCount = getCudaEnabledDeviceCount();
|
|
|
|
devs.reserve(deviceCount);
|
|
|
|
for (int i = 0; i < deviceCount; ++i)
|
|
{
|
|
DeviceInfo info(i);
|
|
if (info.isCompatible())
|
|
devs.push_back(info);
|
|
}
|
|
|
|
first = false;
|
|
}
|
|
|
|
return devs;
|
|
}
|
|
|
|
vector<DeviceInfo> devices(FeatureSet feature)
|
|
{
|
|
const vector<DeviceInfo>& d = devices();
|
|
|
|
vector<DeviceInfo> devs_filtered;
|
|
|
|
if (TargetArchs::builtWith(feature))
|
|
{
|
|
devs_filtered.reserve(d.size());
|
|
|
|
for (size_t i = 0, size = d.size(); i < size; ++i)
|
|
{
|
|
const DeviceInfo& info = d[i];
|
|
|
|
if (info.supports(feature))
|
|
devs_filtered.push_back(info);
|
|
}
|
|
}
|
|
|
|
return devs_filtered;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Additional assertion
|
|
|
|
Mat getMat(InputArray arr)
|
|
{
|
|
if (arr.kind() == _InputArray::GPU_MAT)
|
|
{
|
|
Mat m;
|
|
arr.getGpuMat().download(m);
|
|
return m;
|
|
}
|
|
|
|
return arr.getMat();
|
|
}
|
|
|
|
double checkNorm(InputArray m1, const InputArray m2)
|
|
{
|
|
return norm(getMat(m1), getMat(m2), NORM_INF);
|
|
}
|
|
|
|
void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
|
|
{
|
|
if (src.depth() != CV_8S)
|
|
{
|
|
minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
|
|
return;
|
|
}
|
|
|
|
// OpenCV's minMaxLoc doesn't support CV_8S type
|
|
double minVal = numeric_limits<double>::max();
|
|
Point minLoc(-1, -1);
|
|
|
|
double maxVal = -numeric_limits<double>::max();
|
|
Point maxLoc(-1, -1);
|
|
|
|
for (int y = 0; y < src.rows; ++y)
|
|
{
|
|
const schar* src_row = src.ptr<signed char>(y);
|
|
const uchar* mask_row = mask.empty() ? 0 : mask.ptr<unsigned char>(y);
|
|
|
|
for (int x = 0; x < src.cols; ++x)
|
|
{
|
|
if (!mask_row || mask_row[x])
|
|
{
|
|
schar val = src_row[x];
|
|
|
|
if (val < minVal)
|
|
{
|
|
minVal = val;
|
|
minLoc = cv::Point(x, y);
|
|
}
|
|
|
|
if (val > maxVal)
|
|
{
|
|
maxVal = val;
|
|
maxLoc = cv::Point(x, y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minVal_) *minVal_ = minVal;
|
|
if (maxVal_) *maxVal_ = maxVal;
|
|
|
|
if (minLoc_) *minLoc_ = minLoc;
|
|
if (maxLoc_) *maxLoc_ = maxLoc;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
template <typename T, typename OutT> string printMatValImpl(const Mat& m, Point p)
|
|
{
|
|
const int cn = m.channels();
|
|
|
|
ostringstream ostr;
|
|
ostr << "(";
|
|
|
|
p.x /= cn;
|
|
|
|
ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
|
|
for (int c = 1; c < m.channels(); ++c)
|
|
{
|
|
ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
|
|
}
|
|
ostr << ")";
|
|
|
|
return ostr.str();
|
|
}
|
|
|
|
string printMatVal(const Mat& m, Point p)
|
|
{
|
|
typedef string (*func_t)(const Mat& m, Point p);
|
|
|
|
static const func_t funcs[] =
|
|
{
|
|
printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
|
|
printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
|
|
};
|
|
|
|
return funcs[m.depth()](m, p);
|
|
}
|
|
}
|
|
|
|
testing::AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, cv::InputArray m1_, cv::InputArray m2_, double eps)
|
|
{
|
|
Mat m1 = getMat(m1_);
|
|
Mat m2 = getMat(m2_);
|
|
|
|
if (m1.size() != m2.size())
|
|
{
|
|
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
|
|
<< expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
|
|
<< expr2 << "\" [" << PrintToString(m2.size()) << "]";
|
|
}
|
|
|
|
if (m1.type() != m2.type())
|
|
{
|
|
return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
|
|
<< expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
|
|
<< expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
|
|
}
|
|
|
|
Mat diff;
|
|
absdiff(m1.reshape(1), m2.reshape(1), diff);
|
|
|
|
double maxVal = 0.0;
|
|
Point maxLoc;
|
|
minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);
|
|
|
|
if (maxVal > eps)
|
|
{
|
|
return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
|
|
<< "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
|
|
<< ", which exceeds \"" << eps_expr << "\", where \""
|
|
<< expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
|
|
<< expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
|
|
<< eps_expr << "\" evaluates to " << eps;
|
|
}
|
|
|
|
return AssertionSuccess();
|
|
}
|
|
|
|
double checkSimilarity(InputArray m1, InputArray m2)
|
|
{
|
|
Mat diff;
|
|
matchTemplate(getMat(m1), getMat(m2), diff, CV_TM_CCORR_NORMED);
|
|
return std::abs(diff.at<float>(0, 0) - 1.f);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Helper structs for value-parameterized tests
|
|
|
|
vector<MatDepth> depths(int depth_start, int depth_end)
|
|
{
|
|
vector<MatDepth> v;
|
|
|
|
v.reserve((depth_end - depth_start + 1));
|
|
|
|
for (int depth = depth_start; depth <= depth_end; ++depth)
|
|
v.push_back(depth);
|
|
|
|
return v;
|
|
}
|
|
|
|
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
|
|
{
|
|
vector<MatType> v;
|
|
|
|
v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
|
|
|
|
for (int depth = depth_start; depth <= depth_end; ++depth)
|
|
{
|
|
for (int cn = cn_start; cn <= cn_end; ++cn)
|
|
{
|
|
v.push_back(CV_MAKETYPE(depth, cn));
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
const vector<MatType>& all_types()
|
|
{
|
|
static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);
|
|
|
|
return v;
|
|
}
|
|
|
|
void cv::gpu::PrintTo(const DeviceInfo& info, ostream* os)
|
|
{
|
|
(*os) << info.name();
|
|
}
|
|
|
|
void PrintTo(const UseRoi& useRoi, std::ostream* os)
|
|
{
|
|
if (useRoi)
|
|
(*os) << "sub matrix";
|
|
else
|
|
(*os) << "whole matrix";
|
|
}
|
|
|
|
void PrintTo(const Inverse& inverse, std::ostream* os)
|
|
{
|
|
if (inverse)
|
|
(*os) << "inverse";
|
|
else
|
|
(*os) << "direct";
|
|
}
|
|
|
|
void showDiff(InputArray gold_, InputArray actual_, double eps)
|
|
{
|
|
Mat gold = getMat(gold_);
|
|
Mat actual = getMat(actual_);
|
|
|
|
Mat diff;
|
|
absdiff(gold, actual, diff);
|
|
threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
|
|
|
|
namedWindow("gold", WINDOW_NORMAL);
|
|
namedWindow("actual", WINDOW_NORMAL);
|
|
namedWindow("diff", WINDOW_NORMAL);
|
|
|
|
imshow("gold", gold);
|
|
imshow("actual", actual);
|
|
imshow("diff", diff);
|
|
|
|
waitKey();
|
|
}
|