mirror of
https://github.com/opencv/opencv.git
synced 2024-12-21 13:48:04 +08:00
4115 lines
127 KiB
C++
4115 lines
127 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <ctype.h>
|
|
|
|
using namespace cv;
|
|
|
|
static const float ord_nan = FLT_MAX*0.5f;
|
|
static const int min_block_size = 1 << 16;
|
|
static const int block_size_delta = 1 << 10;
|
|
|
|
CvDTreeTrainData::CvDTreeTrainData()
|
|
{
|
|
var_idx = var_type = cat_count = cat_ofs = cat_map =
|
|
priors = priors_mult = counts = buf = direction = split_buf = responses_copy = 0;
|
|
tree_storage = temp_storage = 0;
|
|
|
|
clear();
|
|
}
|
|
|
|
|
|
CvDTreeTrainData::CvDTreeTrainData( const CvMat* _train_data, int _tflag,
|
|
const CvMat* _responses, const CvMat* _var_idx,
|
|
const CvMat* _sample_idx, const CvMat* _var_type,
|
|
const CvMat* _missing_mask, const CvDTreeParams& _params,
|
|
bool _shared, bool _add_labels )
|
|
{
|
|
var_idx = var_type = cat_count = cat_ofs = cat_map =
|
|
priors = priors_mult = counts = buf = direction = split_buf = responses_copy = 0;
|
|
|
|
tree_storage = temp_storage = 0;
|
|
|
|
set_data( _train_data, _tflag, _responses, _var_idx, _sample_idx,
|
|
_var_type, _missing_mask, _params, _shared, _add_labels );
|
|
}
|
|
|
|
|
|
CvDTreeTrainData::~CvDTreeTrainData()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
|
|
bool CvDTreeTrainData::set_params( const CvDTreeParams& _params )
|
|
{
|
|
bool ok = false;
|
|
|
|
CV_FUNCNAME( "CvDTreeTrainData::set_params" );
|
|
|
|
__BEGIN__;
|
|
|
|
// set parameters
|
|
params = _params;
|
|
|
|
if( params.max_categories < 2 )
|
|
CV_ERROR( CV_StsOutOfRange, "params.max_categories should be >= 2" );
|
|
params.max_categories = MIN( params.max_categories, 15 );
|
|
|
|
if( params.max_depth < 0 )
|
|
CV_ERROR( CV_StsOutOfRange, "params.max_depth should be >= 0" );
|
|
params.max_depth = MIN( params.max_depth, 25 );
|
|
|
|
params.min_sample_count = MAX(params.min_sample_count,1);
|
|
|
|
if( params.cv_folds < 0 )
|
|
CV_ERROR( CV_StsOutOfRange,
|
|
"params.cv_folds should be =0 (the tree is not pruned) "
|
|
"or n>0 (tree is pruned using n-fold cross-validation)" );
|
|
|
|
if( params.cv_folds == 1 )
|
|
params.cv_folds = 0;
|
|
|
|
if( params.regression_accuracy < 0 )
|
|
CV_ERROR( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
|
|
|
|
ok = true;
|
|
|
|
__END__;
|
|
|
|
return ok;
|
|
}
|
|
|
|
#define CV_CMP_NUM_PTR(a,b) (*(a) < *(b))
|
|
static CV_IMPLEMENT_QSORT_EX( icvSortIntPtr, int*, CV_CMP_NUM_PTR, int )
|
|
static CV_IMPLEMENT_QSORT_EX( icvSortDblPtr, double*, CV_CMP_NUM_PTR, int )
|
|
|
|
#define CV_CMP_NUM_IDX(i,j) (aux[i] < aux[j])
|
|
static CV_IMPLEMENT_QSORT_EX( icvSortIntAux, int, CV_CMP_NUM_IDX, const float* )
|
|
static CV_IMPLEMENT_QSORT_EX( icvSortUShAux, unsigned short, CV_CMP_NUM_IDX, const float* )
|
|
|
|
#define CV_CMP_PAIRS(a,b) (*((a).i) < *((b).i))
|
|
static CV_IMPLEMENT_QSORT_EX( icvSortPairs, CvPair16u32s, CV_CMP_PAIRS, int )
|
|
|
|
void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
|
const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx,
|
|
const CvMat* _var_type, const CvMat* _missing_mask, const CvDTreeParams& _params,
|
|
bool _shared, bool _add_labels, bool _update_data )
|
|
{
|
|
CvMat* sample_indices = 0;
|
|
CvMat* var_type0 = 0;
|
|
CvMat* tmp_map = 0;
|
|
int** int_ptr = 0;
|
|
CvPair16u32s* pair16u32s_ptr = 0;
|
|
CvDTreeTrainData* data = 0;
|
|
float *_fdst = 0;
|
|
int *_idst = 0;
|
|
unsigned short* udst = 0;
|
|
int* idst = 0;
|
|
|
|
CV_FUNCNAME( "CvDTreeTrainData::set_data" );
|
|
|
|
__BEGIN__;
|
|
|
|
int sample_all = 0, r_type, cv_n;
|
|
int total_c_count = 0;
|
|
int tree_block_size, temp_block_size, max_split_size, nv_size, cv_size = 0;
|
|
int ds_step, dv_step, ms_step = 0, mv_step = 0; // {data|mask}{sample|var}_step
|
|
int vi, i, size;
|
|
char err[100];
|
|
const int *sidx = 0, *vidx = 0;
|
|
|
|
if( _update_data && data_root )
|
|
{
|
|
data = new CvDTreeTrainData( _train_data, _tflag, _responses, _var_idx,
|
|
_sample_idx, _var_type, _missing_mask, _params, _shared, _add_labels );
|
|
|
|
// compare new and old train data
|
|
if( !(data->var_count == var_count &&
|
|
cvNorm( data->var_type, var_type, CV_C ) < FLT_EPSILON &&
|
|
cvNorm( data->cat_count, cat_count, CV_C ) < FLT_EPSILON &&
|
|
cvNorm( data->cat_map, cat_map, CV_C ) < FLT_EPSILON) )
|
|
CV_ERROR( CV_StsBadArg,
|
|
"The new training data must have the same types and the input and output variables "
|
|
"and the same categories for categorical variables" );
|
|
|
|
cvReleaseMat( &priors );
|
|
cvReleaseMat( &priors_mult );
|
|
cvReleaseMat( &buf );
|
|
cvReleaseMat( &direction );
|
|
cvReleaseMat( &split_buf );
|
|
cvReleaseMemStorage( &temp_storage );
|
|
|
|
priors = data->priors; data->priors = 0;
|
|
priors_mult = data->priors_mult; data->priors_mult = 0;
|
|
buf = data->buf; data->buf = 0;
|
|
buf_count = data->buf_count; buf_size = data->buf_size;
|
|
sample_count = data->sample_count;
|
|
|
|
direction = data->direction; data->direction = 0;
|
|
split_buf = data->split_buf; data->split_buf = 0;
|
|
temp_storage = data->temp_storage; data->temp_storage = 0;
|
|
nv_heap = data->nv_heap; cv_heap = data->cv_heap;
|
|
|
|
data_root = new_node( 0, sample_count, 0, 0 );
|
|
EXIT;
|
|
}
|
|
|
|
clear();
|
|
|
|
var_all = 0;
|
|
rng = &cv::theRNG();
|
|
|
|
CV_CALL( set_params( _params ));
|
|
|
|
// check parameter types and sizes
|
|
CV_CALL( cvCheckTrainData( _train_data, _tflag, _missing_mask, &var_all, &sample_all ));
|
|
|
|
train_data = _train_data;
|
|
responses = _responses;
|
|
|
|
if( _tflag == CV_ROW_SAMPLE )
|
|
{
|
|
ds_step = _train_data->step/CV_ELEM_SIZE(_train_data->type);
|
|
dv_step = 1;
|
|
if( _missing_mask )
|
|
ms_step = _missing_mask->step, mv_step = 1;
|
|
}
|
|
else
|
|
{
|
|
dv_step = _train_data->step/CV_ELEM_SIZE(_train_data->type);
|
|
ds_step = 1;
|
|
if( _missing_mask )
|
|
mv_step = _missing_mask->step, ms_step = 1;
|
|
}
|
|
tflag = _tflag;
|
|
|
|
sample_count = sample_all;
|
|
var_count = var_all;
|
|
|
|
if( _sample_idx )
|
|
{
|
|
CV_CALL( sample_indices = cvPreprocessIndexArray( _sample_idx, sample_all ));
|
|
sidx = sample_indices->data.i;
|
|
sample_count = sample_indices->rows + sample_indices->cols - 1;
|
|
}
|
|
|
|
if( _var_idx )
|
|
{
|
|
CV_CALL( var_idx = cvPreprocessIndexArray( _var_idx, var_all ));
|
|
vidx = var_idx->data.i;
|
|
var_count = var_idx->rows + var_idx->cols - 1;
|
|
}
|
|
|
|
is_buf_16u = false;
|
|
if ( sample_count < 65536 )
|
|
is_buf_16u = true;
|
|
|
|
if( !CV_IS_MAT(_responses) ||
|
|
(CV_MAT_TYPE(_responses->type) != CV_32SC1 &&
|
|
CV_MAT_TYPE(_responses->type) != CV_32FC1) ||
|
|
(_responses->rows != 1 && _responses->cols != 1) ||
|
|
_responses->rows + _responses->cols - 1 != sample_all )
|
|
CV_ERROR( CV_StsBadArg, "The array of _responses must be an integer or "
|
|
"floating-point vector containing as many elements as "
|
|
"the total number of samples in the training data matrix" );
|
|
|
|
r_type = CV_VAR_CATEGORICAL;
|
|
if( _var_type )
|
|
CV_CALL( var_type0 = cvPreprocessVarType( _var_type, var_idx, var_count, &r_type ));
|
|
|
|
CV_CALL( var_type = cvCreateMat( 1, var_count+2, CV_32SC1 ));
|
|
|
|
cat_var_count = 0;
|
|
ord_var_count = -1;
|
|
|
|
is_classifier = r_type == CV_VAR_CATEGORICAL;
|
|
|
|
// step 0. calc the number of categorical vars
|
|
for( vi = 0; vi < var_count; vi++ )
|
|
{
|
|
char vt = var_type0 ? var_type0->data.ptr[vi] : CV_VAR_ORDERED;
|
|
var_type->data.i[vi] = vt == CV_VAR_CATEGORICAL ? cat_var_count++ : ord_var_count--;
|
|
}
|
|
|
|
ord_var_count = ~ord_var_count;
|
|
cv_n = params.cv_folds;
|
|
// set the two last elements of var_type array to be able
|
|
// to locate responses and cross-validation labels using
|
|
// the corresponding get_* functions.
|
|
var_type->data.i[var_count] = cat_var_count;
|
|
var_type->data.i[var_count+1] = cat_var_count+1;
|
|
|
|
// in case of single ordered predictor we need dummy cv_labels
|
|
// for safe split_node_data() operation
|
|
have_labels = cv_n > 0 || (ord_var_count == 1 && cat_var_count == 0) || _add_labels;
|
|
|
|
work_var_count = var_count + (is_classifier ? 1 : 0) // for responses class_labels
|
|
+ (have_labels ? 1 : 0); // for cv_labels
|
|
|
|
buf_size = (work_var_count + 1 /*for sample_indices*/) * sample_count;
|
|
shared = _shared;
|
|
buf_count = shared ? 2 : 1;
|
|
|
|
if ( is_buf_16u )
|
|
{
|
|
CV_CALL( buf = cvCreateMat( buf_count, buf_size, CV_16UC1 ));
|
|
CV_CALL( pair16u32s_ptr = (CvPair16u32s*)cvAlloc( sample_count*sizeof(pair16u32s_ptr[0]) ));
|
|
}
|
|
else
|
|
{
|
|
CV_CALL( buf = cvCreateMat( buf_count, buf_size, CV_32SC1 ));
|
|
CV_CALL( int_ptr = (int**)cvAlloc( sample_count*sizeof(int_ptr[0]) ));
|
|
}
|
|
|
|
size = is_classifier ? (cat_var_count+1) : cat_var_count;
|
|
size = !size ? 1 : size;
|
|
CV_CALL( cat_count = cvCreateMat( 1, size, CV_32SC1 ));
|
|
CV_CALL( cat_ofs = cvCreateMat( 1, size, CV_32SC1 ));
|
|
|
|
size = is_classifier ? (cat_var_count + 1)*params.max_categories : cat_var_count*params.max_categories;
|
|
size = !size ? 1 : size;
|
|
CV_CALL( cat_map = cvCreateMat( 1, size, CV_32SC1 ));
|
|
|
|
// now calculate the maximum size of split,
|
|
// create memory storage that will keep nodes and splits of the decision tree
|
|
// allocate root node and the buffer for the whole training data
|
|
max_split_size = cvAlign(sizeof(CvDTreeSplit) +
|
|
(MAX(0,sample_count - 33)/32)*sizeof(int),sizeof(void*));
|
|
tree_block_size = MAX((int)sizeof(CvDTreeNode)*8, max_split_size);
|
|
tree_block_size = MAX(tree_block_size + block_size_delta, min_block_size);
|
|
CV_CALL( tree_storage = cvCreateMemStorage( tree_block_size ));
|
|
CV_CALL( node_heap = cvCreateSet( 0, sizeof(*node_heap), sizeof(CvDTreeNode), tree_storage ));
|
|
|
|
nv_size = var_count*sizeof(int);
|
|
nv_size = cvAlign(MAX( nv_size, (int)sizeof(CvSetElem) ), sizeof(void*));
|
|
|
|
temp_block_size = nv_size;
|
|
|
|
if( cv_n )
|
|
{
|
|
if( sample_count < cv_n*MAX(params.min_sample_count,10) )
|
|
CV_ERROR( CV_StsOutOfRange,
|
|
"The many folds in cross-validation for such a small dataset" );
|
|
|
|
cv_size = cvAlign( cv_n*(sizeof(int) + sizeof(double)*2), sizeof(double) );
|
|
temp_block_size = MAX(temp_block_size, cv_size);
|
|
}
|
|
|
|
temp_block_size = MAX( temp_block_size + block_size_delta, min_block_size );
|
|
CV_CALL( temp_storage = cvCreateMemStorage( temp_block_size ));
|
|
CV_CALL( nv_heap = cvCreateSet( 0, sizeof(*nv_heap), nv_size, temp_storage ));
|
|
if( cv_size )
|
|
CV_CALL( cv_heap = cvCreateSet( 0, sizeof(*cv_heap), cv_size, temp_storage ));
|
|
|
|
CV_CALL( data_root = new_node( 0, sample_count, 0, 0 ));
|
|
|
|
max_c_count = 1;
|
|
|
|
_fdst = 0;
|
|
_idst = 0;
|
|
if (ord_var_count)
|
|
_fdst = (float*)cvAlloc(sample_count*sizeof(_fdst[0]));
|
|
if (is_buf_16u && (cat_var_count || is_classifier))
|
|
_idst = (int*)cvAlloc(sample_count*sizeof(_idst[0]));
|
|
|
|
// transform the training data to convenient representation
|
|
for( vi = 0; vi <= var_count; vi++ )
|
|
{
|
|
int ci;
|
|
const uchar* mask = 0;
|
|
int m_step = 0, step;
|
|
const int* idata = 0;
|
|
const float* fdata = 0;
|
|
int num_valid = 0;
|
|
|
|
if( vi < var_count ) // analyze i-th input variable
|
|
{
|
|
int vi0 = vidx ? vidx[vi] : vi;
|
|
ci = get_var_type(vi);
|
|
step = ds_step; m_step = ms_step;
|
|
if( CV_MAT_TYPE(_train_data->type) == CV_32SC1 )
|
|
idata = _train_data->data.i + vi0*dv_step;
|
|
else
|
|
fdata = _train_data->data.fl + vi0*dv_step;
|
|
if( _missing_mask )
|
|
mask = _missing_mask->data.ptr + vi0*mv_step;
|
|
}
|
|
else // analyze _responses
|
|
{
|
|
ci = cat_var_count;
|
|
step = CV_IS_MAT_CONT(_responses->type) ?
|
|
1 : _responses->step / CV_ELEM_SIZE(_responses->type);
|
|
if( CV_MAT_TYPE(_responses->type) == CV_32SC1 )
|
|
idata = _responses->data.i;
|
|
else
|
|
fdata = _responses->data.fl;
|
|
}
|
|
|
|
if( (vi < var_count && ci>=0) ||
|
|
(vi == var_count && is_classifier) ) // process categorical variable or response
|
|
{
|
|
int c_count, prev_label;
|
|
int* c_map;
|
|
|
|
if (is_buf_16u)
|
|
udst = (unsigned short*)(buf->data.s + vi*sample_count);
|
|
else
|
|
idst = buf->data.i + vi*sample_count;
|
|
|
|
// copy data
|
|
for( i = 0; i < sample_count; i++ )
|
|
{
|
|
int val = INT_MAX, si = sidx ? sidx[i] : i;
|
|
if( !mask || !mask[si*m_step] )
|
|
{
|
|
if( idata )
|
|
val = idata[si*step];
|
|
else
|
|
{
|
|
float t = fdata[si*step];
|
|
val = cvRound(t);
|
|
if( fabs(t - val) > FLT_EPSILON )
|
|
{
|
|
sprintf( err, "%d-th value of %d-th (categorical) "
|
|
"variable is not an integer", i, vi );
|
|
CV_ERROR( CV_StsBadArg, err );
|
|
}
|
|
}
|
|
|
|
if( val == INT_MAX )
|
|
{
|
|
sprintf( err, "%d-th value of %d-th (categorical) "
|
|
"variable is too large", i, vi );
|
|
CV_ERROR( CV_StsBadArg, err );
|
|
}
|
|
num_valid++;
|
|
}
|
|
if (is_buf_16u)
|
|
{
|
|
_idst[i] = val;
|
|
pair16u32s_ptr[i].u = udst + i;
|
|
pair16u32s_ptr[i].i = _idst + i;
|
|
}
|
|
else
|
|
{
|
|
idst[i] = val;
|
|
int_ptr[i] = idst + i;
|
|
}
|
|
}
|
|
|
|
c_count = num_valid > 0;
|
|
if (is_buf_16u)
|
|
{
|
|
icvSortPairs( pair16u32s_ptr, sample_count, 0 );
|
|
// count the categories
|
|
for( i = 1; i < num_valid; i++ )
|
|
if (*pair16u32s_ptr[i].i != *pair16u32s_ptr[i-1].i)
|
|
c_count ++ ;
|
|
}
|
|
else
|
|
{
|
|
icvSortIntPtr( int_ptr, sample_count, 0 );
|
|
// count the categories
|
|
for( i = 1; i < num_valid; i++ )
|
|
c_count += *int_ptr[i] != *int_ptr[i-1];
|
|
}
|
|
|
|
if( vi > 0 )
|
|
max_c_count = MAX( max_c_count, c_count );
|
|
cat_count->data.i[ci] = c_count;
|
|
cat_ofs->data.i[ci] = total_c_count;
|
|
|
|
// resize cat_map, if need
|
|
if( cat_map->cols < total_c_count + c_count )
|
|
{
|
|
tmp_map = cat_map;
|
|
CV_CALL( cat_map = cvCreateMat( 1,
|
|
MAX(cat_map->cols*3/2,total_c_count+c_count), CV_32SC1 ));
|
|
for( i = 0; i < total_c_count; i++ )
|
|
cat_map->data.i[i] = tmp_map->data.i[i];
|
|
cvReleaseMat( &tmp_map );
|
|
}
|
|
|
|
c_map = cat_map->data.i + total_c_count;
|
|
total_c_count += c_count;
|
|
|
|
c_count = -1;
|
|
if (is_buf_16u)
|
|
{
|
|
// compact the class indices and build the map
|
|
prev_label = ~*pair16u32s_ptr[0].i;
|
|
for( i = 0; i < num_valid; i++ )
|
|
{
|
|
int cur_label = *pair16u32s_ptr[i].i;
|
|
if( cur_label != prev_label )
|
|
c_map[++c_count] = prev_label = cur_label;
|
|
*pair16u32s_ptr[i].u = (unsigned short)c_count;
|
|
}
|
|
// replace labels for missing values with -1
|
|
for( ; i < sample_count; i++ )
|
|
*pair16u32s_ptr[i].u = 65535;
|
|
}
|
|
else
|
|
{
|
|
// compact the class indices and build the map
|
|
prev_label = ~*int_ptr[0];
|
|
for( i = 0; i < num_valid; i++ )
|
|
{
|
|
int cur_label = *int_ptr[i];
|
|
if( cur_label != prev_label )
|
|
c_map[++c_count] = prev_label = cur_label;
|
|
*int_ptr[i] = c_count;
|
|
}
|
|
// replace labels for missing values with -1
|
|
for( ; i < sample_count; i++ )
|
|
*int_ptr[i] = -1;
|
|
}
|
|
}
|
|
else if( ci < 0 ) // process ordered variable
|
|
{
|
|
if (is_buf_16u)
|
|
udst = (unsigned short*)(buf->data.s + vi*sample_count);
|
|
else
|
|
idst = buf->data.i + vi*sample_count;
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
{
|
|
float val = ord_nan;
|
|
int si = sidx ? sidx[i] : i;
|
|
if( !mask || !mask[si*m_step] )
|
|
{
|
|
if( idata )
|
|
val = (float)idata[si*step];
|
|
else
|
|
val = fdata[si*step];
|
|
|
|
if( fabs(val) >= ord_nan )
|
|
{
|
|
sprintf( err, "%d-th value of %d-th (ordered) "
|
|
"variable (=%g) is too large", i, vi, val );
|
|
CV_ERROR( CV_StsBadArg, err );
|
|
}
|
|
num_valid++;
|
|
}
|
|
|
|
if (is_buf_16u)
|
|
udst[i] = (unsigned short)i;
|
|
else
|
|
idst[i] = i;
|
|
_fdst[i] = val;
|
|
|
|
}
|
|
if (is_buf_16u)
|
|
icvSortUShAux( udst, sample_count, _fdst);
|
|
else
|
|
icvSortIntAux( idst, sample_count, _fdst );
|
|
}
|
|
|
|
if( vi < var_count )
|
|
data_root->set_num_valid(vi, num_valid);
|
|
}
|
|
|
|
// set sample labels
|
|
if (is_buf_16u)
|
|
udst = (unsigned short*)(buf->data.s + work_var_count*sample_count);
|
|
else
|
|
idst = buf->data.i + work_var_count*sample_count;
|
|
|
|
for (i = 0; i < sample_count; i++)
|
|
{
|
|
if (udst)
|
|
udst[i] = sidx ? (unsigned short)sidx[i] : (unsigned short)i;
|
|
else
|
|
idst[i] = sidx ? sidx[i] : i;
|
|
}
|
|
|
|
if( cv_n )
|
|
{
|
|
unsigned short* udst = 0;
|
|
int* idst = 0;
|
|
|
|
if (is_buf_16u)
|
|
{
|
|
udst = (unsigned short*)(buf->data.s + (get_work_var_count()-1)*sample_count);
|
|
for( i = vi = 0; i < sample_count; i++ )
|
|
{
|
|
udst[i] = (unsigned short)vi++;
|
|
vi &= vi < cv_n ? -1 : 0;
|
|
}
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
{
|
|
int a = (*rng)(sample_count);
|
|
int b = (*rng)(sample_count);
|
|
unsigned short unsh = (unsigned short)vi;
|
|
CV_SWAP( udst[a], udst[b], unsh );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
idst = buf->data.i + (get_work_var_count()-1)*sample_count;
|
|
for( i = vi = 0; i < sample_count; i++ )
|
|
{
|
|
idst[i] = vi++;
|
|
vi &= vi < cv_n ? -1 : 0;
|
|
}
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
{
|
|
int a = (*rng)(sample_count);
|
|
int b = (*rng)(sample_count);
|
|
CV_SWAP( idst[a], idst[b], vi );
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( cat_map )
|
|
cat_map->cols = MAX( total_c_count, 1 );
|
|
|
|
max_split_size = cvAlign(sizeof(CvDTreeSplit) +
|
|
(MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*));
|
|
CV_CALL( split_heap = cvCreateSet( 0, sizeof(*split_heap), max_split_size, tree_storage ));
|
|
|
|
have_priors = is_classifier && params.priors;
|
|
if( is_classifier )
|
|
{
|
|
int m = get_num_classes();
|
|
double sum = 0;
|
|
CV_CALL( priors = cvCreateMat( 1, m, CV_64F ));
|
|
for( i = 0; i < m; i++ )
|
|
{
|
|
double val = have_priors ? params.priors[i] : 1.;
|
|
if( val <= 0 )
|
|
CV_ERROR( CV_StsOutOfRange, "Every class weight should be positive" );
|
|
priors->data.db[i] = val;
|
|
sum += val;
|
|
}
|
|
|
|
// normalize weights
|
|
if( have_priors )
|
|
cvScale( priors, priors, 1./sum );
|
|
|
|
CV_CALL( priors_mult = cvCloneMat( priors ));
|
|
CV_CALL( counts = cvCreateMat( 1, m, CV_32SC1 ));
|
|
}
|
|
|
|
|
|
CV_CALL( direction = cvCreateMat( 1, sample_count, CV_8UC1 ));
|
|
CV_CALL( split_buf = cvCreateMat( 1, sample_count, CV_32SC1 ));
|
|
|
|
__END__;
|
|
|
|
if( data )
|
|
delete data;
|
|
|
|
if (_fdst)
|
|
cvFree( &_fdst );
|
|
if (_idst)
|
|
cvFree( &_idst );
|
|
cvFree( &int_ptr );
|
|
cvFree( &pair16u32s_ptr);
|
|
cvReleaseMat( &var_type0 );
|
|
cvReleaseMat( &sample_indices );
|
|
cvReleaseMat( &tmp_map );
|
|
}
|
|
|
|
void CvDTreeTrainData::do_responses_copy()
|
|
{
|
|
responses_copy = cvCreateMat( responses->rows, responses->cols, responses->type );
|
|
cvCopy( responses, responses_copy);
|
|
responses = responses_copy;
|
|
}
|
|
|
|
CvDTreeNode* CvDTreeTrainData::subsample_data( const CvMat* _subsample_idx )
|
|
{
|
|
CvDTreeNode* root = 0;
|
|
CvMat* isubsample_idx = 0;
|
|
CvMat* subsample_co = 0;
|
|
|
|
bool isMakeRootCopy = true;
|
|
|
|
CV_FUNCNAME( "CvDTreeTrainData::subsample_data" );
|
|
|
|
__BEGIN__;
|
|
|
|
if( !data_root )
|
|
CV_ERROR( CV_StsError, "No training data has been set" );
|
|
|
|
if( _subsample_idx )
|
|
{
|
|
CV_CALL( isubsample_idx = cvPreprocessIndexArray( _subsample_idx, sample_count ));
|
|
|
|
if( isubsample_idx->cols + isubsample_idx->rows - 1 == sample_count )
|
|
{
|
|
const int* sidx = isubsample_idx->data.i;
|
|
for( int i = 0; i < sample_count; i++ )
|
|
{
|
|
if( sidx[i] != i )
|
|
{
|
|
isMakeRootCopy = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
isMakeRootCopy = false;
|
|
}
|
|
|
|
if( isMakeRootCopy )
|
|
{
|
|
// make a copy of the root node
|
|
CvDTreeNode temp;
|
|
int i;
|
|
root = new_node( 0, 1, 0, 0 );
|
|
temp = *root;
|
|
*root = *data_root;
|
|
root->num_valid = temp.num_valid;
|
|
if( root->num_valid )
|
|
{
|
|
for( i = 0; i < var_count; i++ )
|
|
root->num_valid[i] = data_root->num_valid[i];
|
|
}
|
|
root->cv_Tn = temp.cv_Tn;
|
|
root->cv_node_risk = temp.cv_node_risk;
|
|
root->cv_node_error = temp.cv_node_error;
|
|
}
|
|
else
|
|
{
|
|
int* sidx = isubsample_idx->data.i;
|
|
// co - array of count/offset pairs (to handle duplicated values in _subsample_idx)
|
|
int* co, cur_ofs = 0;
|
|
int vi, i;
|
|
int workVarCount = get_work_var_count();
|
|
int count = isubsample_idx->rows + isubsample_idx->cols - 1;
|
|
|
|
root = new_node( 0, count, 1, 0 );
|
|
|
|
CV_CALL( subsample_co = cvCreateMat( 1, sample_count*2, CV_32SC1 ));
|
|
cvZero( subsample_co );
|
|
co = subsample_co->data.i;
|
|
for( i = 0; i < count; i++ )
|
|
co[sidx[i]*2]++;
|
|
for( i = 0; i < sample_count; i++ )
|
|
{
|
|
if( co[i*2] )
|
|
{
|
|
co[i*2+1] = cur_ofs;
|
|
cur_ofs += co[i*2];
|
|
}
|
|
else
|
|
co[i*2+1] = -1;
|
|
}
|
|
|
|
cv::AutoBuffer<uchar> inn_buf(sample_count*(2*sizeof(int) + sizeof(float)));
|
|
for( vi = 0; vi < workVarCount; vi++ )
|
|
{
|
|
int ci = get_var_type(vi);
|
|
|
|
if( ci >= 0 || vi >= var_count )
|
|
{
|
|
int num_valid = 0;
|
|
const int* src = get_cat_var_data( data_root, vi, (int*)(uchar*)inn_buf );
|
|
|
|
if (is_buf_16u)
|
|
{
|
|
unsigned short* udst = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols +
|
|
vi*sample_count + root->offset);
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
int val = src[sidx[i]];
|
|
udst[i] = (unsigned short)val;
|
|
num_valid += val >= 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int* idst = buf->data.i + root->buf_idx*buf->cols +
|
|
vi*sample_count + root->offset;
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
int val = src[sidx[i]];
|
|
idst[i] = val;
|
|
num_valid += val >= 0;
|
|
}
|
|
}
|
|
|
|
if( vi < var_count )
|
|
root->set_num_valid(vi, num_valid);
|
|
}
|
|
else
|
|
{
|
|
int *src_idx_buf = (int*)(uchar*)inn_buf;
|
|
float *src_val_buf = (float*)(src_idx_buf + sample_count);
|
|
int* sample_indices_buf = (int*)(src_val_buf + sample_count);
|
|
const int* src_idx = 0;
|
|
const float* src_val = 0;
|
|
get_ord_var_data( data_root, vi, src_val_buf, src_idx_buf, &src_val, &src_idx, sample_indices_buf );
|
|
int j = 0, idx, count_i;
|
|
int num_valid = data_root->get_num_valid(vi);
|
|
|
|
if (is_buf_16u)
|
|
{
|
|
unsigned short* udst_idx = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols +
|
|
vi*sample_count + data_root->offset);
|
|
for( i = 0; i < num_valid; i++ )
|
|
{
|
|
idx = src_idx[i];
|
|
count_i = co[idx*2];
|
|
if( count_i )
|
|
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
|
|
udst_idx[j] = (unsigned short)cur_ofs;
|
|
}
|
|
|
|
root->set_num_valid(vi, j);
|
|
|
|
for( ; i < sample_count; i++ )
|
|
{
|
|
idx = src_idx[i];
|
|
count_i = co[idx*2];
|
|
if( count_i )
|
|
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
|
|
udst_idx[j] = (unsigned short)cur_ofs;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int* idst_idx = buf->data.i + root->buf_idx*buf->cols +
|
|
vi*sample_count + root->offset;
|
|
for( i = 0; i < num_valid; i++ )
|
|
{
|
|
idx = src_idx[i];
|
|
count_i = co[idx*2];
|
|
if( count_i )
|
|
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
|
|
idst_idx[j] = cur_ofs;
|
|
}
|
|
|
|
root->set_num_valid(vi, j);
|
|
|
|
for( ; i < sample_count; i++ )
|
|
{
|
|
idx = src_idx[i];
|
|
count_i = co[idx*2];
|
|
if( count_i )
|
|
for( cur_ofs = co[idx*2+1]; count_i > 0; count_i--, j++, cur_ofs++ )
|
|
idst_idx[j] = cur_ofs;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// sample indices subsampling
|
|
const int* sample_idx_src = get_sample_indices(data_root, (int*)(uchar*)inn_buf);
|
|
if (is_buf_16u)
|
|
{
|
|
unsigned short* sample_idx_dst = (unsigned short*)(buf->data.s + root->buf_idx*buf->cols +
|
|
workVarCount*sample_count + root->offset);
|
|
for (i = 0; i < count; i++)
|
|
sample_idx_dst[i] = (unsigned short)sample_idx_src[sidx[i]];
|
|
}
|
|
else
|
|
{
|
|
int* sample_idx_dst = buf->data.i + root->buf_idx*buf->cols +
|
|
workVarCount*sample_count + root->offset;
|
|
for (i = 0; i < count; i++)
|
|
sample_idx_dst[i] = sample_idx_src[sidx[i]];
|
|
}
|
|
}
|
|
|
|
__END__;
|
|
|
|
cvReleaseMat( &isubsample_idx );
|
|
cvReleaseMat( &subsample_co );
|
|
|
|
return root;
|
|
}
|
|
|
|
|
|
void CvDTreeTrainData::get_vectors( const CvMat* _subsample_idx,
|
|
float* values, uchar* missing,
|
|
float* responses, bool get_class_idx )
|
|
{
|
|
CvMat* subsample_idx = 0;
|
|
CvMat* subsample_co = 0;
|
|
|
|
CV_FUNCNAME( "CvDTreeTrainData::get_vectors" );
|
|
|
|
__BEGIN__;
|
|
|
|
int i, vi, total = sample_count, count = total, cur_ofs = 0;
|
|
int* sidx = 0;
|
|
int* co = 0;
|
|
|
|
cv::AutoBuffer<uchar> inn_buf(sample_count*(2*sizeof(int) + sizeof(float)));
|
|
if( _subsample_idx )
|
|
{
|
|
CV_CALL( subsample_idx = cvPreprocessIndexArray( _subsample_idx, sample_count ));
|
|
sidx = subsample_idx->data.i;
|
|
CV_CALL( subsample_co = cvCreateMat( 1, sample_count*2, CV_32SC1 ));
|
|
co = subsample_co->data.i;
|
|
cvZero( subsample_co );
|
|
count = subsample_idx->cols + subsample_idx->rows - 1;
|
|
for( i = 0; i < count; i++ )
|
|
co[sidx[i]*2]++;
|
|
for( i = 0; i < total; i++ )
|
|
{
|
|
int count_i = co[i*2];
|
|
if( count_i )
|
|
{
|
|
co[i*2+1] = cur_ofs*var_count;
|
|
cur_ofs += count_i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( missing )
|
|
memset( missing, 1, count*var_count );
|
|
|
|
for( vi = 0; vi < var_count; vi++ )
|
|
{
|
|
int ci = get_var_type(vi);
|
|
if( ci >= 0 ) // categorical
|
|
{
|
|
float* dst = values + vi;
|
|
uchar* m = missing ? missing + vi : 0;
|
|
const int* src = get_cat_var_data(data_root, vi, (int*)(uchar*)inn_buf);
|
|
|
|
for( i = 0; i < count; i++, dst += var_count )
|
|
{
|
|
int idx = sidx ? sidx[i] : i;
|
|
int val = src[idx];
|
|
*dst = (float)val;
|
|
if( m )
|
|
{
|
|
*m = (!is_buf_16u && val < 0) || (is_buf_16u && (val == 65535));
|
|
m += var_count;
|
|
}
|
|
}
|
|
}
|
|
else // ordered
|
|
{
|
|
float* dst = values + vi;
|
|
uchar* m = missing ? missing + vi : 0;
|
|
int count1 = data_root->get_num_valid(vi);
|
|
float *src_val_buf = (float*)(uchar*)inn_buf;
|
|
int* src_idx_buf = (int*)(src_val_buf + sample_count);
|
|
int* sample_indices_buf = src_idx_buf + sample_count;
|
|
const float *src_val = 0;
|
|
const int* src_idx = 0;
|
|
get_ord_var_data(data_root, vi, src_val_buf, src_idx_buf, &src_val, &src_idx, sample_indices_buf);
|
|
|
|
for( i = 0; i < count1; i++ )
|
|
{
|
|
int idx = src_idx[i];
|
|
int count_i = 1;
|
|
if( co )
|
|
{
|
|
count_i = co[idx*2];
|
|
cur_ofs = co[idx*2+1];
|
|
}
|
|
else
|
|
cur_ofs = idx*var_count;
|
|
if( count_i )
|
|
{
|
|
float val = src_val[i];
|
|
for( ; count_i > 0; count_i--, cur_ofs += var_count )
|
|
{
|
|
dst[cur_ofs] = val;
|
|
if( m )
|
|
m[cur_ofs] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy responses
|
|
if( responses )
|
|
{
|
|
if( is_classifier )
|
|
{
|
|
const int* src = get_class_labels(data_root, (int*)(uchar*)inn_buf);
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
int idx = sidx ? sidx[i] : i;
|
|
int val = get_class_idx ? src[idx] :
|
|
cat_map->data.i[cat_ofs->data.i[cat_var_count]+src[idx]];
|
|
responses[i] = (float)val;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float* val_buf = (float*)(uchar*)inn_buf;
|
|
int* sample_idx_buf = (int*)(val_buf + sample_count);
|
|
const float* _values = get_ord_responses(data_root, val_buf, sample_idx_buf);
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
int idx = sidx ? sidx[i] : i;
|
|
responses[i] = _values[idx];
|
|
}
|
|
}
|
|
}
|
|
|
|
__END__;
|
|
|
|
cvReleaseMat( &subsample_idx );
|
|
cvReleaseMat( &subsample_co );
|
|
}
|
|
|
|
|
|
CvDTreeNode* CvDTreeTrainData::new_node( CvDTreeNode* parent, int count,
|
|
int storage_idx, int offset )
|
|
{
|
|
CvDTreeNode* node = (CvDTreeNode*)cvSetNew( node_heap );
|
|
|
|
node->sample_count = count;
|
|
node->depth = parent ? parent->depth + 1 : 0;
|
|
node->parent = parent;
|
|
node->left = node->right = 0;
|
|
node->split = 0;
|
|
node->value = 0;
|
|
node->class_idx = 0;
|
|
node->maxlr = 0.;
|
|
|
|
node->buf_idx = storage_idx;
|
|
node->offset = offset;
|
|
if( nv_heap )
|
|
node->num_valid = (int*)cvSetNew( nv_heap );
|
|
else
|
|
node->num_valid = 0;
|
|
node->alpha = node->node_risk = node->tree_risk = node->tree_error = 0.;
|
|
node->complexity = 0;
|
|
|
|
if( params.cv_folds > 0 && cv_heap )
|
|
{
|
|
int cv_n = params.cv_folds;
|
|
node->Tn = INT_MAX;
|
|
node->cv_Tn = (int*)cvSetNew( cv_heap );
|
|
node->cv_node_risk = (double*)cvAlignPtr(node->cv_Tn + cv_n, sizeof(double));
|
|
node->cv_node_error = node->cv_node_risk + cv_n;
|
|
}
|
|
else
|
|
{
|
|
node->Tn = 0;
|
|
node->cv_Tn = 0;
|
|
node->cv_node_risk = 0;
|
|
node->cv_node_error = 0;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
CvDTreeSplit* CvDTreeTrainData::new_split_ord( int vi, float cmp_val,
|
|
int split_point, int inversed, float quality )
|
|
{
|
|
CvDTreeSplit* split = (CvDTreeSplit*)cvSetNew( split_heap );
|
|
split->var_idx = vi;
|
|
split->condensed_idx = INT_MIN;
|
|
split->ord.c = cmp_val;
|
|
split->ord.split_point = split_point;
|
|
split->inversed = inversed;
|
|
split->quality = quality;
|
|
split->next = 0;
|
|
|
|
return split;
|
|
}
|
|
|
|
|
|
CvDTreeSplit* CvDTreeTrainData::new_split_cat( int vi, float quality )
|
|
{
|
|
CvDTreeSplit* split = (CvDTreeSplit*)cvSetNew( split_heap );
|
|
int i, n = (max_c_count + 31)/32;
|
|
|
|
split->var_idx = vi;
|
|
split->condensed_idx = INT_MIN;
|
|
split->inversed = 0;
|
|
split->quality = quality;
|
|
for( i = 0; i < n; i++ )
|
|
split->subset[i] = 0;
|
|
split->next = 0;
|
|
|
|
return split;
|
|
}
|
|
|
|
|
|
void CvDTreeTrainData::free_node( CvDTreeNode* node )
|
|
{
|
|
CvDTreeSplit* split = node->split;
|
|
free_node_data( node );
|
|
while( split )
|
|
{
|
|
CvDTreeSplit* next = split->next;
|
|
cvSetRemoveByPtr( split_heap, split );
|
|
split = next;
|
|
}
|
|
node->split = 0;
|
|
cvSetRemoveByPtr( node_heap, node );
|
|
}
|
|
|
|
|
|
void CvDTreeTrainData::free_node_data( CvDTreeNode* node )
|
|
{
|
|
if( node->num_valid )
|
|
{
|
|
cvSetRemoveByPtr( nv_heap, node->num_valid );
|
|
node->num_valid = 0;
|
|
}
|
|
// do not free cv_* fields, as all the cross-validation related data is released at once.
|
|
}
|
|
|
|
|
|
void CvDTreeTrainData::free_train_data()
|
|
{
|
|
cvReleaseMat( &counts );
|
|
cvReleaseMat( &buf );
|
|
cvReleaseMat( &direction );
|
|
cvReleaseMat( &split_buf );
|
|
cvReleaseMemStorage( &temp_storage );
|
|
cvReleaseMat( &responses_copy );
|
|
cv_heap = nv_heap = 0;
|
|
}
|
|
|
|
|
|
void CvDTreeTrainData::clear()
|
|
{
|
|
free_train_data();
|
|
|
|
cvReleaseMemStorage( &tree_storage );
|
|
|
|
cvReleaseMat( &var_idx );
|
|
cvReleaseMat( &var_type );
|
|
cvReleaseMat( &cat_count );
|
|
cvReleaseMat( &cat_ofs );
|
|
cvReleaseMat( &cat_map );
|
|
cvReleaseMat( &priors );
|
|
cvReleaseMat( &priors_mult );
|
|
|
|
node_heap = split_heap = 0;
|
|
|
|
sample_count = var_all = var_count = max_c_count = ord_var_count = cat_var_count = 0;
|
|
have_labels = have_priors = is_classifier = false;
|
|
|
|
buf_count = buf_size = 0;
|
|
shared = false;
|
|
|
|
data_root = 0;
|
|
|
|
rng = &cv::theRNG();
|
|
}
|
|
|
|
|
|
int CvDTreeTrainData::get_num_classes() const
|
|
{
|
|
return is_classifier ? cat_count->data.i[cat_var_count] : 0;
|
|
}
|
|
|
|
|
|
int CvDTreeTrainData::get_var_type(int vi) const
|
|
{
|
|
return var_type->data.i[vi];
|
|
}
|
|
|
|
void CvDTreeTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
|
|
const float** ord_values, const int** sorted_indices, int* sample_indices_buf )
|
|
{
|
|
int vidx = var_idx ? var_idx->data.i[vi] : vi;
|
|
int node_sample_count = n->sample_count;
|
|
int td_step = train_data->step/CV_ELEM_SIZE(train_data->type);
|
|
|
|
const int* sample_indices = get_sample_indices(n, sample_indices_buf);
|
|
|
|
if( !is_buf_16u )
|
|
*sorted_indices = buf->data.i + n->buf_idx*buf->cols +
|
|
vi*sample_count + n->offset;
|
|
else {
|
|
const unsigned short* short_indices = (const unsigned short*)(buf->data.s + n->buf_idx*buf->cols +
|
|
vi*sample_count + n->offset );
|
|
for( int i = 0; i < node_sample_count; i++ )
|
|
sorted_indices_buf[i] = short_indices[i];
|
|
*sorted_indices = sorted_indices_buf;
|
|
}
|
|
|
|
if( tflag == CV_ROW_SAMPLE )
|
|
{
|
|
for( int i = 0; i < node_sample_count &&
|
|
((((*sorted_indices)[i] >= 0) && !is_buf_16u) || (((*sorted_indices)[i] != 65535) && is_buf_16u)); i++ )
|
|
{
|
|
int idx = (*sorted_indices)[i];
|
|
idx = sample_indices[idx];
|
|
ord_values_buf[i] = *(train_data->data.fl + idx * td_step + vidx);
|
|
}
|
|
}
|
|
else
|
|
for( int i = 0; i < node_sample_count &&
|
|
((((*sorted_indices)[i] >= 0) && !is_buf_16u) || (((*sorted_indices)[i] != 65535) && is_buf_16u)); i++ )
|
|
{
|
|
int idx = (*sorted_indices)[i];
|
|
idx = sample_indices[idx];
|
|
ord_values_buf[i] = *(train_data->data.fl + vidx* td_step + idx);
|
|
}
|
|
|
|
*ord_values = ord_values_buf;
|
|
}
|
|
|
|
|
|
const int* CvDTreeTrainData::get_class_labels( CvDTreeNode* n, int* labels_buf )
|
|
{
|
|
if (is_classifier)
|
|
return get_cat_var_data( n, var_count, labels_buf);
|
|
return 0;
|
|
}
|
|
|
|
const int* CvDTreeTrainData::get_sample_indices( CvDTreeNode* n, int* indices_buf )
|
|
{
|
|
return get_cat_var_data( n, get_work_var_count(), indices_buf );
|
|
}
|
|
|
|
const float* CvDTreeTrainData::get_ord_responses( CvDTreeNode* n, float* values_buf, int*sample_indices_buf )
|
|
{
|
|
int sample_count = n->sample_count;
|
|
int r_step = CV_IS_MAT_CONT(responses->type) ? 1 : responses->step/CV_ELEM_SIZE(responses->type);
|
|
const int* indices = get_sample_indices(n, sample_indices_buf);
|
|
|
|
for( int i = 0; i < sample_count &&
|
|
(((indices[i] >= 0) && !is_buf_16u) || ((indices[i] != 65535) && is_buf_16u)); i++ )
|
|
{
|
|
int idx = indices[i];
|
|
values_buf[i] = *(responses->data.fl + idx * r_step);
|
|
}
|
|
|
|
return values_buf;
|
|
}
|
|
|
|
|
|
const int* CvDTreeTrainData::get_cv_labels( CvDTreeNode* n, int* labels_buf )
|
|
{
|
|
if (have_labels)
|
|
return get_cat_var_data( n, get_work_var_count()- 1, labels_buf);
|
|
return 0;
|
|
}
|
|
|
|
|
|
const int* CvDTreeTrainData::get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf)
|
|
{
|
|
const int* cat_values = 0;
|
|
if( !is_buf_16u )
|
|
cat_values = buf->data.i + n->buf_idx*buf->cols +
|
|
vi*sample_count + n->offset;
|
|
else {
|
|
const unsigned short* short_values = (const unsigned short*)(buf->data.s + n->buf_idx*buf->cols +
|
|
vi*sample_count + n->offset);
|
|
for( int i = 0; i < n->sample_count; i++ )
|
|
cat_values_buf[i] = short_values[i];
|
|
cat_values = cat_values_buf;
|
|
}
|
|
return cat_values;
|
|
}
|
|
|
|
|
|
int CvDTreeTrainData::get_child_buf_idx( CvDTreeNode* n )
|
|
{
|
|
int idx = n->buf_idx + 1;
|
|
if( idx >= buf_count )
|
|
idx = shared ? 1 : 0;
|
|
return idx;
|
|
}
|
|
|
|
|
|
void CvDTreeTrainData::write_params( CvFileStorage* fs ) const
|
|
{
|
|
CV_FUNCNAME( "CvDTreeTrainData::write_params" );
|
|
|
|
__BEGIN__;
|
|
|
|
int vi, vcount = var_count;
|
|
|
|
cvWriteInt( fs, "is_classifier", is_classifier ? 1 : 0 );
|
|
cvWriteInt( fs, "var_all", var_all );
|
|
cvWriteInt( fs, "var_count", var_count );
|
|
cvWriteInt( fs, "ord_var_count", ord_var_count );
|
|
cvWriteInt( fs, "cat_var_count", cat_var_count );
|
|
|
|
cvStartWriteStruct( fs, "training_params", CV_NODE_MAP );
|
|
cvWriteInt( fs, "use_surrogates", params.use_surrogates ? 1 : 0 );
|
|
|
|
if( is_classifier )
|
|
{
|
|
cvWriteInt( fs, "max_categories", params.max_categories );
|
|
}
|
|
else
|
|
{
|
|
cvWriteReal( fs, "regression_accuracy", params.regression_accuracy );
|
|
}
|
|
|
|
cvWriteInt( fs, "max_depth", params.max_depth );
|
|
cvWriteInt( fs, "min_sample_count", params.min_sample_count );
|
|
cvWriteInt( fs, "cross_validation_folds", params.cv_folds );
|
|
|
|
if( params.cv_folds > 1 )
|
|
{
|
|
cvWriteInt( fs, "use_1se_rule", params.use_1se_rule ? 1 : 0 );
|
|
cvWriteInt( fs, "truncate_pruned_tree", params.truncate_pruned_tree ? 1 : 0 );
|
|
}
|
|
|
|
if( priors )
|
|
cvWrite( fs, "priors", priors );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
if( var_idx )
|
|
cvWrite( fs, "var_idx", var_idx );
|
|
|
|
cvStartWriteStruct( fs, "var_type", CV_NODE_SEQ+CV_NODE_FLOW );
|
|
|
|
for( vi = 0; vi < vcount; vi++ )
|
|
cvWriteInt( fs, 0, var_type->data.i[vi] >= 0 );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
if( cat_count && (cat_var_count > 0 || is_classifier) )
|
|
{
|
|
CV_ASSERT( cat_count != 0 );
|
|
cvWrite( fs, "cat_count", cat_count );
|
|
cvWrite( fs, "cat_map", cat_map );
|
|
}
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
void CvDTreeTrainData::read_params( CvFileStorage* fs, CvFileNode* node )
|
|
{
|
|
CV_FUNCNAME( "CvDTreeTrainData::read_params" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvFileNode *tparams_node, *vartype_node;
|
|
CvSeqReader reader;
|
|
int vi, max_split_size, tree_block_size;
|
|
|
|
is_classifier = (cvReadIntByName( fs, node, "is_classifier" ) != 0);
|
|
var_all = cvReadIntByName( fs, node, "var_all" );
|
|
var_count = cvReadIntByName( fs, node, "var_count", var_all );
|
|
cat_var_count = cvReadIntByName( fs, node, "cat_var_count" );
|
|
ord_var_count = cvReadIntByName( fs, node, "ord_var_count" );
|
|
|
|
tparams_node = cvGetFileNodeByName( fs, node, "training_params" );
|
|
|
|
if( tparams_node ) // training parameters are not necessary
|
|
{
|
|
params.use_surrogates = cvReadIntByName( fs, tparams_node, "use_surrogates", 1 ) != 0;
|
|
|
|
if( is_classifier )
|
|
{
|
|
params.max_categories = cvReadIntByName( fs, tparams_node, "max_categories" );
|
|
}
|
|
else
|
|
{
|
|
params.regression_accuracy =
|
|
(float)cvReadRealByName( fs, tparams_node, "regression_accuracy" );
|
|
}
|
|
|
|
params.max_depth = cvReadIntByName( fs, tparams_node, "max_depth" );
|
|
params.min_sample_count = cvReadIntByName( fs, tparams_node, "min_sample_count" );
|
|
params.cv_folds = cvReadIntByName( fs, tparams_node, "cross_validation_folds" );
|
|
|
|
if( params.cv_folds > 1 )
|
|
{
|
|
params.use_1se_rule = cvReadIntByName( fs, tparams_node, "use_1se_rule" ) != 0;
|
|
params.truncate_pruned_tree =
|
|
cvReadIntByName( fs, tparams_node, "truncate_pruned_tree" ) != 0;
|
|
}
|
|
|
|
priors = (CvMat*)cvReadByName( fs, tparams_node, "priors" );
|
|
if( priors )
|
|
{
|
|
if( !CV_IS_MAT(priors) )
|
|
CV_ERROR( CV_StsParseError, "priors must stored as a matrix" );
|
|
priors_mult = cvCloneMat( priors );
|
|
}
|
|
}
|
|
|
|
CV_CALL( var_idx = (CvMat*)cvReadByName( fs, node, "var_idx" ));
|
|
if( var_idx )
|
|
{
|
|
if( !CV_IS_MAT(var_idx) ||
|
|
(var_idx->cols != 1 && var_idx->rows != 1) ||
|
|
var_idx->cols + var_idx->rows - 1 != var_count ||
|
|
CV_MAT_TYPE(var_idx->type) != CV_32SC1 )
|
|
CV_ERROR( CV_StsParseError,
|
|
"var_idx (if exist) must be valid 1d integer vector containing <var_count> elements" );
|
|
|
|
for( vi = 0; vi < var_count; vi++ )
|
|
if( (unsigned)var_idx->data.i[vi] >= (unsigned)var_all )
|
|
CV_ERROR( CV_StsOutOfRange, "some of var_idx elements are out of range" );
|
|
}
|
|
|
|
////// read var type
|
|
CV_CALL( var_type = cvCreateMat( 1, var_count + 2, CV_32SC1 ));
|
|
|
|
cat_var_count = 0;
|
|
ord_var_count = -1;
|
|
vartype_node = cvGetFileNodeByName( fs, node, "var_type" );
|
|
|
|
if( vartype_node && CV_NODE_TYPE(vartype_node->tag) == CV_NODE_INT && var_count == 1 )
|
|
var_type->data.i[0] = vartype_node->data.i ? cat_var_count++ : ord_var_count--;
|
|
else
|
|
{
|
|
if( !vartype_node || CV_NODE_TYPE(vartype_node->tag) != CV_NODE_SEQ ||
|
|
vartype_node->data.seq->total != var_count )
|
|
CV_ERROR( CV_StsParseError, "var_type must exist and be a sequence of 0's and 1's" );
|
|
|
|
cvStartReadSeq( vartype_node->data.seq, &reader );
|
|
|
|
for( vi = 0; vi < var_count; vi++ )
|
|
{
|
|
CvFileNode* n = (CvFileNode*)reader.ptr;
|
|
if( CV_NODE_TYPE(n->tag) != CV_NODE_INT || (n->data.i & ~1) )
|
|
CV_ERROR( CV_StsParseError, "var_type must exist and be a sequence of 0's and 1's" );
|
|
var_type->data.i[vi] = n->data.i ? cat_var_count++ : ord_var_count--;
|
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
|
|
}
|
|
}
|
|
var_type->data.i[var_count] = cat_var_count;
|
|
|
|
ord_var_count = ~ord_var_count;
|
|
if( cat_var_count != cat_var_count || ord_var_count != ord_var_count )
|
|
CV_ERROR( CV_StsParseError, "var_type is inconsistent with cat_var_count and ord_var_count" );
|
|
//////
|
|
|
|
if( cat_var_count > 0 || is_classifier )
|
|
{
|
|
int ccount, total_c_count = 0;
|
|
CV_CALL( cat_count = (CvMat*)cvReadByName( fs, node, "cat_count" ));
|
|
CV_CALL( cat_map = (CvMat*)cvReadByName( fs, node, "cat_map" ));
|
|
|
|
if( !CV_IS_MAT(cat_count) || !CV_IS_MAT(cat_map) ||
|
|
(cat_count->cols != 1 && cat_count->rows != 1) ||
|
|
CV_MAT_TYPE(cat_count->type) != CV_32SC1 ||
|
|
cat_count->cols + cat_count->rows - 1 != cat_var_count + is_classifier ||
|
|
(cat_map->cols != 1 && cat_map->rows != 1) ||
|
|
CV_MAT_TYPE(cat_map->type) != CV_32SC1 )
|
|
CV_ERROR( CV_StsParseError,
|
|
"Both cat_count and cat_map must exist and be valid 1d integer vectors of an appropriate size" );
|
|
|
|
ccount = cat_var_count + is_classifier;
|
|
|
|
CV_CALL( cat_ofs = cvCreateMat( 1, ccount + 1, CV_32SC1 ));
|
|
cat_ofs->data.i[0] = 0;
|
|
max_c_count = 1;
|
|
|
|
for( vi = 0; vi < ccount; vi++ )
|
|
{
|
|
int val = cat_count->data.i[vi];
|
|
if( val <= 0 )
|
|
CV_ERROR( CV_StsOutOfRange, "some of cat_count elements are out of range" );
|
|
max_c_count = MAX( max_c_count, val );
|
|
cat_ofs->data.i[vi+1] = total_c_count += val;
|
|
}
|
|
|
|
if( cat_map->cols + cat_map->rows - 1 != total_c_count )
|
|
CV_ERROR( CV_StsBadSize,
|
|
"cat_map vector length is not equal to the total number of categories in all categorical vars" );
|
|
}
|
|
|
|
max_split_size = cvAlign(sizeof(CvDTreeSplit) +
|
|
(MAX(0,max_c_count - 33)/32)*sizeof(int),sizeof(void*));
|
|
|
|
tree_block_size = MAX((int)sizeof(CvDTreeNode)*8, max_split_size);
|
|
tree_block_size = MAX(tree_block_size + block_size_delta, min_block_size);
|
|
CV_CALL( tree_storage = cvCreateMemStorage( tree_block_size ));
|
|
CV_CALL( node_heap = cvCreateSet( 0, sizeof(node_heap[0]),
|
|
sizeof(CvDTreeNode), tree_storage ));
|
|
CV_CALL( split_heap = cvCreateSet( 0, sizeof(split_heap[0]),
|
|
max_split_size, tree_storage ));
|
|
|
|
__END__;
|
|
}
|
|
|
|
/////////////////////// Decision Tree /////////////////////////
|
|
CvDTreeParams::CvDTreeParams() : max_categories(10), max_depth(INT_MAX), min_sample_count(10),
|
|
cv_folds(10), use_surrogates(true), use_1se_rule(true),
|
|
truncate_pruned_tree(true), regression_accuracy(0.01f), priors(0)
|
|
{}
|
|
|
|
CvDTreeParams::CvDTreeParams( int _max_depth, int _min_sample_count,
|
|
float _regression_accuracy, bool _use_surrogates,
|
|
int _max_categories, int _cv_folds,
|
|
bool _use_1se_rule, bool _truncate_pruned_tree,
|
|
const float* _priors ) :
|
|
max_categories(_max_categories), max_depth(_max_depth),
|
|
min_sample_count(_min_sample_count), cv_folds (_cv_folds),
|
|
use_surrogates(_use_surrogates), use_1se_rule(_use_1se_rule),
|
|
truncate_pruned_tree(_truncate_pruned_tree),
|
|
regression_accuracy(_regression_accuracy),
|
|
priors(_priors)
|
|
{}
|
|
|
|
CvDTree::CvDTree()
|
|
{
|
|
data = 0;
|
|
var_importance = 0;
|
|
default_model_name = "my_tree";
|
|
|
|
clear();
|
|
}
|
|
|
|
|
|
void CvDTree::clear()
|
|
{
|
|
cvReleaseMat( &var_importance );
|
|
if( data )
|
|
{
|
|
if( !data->shared )
|
|
delete data;
|
|
else
|
|
free_tree();
|
|
data = 0;
|
|
}
|
|
root = 0;
|
|
pruned_tree_idx = -1;
|
|
}
|
|
|
|
|
|
CvDTree::~CvDTree()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
|
|
const CvDTreeNode* CvDTree::get_root() const
|
|
{
|
|
return root;
|
|
}
|
|
|
|
|
|
int CvDTree::get_pruned_tree_idx() const
|
|
{
|
|
return pruned_tree_idx;
|
|
}
|
|
|
|
|
|
CvDTreeTrainData* CvDTree::get_data()
|
|
{
|
|
return data;
|
|
}
|
|
|
|
|
|
bool CvDTree::train( const CvMat* _train_data, int _tflag,
|
|
const CvMat* _responses, const CvMat* _var_idx,
|
|
const CvMat* _sample_idx, const CvMat* _var_type,
|
|
const CvMat* _missing_mask, CvDTreeParams _params )
|
|
{
|
|
bool result = false;
|
|
|
|
CV_FUNCNAME( "CvDTree::train" );
|
|
|
|
__BEGIN__;
|
|
|
|
clear();
|
|
data = new CvDTreeTrainData( _train_data, _tflag, _responses,
|
|
_var_idx, _sample_idx, _var_type,
|
|
_missing_mask, _params, false );
|
|
CV_CALL( result = do_train(0) );
|
|
|
|
__END__;
|
|
|
|
return result;
|
|
}
|
|
|
|
bool CvDTree::train( const Mat& _train_data, int _tflag,
|
|
const Mat& _responses, const Mat& _var_idx,
|
|
const Mat& _sample_idx, const Mat& _var_type,
|
|
const Mat& _missing_mask, CvDTreeParams _params )
|
|
{
|
|
CvMat tdata = _train_data, responses = _responses, vidx=_var_idx,
|
|
sidx=_sample_idx, vtype=_var_type, mmask=_missing_mask;
|
|
return train(&tdata, _tflag, &responses, vidx.data.ptr ? &vidx : 0, sidx.data.ptr ? &sidx : 0,
|
|
vtype.data.ptr ? &vtype : 0, mmask.data.ptr ? &mmask : 0, _params);
|
|
}
|
|
|
|
|
|
bool CvDTree::train( CvMLData* _data, CvDTreeParams _params )
|
|
{
|
|
bool result = false;
|
|
|
|
CV_FUNCNAME( "CvDTree::train" );
|
|
|
|
__BEGIN__;
|
|
|
|
const CvMat* values = _data->get_values();
|
|
const CvMat* response = _data->get_responses();
|
|
const CvMat* missing = _data->get_missing();
|
|
const CvMat* var_types = _data->get_var_types();
|
|
const CvMat* train_sidx = _data->get_train_sample_idx();
|
|
const CvMat* var_idx = _data->get_var_idx();
|
|
|
|
CV_CALL( result = train( values, CV_ROW_SAMPLE, response, var_idx,
|
|
train_sidx, var_types, missing, _params ) );
|
|
|
|
__END__;
|
|
|
|
return result;
|
|
}
|
|
|
|
bool CvDTree::train( CvDTreeTrainData* _data, const CvMat* _subsample_idx )
|
|
{
|
|
bool result = false;
|
|
|
|
CV_FUNCNAME( "CvDTree::train" );
|
|
|
|
__BEGIN__;
|
|
|
|
clear();
|
|
data = _data;
|
|
data->shared = true;
|
|
CV_CALL( result = do_train(_subsample_idx));
|
|
|
|
__END__;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
bool CvDTree::do_train( const CvMat* _subsample_idx )
|
|
{
|
|
bool result = false;
|
|
|
|
CV_FUNCNAME( "CvDTree::do_train" );
|
|
|
|
__BEGIN__;
|
|
|
|
root = data->subsample_data( _subsample_idx );
|
|
|
|
CV_CALL( try_split_node(root));
|
|
|
|
if( root->split )
|
|
{
|
|
CV_Assert( root->left );
|
|
CV_Assert( root->right );
|
|
|
|
if( data->params.cv_folds > 0 )
|
|
CV_CALL( prune_cv() );
|
|
|
|
if( !data->shared )
|
|
data->free_train_data();
|
|
|
|
result = true;
|
|
}
|
|
|
|
__END__;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void CvDTree::try_split_node( CvDTreeNode* node )
|
|
{
|
|
CvDTreeSplit* best_split = 0;
|
|
int i, n = node->sample_count, vi;
|
|
bool can_split = true;
|
|
double quality_scale;
|
|
|
|
calc_node_value( node );
|
|
|
|
if( node->sample_count <= data->params.min_sample_count ||
|
|
node->depth >= data->params.max_depth )
|
|
can_split = false;
|
|
|
|
if( can_split && data->is_classifier )
|
|
{
|
|
// check if we have a "pure" node,
|
|
// we assume that cls_count is filled by calc_node_value()
|
|
int* cls_count = data->counts->data.i;
|
|
int nz = 0, m = data->get_num_classes();
|
|
for( i = 0; i < m; i++ )
|
|
nz += cls_count[i] != 0;
|
|
if( nz == 1 ) // there is only one class
|
|
can_split = false;
|
|
}
|
|
else if( can_split )
|
|
{
|
|
if( sqrt(node->node_risk)/n < data->params.regression_accuracy )
|
|
can_split = false;
|
|
}
|
|
|
|
if( can_split )
|
|
{
|
|
best_split = find_best_split(node);
|
|
// TODO: check the split quality ...
|
|
node->split = best_split;
|
|
}
|
|
if( !can_split || !best_split )
|
|
{
|
|
data->free_node_data(node);
|
|
return;
|
|
}
|
|
|
|
quality_scale = calc_node_dir( node );
|
|
if( data->params.use_surrogates )
|
|
{
|
|
// find all the surrogate splits
|
|
// and sort them by their similarity to the primary one
|
|
for( vi = 0; vi < data->var_count; vi++ )
|
|
{
|
|
CvDTreeSplit* split;
|
|
int ci = data->get_var_type(vi);
|
|
|
|
if( vi == best_split->var_idx )
|
|
continue;
|
|
|
|
if( ci >= 0 )
|
|
split = find_surrogate_split_cat( node, vi );
|
|
else
|
|
split = find_surrogate_split_ord( node, vi );
|
|
|
|
if( split )
|
|
{
|
|
// insert the split
|
|
CvDTreeSplit* prev_split = node->split;
|
|
split->quality = (float)(split->quality*quality_scale);
|
|
|
|
while( prev_split->next &&
|
|
prev_split->next->quality > split->quality )
|
|
prev_split = prev_split->next;
|
|
split->next = prev_split->next;
|
|
prev_split->next = split;
|
|
}
|
|
}
|
|
}
|
|
split_node_data( node );
|
|
try_split_node( node->left );
|
|
try_split_node( node->right );
|
|
}
|
|
|
|
|
|
// calculate direction (left(-1),right(1),missing(0))
|
|
// for each sample using the best split
|
|
// the function returns scale coefficients for surrogate split quality factors.
|
|
// the scale is applied to normalize surrogate split quality relatively to the
|
|
// best (primary) split quality. That is, if a surrogate split is absolutely
|
|
// identical to the primary split, its quality will be set to the maximum value =
|
|
// quality of the primary split; otherwise, it will be lower.
|
|
// besides, the function compute node->maxlr,
|
|
// minimum possible quality (w/o considering the above mentioned scale)
|
|
// for a surrogate split. Surrogate splits with quality less than node->maxlr
|
|
// are not discarded.
|
|
double CvDTree::calc_node_dir( CvDTreeNode* node )
|
|
{
|
|
char* dir = (char*)data->direction->data.ptr;
|
|
int i, n = node->sample_count, vi = node->split->var_idx;
|
|
double L, R;
|
|
|
|
assert( !node->split->inversed );
|
|
|
|
if( data->get_var_type(vi) >= 0 ) // split on categorical var
|
|
{
|
|
cv::AutoBuffer<int> inn_buf(n*(!data->have_priors ? 1 : 2));
|
|
int* labels_buf = (int*)inn_buf;
|
|
const int* labels = data->get_cat_var_data( node, vi, labels_buf );
|
|
const int* subset = node->split->subset;
|
|
if( !data->have_priors )
|
|
{
|
|
int sum = 0, sum_abs = 0;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int idx = labels[i];
|
|
int d = ( ((idx >= 0)&&(!data->is_buf_16u)) || ((idx != 65535)&&(data->is_buf_16u)) ) ?
|
|
CV_DTREE_CAT_DIR(idx,subset) : 0;
|
|
sum += d; sum_abs += d & 1;
|
|
dir[i] = (char)d;
|
|
}
|
|
|
|
R = (sum_abs + sum) >> 1;
|
|
L = (sum_abs - sum) >> 1;
|
|
}
|
|
else
|
|
{
|
|
const double* priors = data->priors_mult->data.db;
|
|
double sum = 0, sum_abs = 0;
|
|
int* responses_buf = labels_buf + n;
|
|
const int* responses = data->get_class_labels(node, responses_buf);
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int idx = labels[i];
|
|
double w = priors[responses[i]];
|
|
int d = idx >= 0 ? CV_DTREE_CAT_DIR(idx,subset) : 0;
|
|
sum += d*w; sum_abs += (d & 1)*w;
|
|
dir[i] = (char)d;
|
|
}
|
|
|
|
R = (sum_abs + sum) * 0.5;
|
|
L = (sum_abs - sum) * 0.5;
|
|
}
|
|
}
|
|
else // split on ordered var
|
|
{
|
|
int split_point = node->split->ord.split_point;
|
|
int n1 = node->get_num_valid(vi);
|
|
cv::AutoBuffer<uchar> inn_buf(n*(sizeof(int)*(data->have_priors ? 3 : 2) + sizeof(float)));
|
|
float* val_buf = (float*)(uchar*)inn_buf;
|
|
int* sorted_buf = (int*)(val_buf + n);
|
|
int* sample_idx_buf = sorted_buf + n;
|
|
const float* val = 0;
|
|
const int* sorted = 0;
|
|
data->get_ord_var_data( node, vi, val_buf, sorted_buf, &val, &sorted, sample_idx_buf);
|
|
|
|
assert( 0 <= split_point && split_point < n1-1 );
|
|
|
|
if( !data->have_priors )
|
|
{
|
|
for( i = 0; i <= split_point; i++ )
|
|
dir[sorted[i]] = (char)-1;
|
|
for( ; i < n1; i++ )
|
|
dir[sorted[i]] = (char)1;
|
|
for( ; i < n; i++ )
|
|
dir[sorted[i]] = (char)0;
|
|
|
|
L = split_point-1;
|
|
R = n1 - split_point + 1;
|
|
}
|
|
else
|
|
{
|
|
const double* priors = data->priors_mult->data.db;
|
|
int* responses_buf = sample_idx_buf + n;
|
|
const int* responses = data->get_class_labels(node, responses_buf);
|
|
L = R = 0;
|
|
|
|
for( i = 0; i <= split_point; i++ )
|
|
{
|
|
int idx = sorted[i];
|
|
double w = priors[responses[idx]];
|
|
dir[idx] = (char)-1;
|
|
L += w;
|
|
}
|
|
|
|
for( ; i < n1; i++ )
|
|
{
|
|
int idx = sorted[i];
|
|
double w = priors[responses[idx]];
|
|
dir[idx] = (char)1;
|
|
R += w;
|
|
}
|
|
|
|
for( ; i < n; i++ )
|
|
dir[sorted[i]] = (char)0;
|
|
}
|
|
}
|
|
node->maxlr = MAX( L, R );
|
|
return node->split->quality/(L + R);
|
|
}
|
|
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj()
|
|
{
|
|
fastFree(obj);
|
|
}
|
|
|
|
DTreeBestSplitFinder::DTreeBestSplitFinder( CvDTree* _tree, CvDTreeNode* _node)
|
|
{
|
|
tree = _tree;
|
|
node = _node;
|
|
splitSize = tree->get_data()->split_heap->elem_size;
|
|
|
|
bestSplit = (CvDTreeSplit*)fastMalloc(splitSize);
|
|
memset((CvDTreeSplit*)bestSplit, 0, splitSize);
|
|
bestSplit->quality = -1;
|
|
bestSplit->condensed_idx = INT_MIN;
|
|
split = (CvDTreeSplit*)fastMalloc(splitSize);
|
|
memset((CvDTreeSplit*)split, 0, splitSize);
|
|
//haveSplit = false;
|
|
}
|
|
|
|
DTreeBestSplitFinder::DTreeBestSplitFinder( const DTreeBestSplitFinder& finder, Split )
|
|
{
|
|
tree = finder.tree;
|
|
node = finder.node;
|
|
splitSize = tree->get_data()->split_heap->elem_size;
|
|
|
|
bestSplit = (CvDTreeSplit*)fastMalloc(splitSize);
|
|
memcpy((CvDTreeSplit*)(bestSplit), (const CvDTreeSplit*)finder.bestSplit, splitSize);
|
|
split = (CvDTreeSplit*)fastMalloc(splitSize);
|
|
memset((CvDTreeSplit*)split, 0, splitSize);
|
|
}
|
|
|
|
void DTreeBestSplitFinder::operator()(const BlockedRange& range)
|
|
{
|
|
int vi, vi1 = range.begin(), vi2 = range.end();
|
|
int n = node->sample_count;
|
|
CvDTreeTrainData* data = tree->get_data();
|
|
AutoBuffer<uchar> inn_buf(2*n*(sizeof(int) + sizeof(float)));
|
|
|
|
for( vi = vi1; vi < vi2; vi++ )
|
|
{
|
|
CvDTreeSplit *res;
|
|
int ci = data->get_var_type(vi);
|
|
if( node->get_num_valid(vi) <= 1 )
|
|
continue;
|
|
|
|
if( data->is_classifier )
|
|
{
|
|
if( ci >= 0 )
|
|
res = tree->find_split_cat_class( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
|
|
else
|
|
res = tree->find_split_ord_class( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
|
|
}
|
|
else
|
|
{
|
|
if( ci >= 0 )
|
|
res = tree->find_split_cat_reg( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
|
|
else
|
|
res = tree->find_split_ord_reg( node, vi, bestSplit->quality, split, (uchar*)inn_buf );
|
|
}
|
|
|
|
if( res && bestSplit->quality < split->quality )
|
|
memcpy( (CvDTreeSplit*)bestSplit, (CvDTreeSplit*)split, splitSize );
|
|
}
|
|
}
|
|
|
|
void DTreeBestSplitFinder::join( DTreeBestSplitFinder& rhs )
|
|
{
|
|
if( bestSplit->quality < rhs.bestSplit->quality )
|
|
memcpy( (CvDTreeSplit*)bestSplit, (CvDTreeSplit*)rhs.bestSplit, splitSize );
|
|
}
|
|
}
|
|
|
|
|
|
CvDTreeSplit* CvDTree::find_best_split( CvDTreeNode* node )
|
|
{
|
|
DTreeBestSplitFinder finder( this, node );
|
|
|
|
cv::parallel_reduce(cv::BlockedRange(0, data->var_count), finder);
|
|
|
|
CvDTreeSplit *bestSplit = 0;
|
|
if( finder.bestSplit->quality > 0 )
|
|
{
|
|
bestSplit = data->new_split_cat( 0, -1.0f );
|
|
memcpy( bestSplit, finder.bestSplit, finder.splitSize );
|
|
}
|
|
|
|
return bestSplit;
|
|
}
|
|
|
|
CvDTreeSplit* CvDTree::find_split_ord_class( CvDTreeNode* node, int vi,
|
|
float init_quality, CvDTreeSplit* _split, uchar* _ext_buf )
|
|
{
|
|
const float epsilon = FLT_EPSILON*2;
|
|
int n = node->sample_count;
|
|
int n1 = node->get_num_valid(vi);
|
|
int m = data->get_num_classes();
|
|
|
|
int base_size = 2*m*sizeof(int);
|
|
cv::AutoBuffer<uchar> inn_buf(base_size);
|
|
if( !_ext_buf )
|
|
inn_buf.allocate(base_size + n*(3*sizeof(int)+sizeof(float)));
|
|
uchar* base_buf = (uchar*)inn_buf;
|
|
uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size;
|
|
float* values_buf = (float*)ext_buf;
|
|
int* sorted_indices_buf = (int*)(values_buf + n);
|
|
int* sample_indices_buf = sorted_indices_buf + n;
|
|
const float* values = 0;
|
|
const int* sorted_indices = 0;
|
|
data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values,
|
|
&sorted_indices, sample_indices_buf );
|
|
int* responses_buf = sample_indices_buf + n;
|
|
const int* responses = data->get_class_labels( node, responses_buf );
|
|
|
|
const int* rc0 = data->counts->data.i;
|
|
int* lc = (int*)base_buf;
|
|
int* rc = lc + m;
|
|
int i, best_i = -1;
|
|
double lsum2 = 0, rsum2 = 0, best_val = init_quality;
|
|
const double* priors = data->have_priors ? data->priors_mult->data.db : 0;
|
|
|
|
// init arrays of class instance counters on both sides of the split
|
|
for( i = 0; i < m; i++ )
|
|
{
|
|
lc[i] = 0;
|
|
rc[i] = rc0[i];
|
|
}
|
|
|
|
// compensate for missing values
|
|
for( i = n1; i < n; i++ )
|
|
{
|
|
rc[responses[sorted_indices[i]]]--;
|
|
}
|
|
|
|
if( !priors )
|
|
{
|
|
int L = 0, R = n1;
|
|
|
|
for( i = 0; i < m; i++ )
|
|
rsum2 += (double)rc[i]*rc[i];
|
|
|
|
for( i = 0; i < n1 - 1; i++ )
|
|
{
|
|
int idx = responses[sorted_indices[i]];
|
|
int lv, rv;
|
|
L++; R--;
|
|
lv = lc[idx]; rv = rc[idx];
|
|
lsum2 += lv*2 + 1;
|
|
rsum2 -= rv*2 - 1;
|
|
lc[idx] = lv + 1; rc[idx] = rv - 1;
|
|
|
|
if( values[i] + epsilon < values[i+1] )
|
|
{
|
|
double val = (lsum2*R + rsum2*L)/((double)L*R);
|
|
if( best_val < val )
|
|
{
|
|
best_val = val;
|
|
best_i = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double L = 0, R = 0;
|
|
for( i = 0; i < m; i++ )
|
|
{
|
|
double wv = rc[i]*priors[i];
|
|
R += wv;
|
|
rsum2 += wv*wv;
|
|
}
|
|
|
|
for( i = 0; i < n1 - 1; i++ )
|
|
{
|
|
int idx = responses[sorted_indices[i]];
|
|
int lv, rv;
|
|
double p = priors[idx], p2 = p*p;
|
|
L += p; R -= p;
|
|
lv = lc[idx]; rv = rc[idx];
|
|
lsum2 += p2*(lv*2 + 1);
|
|
rsum2 -= p2*(rv*2 - 1);
|
|
lc[idx] = lv + 1; rc[idx] = rv - 1;
|
|
|
|
if( values[i] + epsilon < values[i+1] )
|
|
{
|
|
double val = (lsum2*R + rsum2*L)/((double)L*R);
|
|
if( best_val < val )
|
|
{
|
|
best_val = val;
|
|
best_i = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CvDTreeSplit* split = 0;
|
|
if( best_i >= 0 )
|
|
{
|
|
split = _split ? _split : data->new_split_ord( 0, 0.0f, 0, 0, 0.0f );
|
|
split->var_idx = vi;
|
|
split->ord.c = (values[best_i] + values[best_i+1])*0.5f;
|
|
split->ord.split_point = best_i;
|
|
split->inversed = 0;
|
|
split->quality = (float)best_val;
|
|
}
|
|
return split;
|
|
}
|
|
|
|
|
|
void CvDTree::cluster_categories( const int* vectors, int n, int m,
|
|
int* csums, int k, int* labels )
|
|
{
|
|
// TODO: consider adding priors (class weights) and sample weights to the clustering algorithm
|
|
int iters = 0, max_iters = 100;
|
|
int i, j, idx;
|
|
cv::AutoBuffer<double> buf(n + k);
|
|
double *v_weights = buf, *c_weights = buf + n;
|
|
bool modified = true;
|
|
RNG* r = data->rng;
|
|
|
|
// assign labels randomly
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int sum = 0;
|
|
const int* v = vectors + i*m;
|
|
labels[i] = i < k ? i : (*r)(k);
|
|
|
|
// compute weight of each vector
|
|
for( j = 0; j < m; j++ )
|
|
sum += v[j];
|
|
v_weights[i] = sum ? 1./sum : 0.;
|
|
}
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int i1 = (*r)(n);
|
|
int i2 = (*r)(n);
|
|
CV_SWAP( labels[i1], labels[i2], j );
|
|
}
|
|
|
|
for( iters = 0; iters <= max_iters; iters++ )
|
|
{
|
|
// calculate csums
|
|
for( i = 0; i < k; i++ )
|
|
{
|
|
for( j = 0; j < m; j++ )
|
|
csums[i*m + j] = 0;
|
|
}
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
const int* v = vectors + i*m;
|
|
int* s = csums + labels[i]*m;
|
|
for( j = 0; j < m; j++ )
|
|
s[j] += v[j];
|
|
}
|
|
|
|
// exit the loop here, when we have up-to-date csums
|
|
if( iters == max_iters || !modified )
|
|
break;
|
|
|
|
modified = false;
|
|
|
|
// calculate weight of each cluster
|
|
for( i = 0; i < k; i++ )
|
|
{
|
|
const int* s = csums + i*m;
|
|
int sum = 0;
|
|
for( j = 0; j < m; j++ )
|
|
sum += s[j];
|
|
c_weights[i] = sum ? 1./sum : 0;
|
|
}
|
|
|
|
// now for each vector determine the closest cluster
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
const int* v = vectors + i*m;
|
|
double alpha = v_weights[i];
|
|
double min_dist2 = DBL_MAX;
|
|
int min_idx = -1;
|
|
|
|
for( idx = 0; idx < k; idx++ )
|
|
{
|
|
const int* s = csums + idx*m;
|
|
double dist2 = 0., beta = c_weights[idx];
|
|
for( j = 0; j < m; j++ )
|
|
{
|
|
double t = v[j]*alpha - s[j]*beta;
|
|
dist2 += t*t;
|
|
}
|
|
if( min_dist2 > dist2 )
|
|
{
|
|
min_dist2 = dist2;
|
|
min_idx = idx;
|
|
}
|
|
}
|
|
|
|
if( min_idx != labels[i] )
|
|
modified = true;
|
|
labels[i] = min_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
CvDTreeSplit* CvDTree::find_split_cat_class( CvDTreeNode* node, int vi, float init_quality,
|
|
CvDTreeSplit* _split, uchar* _ext_buf )
|
|
{
|
|
int ci = data->get_var_type(vi);
|
|
int n = node->sample_count;
|
|
int m = data->get_num_classes();
|
|
int _mi = data->cat_count->data.i[ci], mi = _mi;
|
|
|
|
int base_size = m*(3 + mi)*sizeof(int) + (mi+1)*sizeof(double);
|
|
if( m > 2 && mi > data->params.max_categories )
|
|
base_size += (m*min(data->params.max_categories, n) + mi)*sizeof(int);
|
|
else
|
|
base_size += mi*sizeof(int*);
|
|
cv::AutoBuffer<uchar> inn_buf(base_size);
|
|
if( !_ext_buf )
|
|
inn_buf.allocate(base_size + 2*n*sizeof(int));
|
|
uchar* base_buf = (uchar*)inn_buf;
|
|
uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size;
|
|
|
|
int* lc = (int*)base_buf;
|
|
int* rc = lc + m;
|
|
int* _cjk = rc + m*2, *cjk = _cjk;
|
|
double* c_weights = (double*)alignPtr(cjk + m*mi, sizeof(double));
|
|
|
|
int* labels_buf = (int*)ext_buf;
|
|
const int* labels = data->get_cat_var_data(node, vi, labels_buf);
|
|
int* responses_buf = labels_buf + n;
|
|
const int* responses = data->get_class_labels(node, responses_buf);
|
|
|
|
int* cluster_labels = 0;
|
|
int** int_ptr = 0;
|
|
int i, j, k, idx;
|
|
double L = 0, R = 0;
|
|
double best_val = init_quality;
|
|
int prevcode = 0, best_subset = -1, subset_i, subset_n, subtract = 0;
|
|
const double* priors = data->priors_mult->data.db;
|
|
|
|
// init array of counters:
|
|
// c_{jk} - number of samples that have vi-th input variable = j and response = k.
|
|
for( j = -1; j < mi; j++ )
|
|
for( k = 0; k < m; k++ )
|
|
cjk[j*m + k] = 0;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
j = ( labels[i] == 65535 && data->is_buf_16u) ? -1 : labels[i];
|
|
k = responses[i];
|
|
cjk[j*m + k]++;
|
|
}
|
|
|
|
if( m > 2 )
|
|
{
|
|
if( mi > data->params.max_categories )
|
|
{
|
|
mi = MIN(data->params.max_categories, n);
|
|
cjk = (int*)(c_weights + _mi);
|
|
cluster_labels = cjk + m*mi;
|
|
cluster_categories( _cjk, _mi, m, cjk, mi, cluster_labels );
|
|
}
|
|
subset_i = 1;
|
|
subset_n = 1 << mi;
|
|
}
|
|
else
|
|
{
|
|
assert( m == 2 );
|
|
int_ptr = (int**)(c_weights + _mi);
|
|
for( j = 0; j < mi; j++ )
|
|
int_ptr[j] = cjk + j*2 + 1;
|
|
icvSortIntPtr( int_ptr, mi, 0 );
|
|
subset_i = 0;
|
|
subset_n = mi;
|
|
}
|
|
|
|
for( k = 0; k < m; k++ )
|
|
{
|
|
int sum = 0;
|
|
for( j = 0; j < mi; j++ )
|
|
sum += cjk[j*m + k];
|
|
rc[k] = sum;
|
|
lc[k] = 0;
|
|
}
|
|
|
|
for( j = 0; j < mi; j++ )
|
|
{
|
|
double sum = 0;
|
|
for( k = 0; k < m; k++ )
|
|
sum += cjk[j*m + k]*priors[k];
|
|
c_weights[j] = sum;
|
|
R += c_weights[j];
|
|
}
|
|
|
|
for( ; subset_i < subset_n; subset_i++ )
|
|
{
|
|
double weight;
|
|
int* crow;
|
|
double lsum2 = 0, rsum2 = 0;
|
|
|
|
if( m == 2 )
|
|
idx = (int)(int_ptr[subset_i] - cjk)/2;
|
|
else
|
|
{
|
|
int graycode = (subset_i>>1)^subset_i;
|
|
int diff = graycode ^ prevcode;
|
|
|
|
// determine index of the changed bit.
|
|
Cv32suf u;
|
|
idx = diff >= (1 << 16) ? 16 : 0;
|
|
u.f = (float)(((diff >> 16) | diff) & 65535);
|
|
idx += (u.i >> 23) - 127;
|
|
subtract = graycode < prevcode;
|
|
prevcode = graycode;
|
|
}
|
|
|
|
crow = cjk + idx*m;
|
|
weight = c_weights[idx];
|
|
if( weight < FLT_EPSILON )
|
|
continue;
|
|
|
|
if( !subtract )
|
|
{
|
|
for( k = 0; k < m; k++ )
|
|
{
|
|
int t = crow[k];
|
|
int lval = lc[k] + t;
|
|
int rval = rc[k] - t;
|
|
double p = priors[k], p2 = p*p;
|
|
lsum2 += p2*lval*lval;
|
|
rsum2 += p2*rval*rval;
|
|
lc[k] = lval; rc[k] = rval;
|
|
}
|
|
L += weight;
|
|
R -= weight;
|
|
}
|
|
else
|
|
{
|
|
for( k = 0; k < m; k++ )
|
|
{
|
|
int t = crow[k];
|
|
int lval = lc[k] - t;
|
|
int rval = rc[k] + t;
|
|
double p = priors[k], p2 = p*p;
|
|
lsum2 += p2*lval*lval;
|
|
rsum2 += p2*rval*rval;
|
|
lc[k] = lval; rc[k] = rval;
|
|
}
|
|
L -= weight;
|
|
R += weight;
|
|
}
|
|
|
|
if( L > FLT_EPSILON && R > FLT_EPSILON )
|
|
{
|
|
double val = (lsum2*R + rsum2*L)/((double)L*R);
|
|
if( best_val < val )
|
|
{
|
|
best_val = val;
|
|
best_subset = subset_i;
|
|
}
|
|
}
|
|
}
|
|
|
|
CvDTreeSplit* split = 0;
|
|
if( best_subset >= 0 )
|
|
{
|
|
split = _split ? _split : data->new_split_cat( 0, -1.0f );
|
|
split->var_idx = vi;
|
|
split->quality = (float)best_val;
|
|
memset( split->subset, 0, (data->max_c_count + 31)/32 * sizeof(int));
|
|
if( m == 2 )
|
|
{
|
|
for( i = 0; i <= best_subset; i++ )
|
|
{
|
|
idx = (int)(int_ptr[i] - cjk) >> 1;
|
|
split->subset[idx >> 5] |= 1 << (idx & 31);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < _mi; i++ )
|
|
{
|
|
idx = cluster_labels ? cluster_labels[i] : i;
|
|
if( best_subset & (1 << idx) )
|
|
split->subset[i >> 5] |= 1 << (i & 31);
|
|
}
|
|
}
|
|
}
|
|
return split;
|
|
}
|
|
|
|
|
|
CvDTreeSplit* CvDTree::find_split_ord_reg( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf )
|
|
{
|
|
const float epsilon = FLT_EPSILON*2;
|
|
int n = node->sample_count;
|
|
int n1 = node->get_num_valid(vi);
|
|
|
|
cv::AutoBuffer<uchar> inn_buf;
|
|
if( !_ext_buf )
|
|
inn_buf.allocate(2*n*(sizeof(int) + sizeof(float)));
|
|
uchar* ext_buf = _ext_buf ? _ext_buf : (uchar*)inn_buf;
|
|
float* values_buf = (float*)ext_buf;
|
|
int* sorted_indices_buf = (int*)(values_buf + n);
|
|
int* sample_indices_buf = sorted_indices_buf + n;
|
|
const float* values = 0;
|
|
const int* sorted_indices = 0;
|
|
data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values, &sorted_indices, sample_indices_buf );
|
|
float* responses_buf = (float*)(sample_indices_buf + n);
|
|
const float* responses = data->get_ord_responses( node, responses_buf, sample_indices_buf );
|
|
|
|
int i, best_i = -1;
|
|
double best_val = init_quality, lsum = 0, rsum = node->value*n;
|
|
int L = 0, R = n1;
|
|
|
|
// compensate for missing values
|
|
for( i = n1; i < n; i++ )
|
|
rsum -= responses[sorted_indices[i]];
|
|
|
|
// find the optimal split
|
|
for( i = 0; i < n1 - 1; i++ )
|
|
{
|
|
float t = responses[sorted_indices[i]];
|
|
L++; R--;
|
|
lsum += t;
|
|
rsum -= t;
|
|
|
|
if( values[i] + epsilon < values[i+1] )
|
|
{
|
|
double val = (lsum*lsum*R + rsum*rsum*L)/((double)L*R);
|
|
if( best_val < val )
|
|
{
|
|
best_val = val;
|
|
best_i = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
CvDTreeSplit* split = 0;
|
|
if( best_i >= 0 )
|
|
{
|
|
split = _split ? _split : data->new_split_ord( 0, 0.0f, 0, 0, 0.0f );
|
|
split->var_idx = vi;
|
|
split->ord.c = (values[best_i] + values[best_i+1])*0.5f;
|
|
split->ord.split_point = best_i;
|
|
split->inversed = 0;
|
|
split->quality = (float)best_val;
|
|
}
|
|
return split;
|
|
}
|
|
|
|
CvDTreeSplit* CvDTree::find_split_cat_reg( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf )
|
|
{
|
|
int ci = data->get_var_type(vi);
|
|
int n = node->sample_count;
|
|
int mi = data->cat_count->data.i[ci];
|
|
|
|
int base_size = (mi+2)*sizeof(double) + (mi+1)*(sizeof(int) + sizeof(double*));
|
|
cv::AutoBuffer<uchar> inn_buf(base_size);
|
|
if( !_ext_buf )
|
|
inn_buf.allocate(base_size + n*(2*sizeof(int) + sizeof(float)));
|
|
uchar* base_buf = (uchar*)inn_buf;
|
|
uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size;
|
|
int* labels_buf = (int*)ext_buf;
|
|
const int* labels = data->get_cat_var_data(node, vi, labels_buf);
|
|
float* responses_buf = (float*)(labels_buf + n);
|
|
int* sample_indices_buf = (int*)(responses_buf + n);
|
|
const float* responses = data->get_ord_responses(node, responses_buf, sample_indices_buf);
|
|
|
|
double* sum = (double*)cv::alignPtr(base_buf,sizeof(double)) + 1;
|
|
int* counts = (int*)(sum + mi) + 1;
|
|
double** sum_ptr = (double**)(counts + mi);
|
|
int i, L = 0, R = 0;
|
|
double best_val = init_quality, lsum = 0, rsum = 0;
|
|
int best_subset = -1, subset_i;
|
|
|
|
for( i = -1; i < mi; i++ )
|
|
sum[i] = counts[i] = 0;
|
|
|
|
// calculate sum response and weight of each category of the input var
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int idx = ( (labels[i] == 65535) && data->is_buf_16u ) ? -1 : labels[i];
|
|
double s = sum[idx] + responses[i];
|
|
int nc = counts[idx] + 1;
|
|
sum[idx] = s;
|
|
counts[idx] = nc;
|
|
}
|
|
|
|
// calculate average response in each category
|
|
for( i = 0; i < mi; i++ )
|
|
{
|
|
R += counts[i];
|
|
rsum += sum[i];
|
|
sum[i] /= MAX(counts[i],1);
|
|
sum_ptr[i] = sum + i;
|
|
}
|
|
|
|
icvSortDblPtr( sum_ptr, mi, 0 );
|
|
|
|
// revert back to unnormalized sums
|
|
// (there should be a very little loss of accuracy)
|
|
for( i = 0; i < mi; i++ )
|
|
sum[i] *= counts[i];
|
|
|
|
for( subset_i = 0; subset_i < mi-1; subset_i++ )
|
|
{
|
|
int idx = (int)(sum_ptr[subset_i] - sum);
|
|
int ni = counts[idx];
|
|
|
|
if( ni )
|
|
{
|
|
double s = sum[idx];
|
|
lsum += s; L += ni;
|
|
rsum -= s; R -= ni;
|
|
|
|
if( L && R )
|
|
{
|
|
double val = (lsum*lsum*R + rsum*rsum*L)/((double)L*R);
|
|
if( best_val < val )
|
|
{
|
|
best_val = val;
|
|
best_subset = subset_i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CvDTreeSplit* split = 0;
|
|
if( best_subset >= 0 )
|
|
{
|
|
split = _split ? _split : data->new_split_cat( 0, -1.0f);
|
|
split->var_idx = vi;
|
|
split->quality = (float)best_val;
|
|
memset( split->subset, 0, (data->max_c_count + 31)/32 * sizeof(int));
|
|
for( i = 0; i <= best_subset; i++ )
|
|
{
|
|
int idx = (int)(sum_ptr[i] - sum);
|
|
split->subset[idx >> 5] |= 1 << (idx & 31);
|
|
}
|
|
}
|
|
return split;
|
|
}
|
|
|
|
CvDTreeSplit* CvDTree::find_surrogate_split_ord( CvDTreeNode* node, int vi, uchar* _ext_buf )
|
|
{
|
|
const float epsilon = FLT_EPSILON*2;
|
|
const char* dir = (char*)data->direction->data.ptr;
|
|
int n = node->sample_count, n1 = node->get_num_valid(vi);
|
|
cv::AutoBuffer<uchar> inn_buf;
|
|
if( !_ext_buf )
|
|
inn_buf.allocate( n*(sizeof(int)*(data->have_priors ? 3 : 2) + sizeof(float)) );
|
|
uchar* ext_buf = _ext_buf ? _ext_buf : (uchar*)inn_buf;
|
|
float* values_buf = (float*)ext_buf;
|
|
int* sorted_indices_buf = (int*)(values_buf + n);
|
|
int* sample_indices_buf = sorted_indices_buf + n;
|
|
const float* values = 0;
|
|
const int* sorted_indices = 0;
|
|
data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values, &sorted_indices, sample_indices_buf );
|
|
// LL - number of samples that both the primary and the surrogate splits send to the left
|
|
// LR - ... primary split sends to the left and the surrogate split sends to the right
|
|
// RL - ... primary split sends to the right and the surrogate split sends to the left
|
|
// RR - ... both send to the right
|
|
int i, best_i = -1, best_inversed = 0;
|
|
double best_val;
|
|
|
|
if( !data->have_priors )
|
|
{
|
|
int LL = 0, RL = 0, LR, RR;
|
|
int worst_val = cvFloor(node->maxlr), _best_val = worst_val;
|
|
int sum = 0, sum_abs = 0;
|
|
|
|
for( i = 0; i < n1; i++ )
|
|
{
|
|
int d = dir[sorted_indices[i]];
|
|
sum += d; sum_abs += d & 1;
|
|
}
|
|
|
|
// sum_abs = R + L; sum = R - L
|
|
RR = (sum_abs + sum) >> 1;
|
|
LR = (sum_abs - sum) >> 1;
|
|
|
|
// initially all the samples are sent to the right by the surrogate split,
|
|
// LR of them are sent to the left by primary split, and RR - to the right.
|
|
// now iteratively compute LL, LR, RL and RR for every possible surrogate split value.
|
|
for( i = 0; i < n1 - 1; i++ )
|
|
{
|
|
int d = dir[sorted_indices[i]];
|
|
|
|
if( d < 0 )
|
|
{
|
|
LL++; LR--;
|
|
if( LL + RR > _best_val && values[i] + epsilon < values[i+1] )
|
|
{
|
|
best_val = LL + RR;
|
|
best_i = i; best_inversed = 0;
|
|
}
|
|
}
|
|
else if( d > 0 )
|
|
{
|
|
RL++; RR--;
|
|
if( RL + LR > _best_val && values[i] + epsilon < values[i+1] )
|
|
{
|
|
best_val = RL + LR;
|
|
best_i = i; best_inversed = 1;
|
|
}
|
|
}
|
|
}
|
|
best_val = _best_val;
|
|
}
|
|
else
|
|
{
|
|
double LL = 0, RL = 0, LR, RR;
|
|
double worst_val = node->maxlr;
|
|
double sum = 0, sum_abs = 0;
|
|
const double* priors = data->priors_mult->data.db;
|
|
int* responses_buf = sample_indices_buf + n;
|
|
const int* responses = data->get_class_labels(node, responses_buf);
|
|
best_val = worst_val;
|
|
|
|
for( i = 0; i < n1; i++ )
|
|
{
|
|
int idx = sorted_indices[i];
|
|
double w = priors[responses[idx]];
|
|
int d = dir[idx];
|
|
sum += d*w; sum_abs += (d & 1)*w;
|
|
}
|
|
|
|
// sum_abs = R + L; sum = R - L
|
|
RR = (sum_abs + sum)*0.5;
|
|
LR = (sum_abs - sum)*0.5;
|
|
|
|
// initially all the samples are sent to the right by the surrogate split,
|
|
// LR of them are sent to the left by primary split, and RR - to the right.
|
|
// now iteratively compute LL, LR, RL and RR for every possible surrogate split value.
|
|
for( i = 0; i < n1 - 1; i++ )
|
|
{
|
|
int idx = sorted_indices[i];
|
|
double w = priors[responses[idx]];
|
|
int d = dir[idx];
|
|
|
|
if( d < 0 )
|
|
{
|
|
LL += w; LR -= w;
|
|
if( LL + RR > best_val && values[i] + epsilon < values[i+1] )
|
|
{
|
|
best_val = LL + RR;
|
|
best_i = i; best_inversed = 0;
|
|
}
|
|
}
|
|
else if( d > 0 )
|
|
{
|
|
RL += w; RR -= w;
|
|
if( RL + LR > best_val && values[i] + epsilon < values[i+1] )
|
|
{
|
|
best_val = RL + LR;
|
|
best_i = i; best_inversed = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return best_i >= 0 && best_val > node->maxlr ? data->new_split_ord( vi,
|
|
(values[best_i] + values[best_i+1])*0.5f, best_i, best_inversed, (float)best_val ) : 0;
|
|
}
|
|
|
|
|
|
CvDTreeSplit* CvDTree::find_surrogate_split_cat( CvDTreeNode* node, int vi, uchar* _ext_buf )
|
|
{
|
|
const char* dir = (char*)data->direction->data.ptr;
|
|
int n = node->sample_count;
|
|
int i, mi = data->cat_count->data.i[data->get_var_type(vi)], l_win = 0;
|
|
|
|
int base_size = (2*(mi+1)+1)*sizeof(double) + (!data->have_priors ? 2*(mi+1)*sizeof(int) : 0);
|
|
cv::AutoBuffer<uchar> inn_buf(base_size);
|
|
if( !_ext_buf )
|
|
inn_buf.allocate(base_size + n*(sizeof(int) + (data->have_priors ? sizeof(int) : 0)));
|
|
uchar* base_buf = (uchar*)inn_buf;
|
|
uchar* ext_buf = _ext_buf ? _ext_buf : base_buf + base_size;
|
|
|
|
int* labels_buf = (int*)ext_buf;
|
|
const int* labels = data->get_cat_var_data(node, vi, labels_buf);
|
|
// LL - number of samples that both the primary and the surrogate splits send to the left
|
|
// LR - ... primary split sends to the left and the surrogate split sends to the right
|
|
// RL - ... primary split sends to the right and the surrogate split sends to the left
|
|
// RR - ... both send to the right
|
|
CvDTreeSplit* split = data->new_split_cat( vi, 0 );
|
|
double best_val = 0;
|
|
double* lc = (double*)cv::alignPtr(base_buf,sizeof(double)) + 1;
|
|
double* rc = lc + mi + 1;
|
|
|
|
for( i = -1; i < mi; i++ )
|
|
lc[i] = rc[i] = 0;
|
|
|
|
// for each category calculate the weight of samples
|
|
// sent to the left (lc) and to the right (rc) by the primary split
|
|
if( !data->have_priors )
|
|
{
|
|
int* _lc = (int*)rc + 1;
|
|
int* _rc = _lc + mi + 1;
|
|
|
|
for( i = -1; i < mi; i++ )
|
|
_lc[i] = _rc[i] = 0;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int idx = ( (labels[i] == 65535) && (data->is_buf_16u) ) ? -1 : labels[i];
|
|
int d = dir[i];
|
|
int sum = _lc[idx] + d;
|
|
int sum_abs = _rc[idx] + (d & 1);
|
|
_lc[idx] = sum; _rc[idx] = sum_abs;
|
|
}
|
|
|
|
for( i = 0; i < mi; i++ )
|
|
{
|
|
int sum = _lc[i];
|
|
int sum_abs = _rc[i];
|
|
lc[i] = (sum_abs - sum) >> 1;
|
|
rc[i] = (sum_abs + sum) >> 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const double* priors = data->priors_mult->data.db;
|
|
int* responses_buf = labels_buf + n;
|
|
const int* responses = data->get_class_labels(node, responses_buf);
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int idx = ( (labels[i] == 65535) && (data->is_buf_16u) ) ? -1 : labels[i];
|
|
double w = priors[responses[i]];
|
|
int d = dir[i];
|
|
double sum = lc[idx] + d*w;
|
|
double sum_abs = rc[idx] + (d & 1)*w;
|
|
lc[idx] = sum; rc[idx] = sum_abs;
|
|
}
|
|
|
|
for( i = 0; i < mi; i++ )
|
|
{
|
|
double sum = lc[i];
|
|
double sum_abs = rc[i];
|
|
lc[i] = (sum_abs - sum) * 0.5;
|
|
rc[i] = (sum_abs + sum) * 0.5;
|
|
}
|
|
}
|
|
|
|
// 2. now form the split.
|
|
// in each category send all the samples to the same direction as majority
|
|
for( i = 0; i < mi; i++ )
|
|
{
|
|
double lval = lc[i], rval = rc[i];
|
|
if( lval > rval )
|
|
{
|
|
split->subset[i >> 5] |= 1 << (i & 31);
|
|
best_val += lval;
|
|
l_win++;
|
|
}
|
|
else
|
|
best_val += rval;
|
|
}
|
|
|
|
split->quality = (float)best_val;
|
|
if( split->quality <= node->maxlr || l_win == 0 || l_win == mi )
|
|
cvSetRemoveByPtr( data->split_heap, split ), split = 0;
|
|
|
|
return split;
|
|
}
|
|
|
|
|
|
void CvDTree::calc_node_value( CvDTreeNode* node )
|
|
{
|
|
int i, j, k, n = node->sample_count, cv_n = data->params.cv_folds;
|
|
int m = data->get_num_classes();
|
|
|
|
int base_size = data->is_classifier ? m*cv_n*sizeof(int) : 2*cv_n*sizeof(double)+cv_n*sizeof(int);
|
|
int ext_size = n*(sizeof(int) + (data->is_classifier ? sizeof(int) : sizeof(int)+sizeof(float)));
|
|
cv::AutoBuffer<uchar> inn_buf(base_size + ext_size);
|
|
uchar* base_buf = (uchar*)inn_buf;
|
|
uchar* ext_buf = base_buf + base_size;
|
|
|
|
int* cv_labels_buf = (int*)ext_buf;
|
|
const int* cv_labels = data->get_cv_labels(node, cv_labels_buf);
|
|
|
|
if( data->is_classifier )
|
|
{
|
|
// in case of classification tree:
|
|
// * node value is the label of the class that has the largest weight in the node.
|
|
// * node risk is the weighted number of misclassified samples,
|
|
// * j-th cross-validation fold value and risk are calculated as above,
|
|
// but using the samples with cv_labels(*)!=j.
|
|
// * j-th cross-validation fold error is calculated as the weighted number of
|
|
// misclassified samples with cv_labels(*)==j.
|
|
|
|
// compute the number of instances of each class
|
|
int* cls_count = data->counts->data.i;
|
|
int* responses_buf = cv_labels_buf + n;
|
|
const int* responses = data->get_class_labels(node, responses_buf);
|
|
int* cv_cls_count = (int*)base_buf;
|
|
double max_val = -1, total_weight = 0;
|
|
int max_k = -1;
|
|
double* priors = data->priors_mult->data.db;
|
|
|
|
for( k = 0; k < m; k++ )
|
|
cls_count[k] = 0;
|
|
|
|
if( cv_n == 0 )
|
|
{
|
|
for( i = 0; i < n; i++ )
|
|
cls_count[responses[i]]++;
|
|
}
|
|
else
|
|
{
|
|
for( j = 0; j < cv_n; j++ )
|
|
for( k = 0; k < m; k++ )
|
|
cv_cls_count[j*m + k] = 0;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
j = cv_labels[i]; k = responses[i];
|
|
cv_cls_count[j*m + k]++;
|
|
}
|
|
|
|
for( j = 0; j < cv_n; j++ )
|
|
for( k = 0; k < m; k++ )
|
|
cls_count[k] += cv_cls_count[j*m + k];
|
|
}
|
|
|
|
if( data->have_priors && node->parent == 0 )
|
|
{
|
|
// compute priors_mult from priors, take the sample ratio into account.
|
|
double sum = 0;
|
|
for( k = 0; k < m; k++ )
|
|
{
|
|
int n_k = cls_count[k];
|
|
priors[k] = data->priors->data.db[k]*(n_k ? 1./n_k : 0.);
|
|
sum += priors[k];
|
|
}
|
|
sum = 1./sum;
|
|
for( k = 0; k < m; k++ )
|
|
priors[k] *= sum;
|
|
}
|
|
|
|
for( k = 0; k < m; k++ )
|
|
{
|
|
double val = cls_count[k]*priors[k];
|
|
total_weight += val;
|
|
if( max_val < val )
|
|
{
|
|
max_val = val;
|
|
max_k = k;
|
|
}
|
|
}
|
|
|
|
node->class_idx = max_k;
|
|
node->value = data->cat_map->data.i[
|
|
data->cat_ofs->data.i[data->cat_var_count] + max_k];
|
|
node->node_risk = total_weight - max_val;
|
|
|
|
for( j = 0; j < cv_n; j++ )
|
|
{
|
|
double sum_k = 0, sum = 0, max_val_k = 0;
|
|
max_val = -1; max_k = -1;
|
|
|
|
for( k = 0; k < m; k++ )
|
|
{
|
|
double w = priors[k];
|
|
double val_k = cv_cls_count[j*m + k]*w;
|
|
double val = cls_count[k]*w - val_k;
|
|
sum_k += val_k;
|
|
sum += val;
|
|
if( max_val < val )
|
|
{
|
|
max_val = val;
|
|
max_val_k = val_k;
|
|
max_k = k;
|
|
}
|
|
}
|
|
|
|
node->cv_Tn[j] = INT_MAX;
|
|
node->cv_node_risk[j] = sum - max_val;
|
|
node->cv_node_error[j] = sum_k - max_val_k;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// in case of regression tree:
|
|
// * node value is 1/n*sum_i(Y_i), where Y_i is i-th response,
|
|
// n is the number of samples in the node.
|
|
// * node risk is the sum of squared errors: sum_i((Y_i - <node_value>)^2)
|
|
// * j-th cross-validation fold value and risk are calculated as above,
|
|
// but using the samples with cv_labels(*)!=j.
|
|
// * j-th cross-validation fold error is calculated
|
|
// using samples with cv_labels(*)==j as the test subset:
|
|
// error_j = sum_(i,cv_labels(i)==j)((Y_i - <node_value_j>)^2),
|
|
// where node_value_j is the node value calculated
|
|
// as described in the previous bullet, and summation is done
|
|
// over the samples with cv_labels(*)==j.
|
|
|
|
double sum = 0, sum2 = 0;
|
|
float* values_buf = (float*)(cv_labels_buf + n);
|
|
int* sample_indices_buf = (int*)(values_buf + n);
|
|
const float* values = data->get_ord_responses(node, values_buf, sample_indices_buf);
|
|
double *cv_sum = 0, *cv_sum2 = 0;
|
|
int* cv_count = 0;
|
|
|
|
if( cv_n == 0 )
|
|
{
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
double t = values[i];
|
|
sum += t;
|
|
sum2 += t*t;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cv_sum = (double*)base_buf;
|
|
cv_sum2 = cv_sum + cv_n;
|
|
cv_count = (int*)(cv_sum2 + cv_n);
|
|
|
|
for( j = 0; j < cv_n; j++ )
|
|
{
|
|
cv_sum[j] = cv_sum2[j] = 0.;
|
|
cv_count[j] = 0;
|
|
}
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
j = cv_labels[i];
|
|
double t = values[i];
|
|
double s = cv_sum[j] + t;
|
|
double s2 = cv_sum2[j] + t*t;
|
|
int nc = cv_count[j] + 1;
|
|
cv_sum[j] = s;
|
|
cv_sum2[j] = s2;
|
|
cv_count[j] = nc;
|
|
}
|
|
|
|
for( j = 0; j < cv_n; j++ )
|
|
{
|
|
sum += cv_sum[j];
|
|
sum2 += cv_sum2[j];
|
|
}
|
|
}
|
|
|
|
node->node_risk = sum2 - (sum/n)*sum;
|
|
node->value = sum/n;
|
|
|
|
for( j = 0; j < cv_n; j++ )
|
|
{
|
|
double s = cv_sum[j], si = sum - s;
|
|
double s2 = cv_sum2[j], s2i = sum2 - s2;
|
|
int c = cv_count[j], ci = n - c;
|
|
double r = si/MAX(ci,1);
|
|
node->cv_node_risk[j] = s2i - r*r*ci;
|
|
node->cv_node_error[j] = s2 - 2*r*s + c*r*r;
|
|
node->cv_Tn[j] = INT_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void CvDTree::complete_node_dir( CvDTreeNode* node )
|
|
{
|
|
int vi, i, n = node->sample_count, nl, nr, d0 = 0, d1 = -1;
|
|
int nz = n - node->get_num_valid(node->split->var_idx);
|
|
char* dir = (char*)data->direction->data.ptr;
|
|
|
|
// try to complete direction using surrogate splits
|
|
if( nz && data->params.use_surrogates )
|
|
{
|
|
cv::AutoBuffer<uchar> inn_buf(n*(2*sizeof(int)+sizeof(float)));
|
|
CvDTreeSplit* split = node->split->next;
|
|
for( ; split != 0 && nz; split = split->next )
|
|
{
|
|
int inversed_mask = split->inversed ? -1 : 0;
|
|
vi = split->var_idx;
|
|
|
|
if( data->get_var_type(vi) >= 0 ) // split on categorical var
|
|
{
|
|
int* labels_buf = (int*)(uchar*)inn_buf;
|
|
const int* labels = data->get_cat_var_data(node, vi, labels_buf);
|
|
const int* subset = split->subset;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int idx = labels[i];
|
|
if( !dir[i] && ( ((idx >= 0)&&(!data->is_buf_16u)) || ((idx != 65535)&&(data->is_buf_16u)) ))
|
|
|
|
{
|
|
int d = CV_DTREE_CAT_DIR(idx,subset);
|
|
dir[i] = (char)((d ^ inversed_mask) - inversed_mask);
|
|
if( --nz )
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else // split on ordered var
|
|
{
|
|
float* values_buf = (float*)(uchar*)inn_buf;
|
|
int* sorted_indices_buf = (int*)(values_buf + n);
|
|
int* sample_indices_buf = sorted_indices_buf + n;
|
|
const float* values = 0;
|
|
const int* sorted_indices = 0;
|
|
data->get_ord_var_data( node, vi, values_buf, sorted_indices_buf, &values, &sorted_indices, sample_indices_buf );
|
|
int split_point = split->ord.split_point;
|
|
int n1 = node->get_num_valid(vi);
|
|
|
|
assert( 0 <= split_point && split_point < n-1 );
|
|
|
|
for( i = 0; i < n1; i++ )
|
|
{
|
|
int idx = sorted_indices[i];
|
|
if( !dir[idx] )
|
|
{
|
|
int d = i <= split_point ? -1 : 1;
|
|
dir[idx] = (char)((d ^ inversed_mask) - inversed_mask);
|
|
if( --nz )
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// find the default direction for the rest
|
|
if( nz )
|
|
{
|
|
for( i = nr = 0; i < n; i++ )
|
|
nr += dir[i] > 0;
|
|
nl = n - nr - nz;
|
|
d0 = nl > nr ? -1 : nr > nl;
|
|
}
|
|
|
|
// make sure that every sample is directed either to the left or to the right
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int d = dir[i];
|
|
if( !d )
|
|
{
|
|
d = d0;
|
|
if( !d )
|
|
d = d1, d1 = -d1;
|
|
}
|
|
d = d > 0;
|
|
dir[i] = (char)d; // remap (-1,1) to (0,1)
|
|
}
|
|
}
|
|
|
|
|
|
void CvDTree::split_node_data( CvDTreeNode* node )
|
|
{
|
|
int vi, i, n = node->sample_count, nl, nr, scount = data->sample_count;
|
|
char* dir = (char*)data->direction->data.ptr;
|
|
CvDTreeNode *left = 0, *right = 0;
|
|
int* new_idx = data->split_buf->data.i;
|
|
int new_buf_idx = data->get_child_buf_idx( node );
|
|
int work_var_count = data->get_work_var_count();
|
|
CvMat* buf = data->buf;
|
|
cv::AutoBuffer<uchar> inn_buf(n*(3*sizeof(int) + sizeof(float)));
|
|
int* temp_buf = (int*)(uchar*)inn_buf;
|
|
|
|
complete_node_dir(node);
|
|
|
|
for( i = nl = nr = 0; i < n; i++ )
|
|
{
|
|
int d = dir[i];
|
|
// initialize new indices for splitting ordered variables
|
|
new_idx[i] = (nl & (d-1)) | (nr & -d); // d ? ri : li
|
|
nr += d;
|
|
nl += d^1;
|
|
}
|
|
|
|
bool split_input_data;
|
|
node->left = left = data->new_node( node, nl, new_buf_idx, node->offset );
|
|
node->right = right = data->new_node( node, nr, new_buf_idx, node->offset + nl );
|
|
|
|
split_input_data = node->depth + 1 < data->params.max_depth &&
|
|
(node->left->sample_count > data->params.min_sample_count ||
|
|
node->right->sample_count > data->params.min_sample_count);
|
|
|
|
// split ordered variables, keep both halves sorted.
|
|
for( vi = 0; vi < data->var_count; vi++ )
|
|
{
|
|
int ci = data->get_var_type(vi);
|
|
|
|
if( ci >= 0 || !split_input_data )
|
|
continue;
|
|
|
|
int n1 = node->get_num_valid(vi);
|
|
float* src_val_buf = (float*)(uchar*)(temp_buf + n);
|
|
int* src_sorted_idx_buf = (int*)(src_val_buf + n);
|
|
int* src_sample_idx_buf = src_sorted_idx_buf + n;
|
|
const float* src_val = 0;
|
|
const int* src_sorted_idx = 0;
|
|
data->get_ord_var_data(node, vi, src_val_buf, src_sorted_idx_buf, &src_val, &src_sorted_idx, src_sample_idx_buf);
|
|
|
|
for(i = 0; i < n; i++)
|
|
temp_buf[i] = src_sorted_idx[i];
|
|
|
|
if (data->is_buf_16u)
|
|
{
|
|
unsigned short *ldst, *rdst, *ldst0, *rdst0;
|
|
//unsigned short tl, tr;
|
|
ldst0 = ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols +
|
|
vi*scount + left->offset);
|
|
rdst0 = rdst = (unsigned short*)(ldst + nl);
|
|
|
|
// split sorted
|
|
for( i = 0; i < n1; i++ )
|
|
{
|
|
int idx = temp_buf[i];
|
|
int d = dir[idx];
|
|
idx = new_idx[idx];
|
|
if (d)
|
|
{
|
|
*rdst = (unsigned short)idx;
|
|
rdst++;
|
|
}
|
|
else
|
|
{
|
|
*ldst = (unsigned short)idx;
|
|
ldst++;
|
|
}
|
|
}
|
|
|
|
left->set_num_valid(vi, (int)(ldst - ldst0));
|
|
right->set_num_valid(vi, (int)(rdst - rdst0));
|
|
|
|
// split missing
|
|
for( ; i < n; i++ )
|
|
{
|
|
int idx = temp_buf[i];
|
|
int d = dir[idx];
|
|
idx = new_idx[idx];
|
|
if (d)
|
|
{
|
|
*rdst = (unsigned short)idx;
|
|
rdst++;
|
|
}
|
|
else
|
|
{
|
|
*ldst = (unsigned short)idx;
|
|
ldst++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int *ldst0, *ldst, *rdst0, *rdst;
|
|
ldst0 = ldst = buf->data.i + left->buf_idx*buf->cols +
|
|
vi*scount + left->offset;
|
|
rdst0 = rdst = buf->data.i + right->buf_idx*buf->cols +
|
|
vi*scount + right->offset;
|
|
|
|
// split sorted
|
|
for( i = 0; i < n1; i++ )
|
|
{
|
|
int idx = temp_buf[i];
|
|
int d = dir[idx];
|
|
idx = new_idx[idx];
|
|
if (d)
|
|
{
|
|
*rdst = idx;
|
|
rdst++;
|
|
}
|
|
else
|
|
{
|
|
*ldst = idx;
|
|
ldst++;
|
|
}
|
|
}
|
|
|
|
left->set_num_valid(vi, (int)(ldst - ldst0));
|
|
right->set_num_valid(vi, (int)(rdst - rdst0));
|
|
|
|
// split missing
|
|
for( ; i < n; i++ )
|
|
{
|
|
int idx = temp_buf[i];
|
|
int d = dir[idx];
|
|
idx = new_idx[idx];
|
|
if (d)
|
|
{
|
|
*rdst = idx;
|
|
rdst++;
|
|
}
|
|
else
|
|
{
|
|
*ldst = idx;
|
|
ldst++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// split categorical vars, responses and cv_labels using new_idx relocation table
|
|
for( vi = 0; vi < work_var_count; vi++ )
|
|
{
|
|
int ci = data->get_var_type(vi);
|
|
int n1 = node->get_num_valid(vi), nr1 = 0;
|
|
|
|
if( ci < 0 || (vi < data->var_count && !split_input_data) )
|
|
continue;
|
|
|
|
int *src_lbls_buf = temp_buf + n;
|
|
const int* src_lbls = data->get_cat_var_data(node, vi, src_lbls_buf);
|
|
|
|
for(i = 0; i < n; i++)
|
|
temp_buf[i] = src_lbls[i];
|
|
|
|
if (data->is_buf_16u)
|
|
{
|
|
unsigned short *ldst = (unsigned short *)(buf->data.s + left->buf_idx*buf->cols +
|
|
vi*scount + left->offset);
|
|
unsigned short *rdst = (unsigned short *)(buf->data.s + right->buf_idx*buf->cols +
|
|
vi*scount + right->offset);
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int d = dir[i];
|
|
int idx = temp_buf[i];
|
|
if (d)
|
|
{
|
|
*rdst = (unsigned short)idx;
|
|
rdst++;
|
|
nr1 += (idx != 65535 )&d;
|
|
}
|
|
else
|
|
{
|
|
*ldst = (unsigned short)idx;
|
|
ldst++;
|
|
}
|
|
}
|
|
|
|
if( vi < data->var_count )
|
|
{
|
|
left->set_num_valid(vi, n1 - nr1);
|
|
right->set_num_valid(vi, nr1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int *ldst = buf->data.i + left->buf_idx*buf->cols +
|
|
vi*scount + left->offset;
|
|
int *rdst = buf->data.i + right->buf_idx*buf->cols +
|
|
vi*scount + right->offset;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int d = dir[i];
|
|
int idx = temp_buf[i];
|
|
if (d)
|
|
{
|
|
*rdst = idx;
|
|
rdst++;
|
|
nr1 += (idx >= 0)&d;
|
|
}
|
|
else
|
|
{
|
|
*ldst = idx;
|
|
ldst++;
|
|
}
|
|
|
|
}
|
|
|
|
if( vi < data->var_count )
|
|
{
|
|
left->set_num_valid(vi, n1 - nr1);
|
|
right->set_num_valid(vi, nr1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// split sample indices
|
|
int *sample_idx_src_buf = temp_buf + n;
|
|
const int* sample_idx_src = data->get_sample_indices(node, sample_idx_src_buf);
|
|
|
|
for(i = 0; i < n; i++)
|
|
temp_buf[i] = sample_idx_src[i];
|
|
|
|
int pos = data->get_work_var_count();
|
|
if (data->is_buf_16u)
|
|
{
|
|
unsigned short* ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols +
|
|
pos*scount + left->offset);
|
|
unsigned short* rdst = (unsigned short*)(buf->data.s + right->buf_idx*buf->cols +
|
|
pos*scount + right->offset);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
int d = dir[i];
|
|
unsigned short idx = (unsigned short)temp_buf[i];
|
|
if (d)
|
|
{
|
|
*rdst = idx;
|
|
rdst++;
|
|
}
|
|
else
|
|
{
|
|
*ldst = idx;
|
|
ldst++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int* ldst = buf->data.i + left->buf_idx*buf->cols +
|
|
pos*scount + left->offset;
|
|
int* rdst = buf->data.i + right->buf_idx*buf->cols +
|
|
pos*scount + right->offset;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
int d = dir[i];
|
|
int idx = temp_buf[i];
|
|
if (d)
|
|
{
|
|
*rdst = idx;
|
|
rdst++;
|
|
}
|
|
else
|
|
{
|
|
*ldst = idx;
|
|
ldst++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// deallocate the parent node data that is not needed anymore
|
|
data->free_node_data(node);
|
|
}
|
|
|
|
float CvDTree::calc_error( CvMLData* _data, int type, vector<float> *resp )
|
|
{
|
|
float err = 0;
|
|
const CvMat* values = _data->get_values();
|
|
const CvMat* response = _data->get_responses();
|
|
const CvMat* missing = _data->get_missing();
|
|
const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx();
|
|
const CvMat* var_types = _data->get_var_types();
|
|
int* sidx = sample_idx ? sample_idx->data.i : 0;
|
|
int r_step = CV_IS_MAT_CONT(response->type) ?
|
|
1 : response->step / CV_ELEM_SIZE(response->type);
|
|
bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL;
|
|
int sample_count = sample_idx ? sample_idx->cols : 0;
|
|
sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count;
|
|
float* pred_resp = 0;
|
|
if( resp && (sample_count > 0) )
|
|
{
|
|
resp->resize( sample_count );
|
|
pred_resp = &((*resp)[0]);
|
|
}
|
|
|
|
if ( is_classifier )
|
|
{
|
|
for( int i = 0; i < sample_count; i++ )
|
|
{
|
|
CvMat sample, miss;
|
|
int si = sidx ? sidx[i] : i;
|
|
cvGetRow( values, &sample, si );
|
|
if( missing )
|
|
cvGetRow( missing, &miss, si );
|
|
float r = (float)predict( &sample, missing ? &miss : 0 )->value;
|
|
if( pred_resp )
|
|
pred_resp[i] = r;
|
|
int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1;
|
|
err += d;
|
|
}
|
|
err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX;
|
|
}
|
|
else
|
|
{
|
|
for( int i = 0; i < sample_count; i++ )
|
|
{
|
|
CvMat sample, miss;
|
|
int si = sidx ? sidx[i] : i;
|
|
cvGetRow( values, &sample, si );
|
|
if( missing )
|
|
cvGetRow( missing, &miss, si );
|
|
float r = (float)predict( &sample, missing ? &miss : 0 )->value;
|
|
if( pred_resp )
|
|
pred_resp[i] = r;
|
|
float d = r - response->data.fl[si*r_step];
|
|
err += d*d;
|
|
}
|
|
err = sample_count ? err / (float)sample_count : -FLT_MAX;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void CvDTree::prune_cv()
|
|
{
|
|
CvMat* ab = 0;
|
|
CvMat* temp = 0;
|
|
CvMat* err_jk = 0;
|
|
|
|
// 1. build tree sequence for each cv fold, calculate error_{Tj,beta_k}.
|
|
// 2. choose the best tree index (if need, apply 1SE rule).
|
|
// 3. store the best index and cut the branches.
|
|
|
|
CV_FUNCNAME( "CvDTree::prune_cv" );
|
|
|
|
__BEGIN__;
|
|
|
|
int ti, j, tree_count = 0, cv_n = data->params.cv_folds, n = root->sample_count;
|
|
// currently, 1SE for regression is not implemented
|
|
bool use_1se = data->params.use_1se_rule != 0 && data->is_classifier;
|
|
double* err;
|
|
double min_err = 0, min_err_se = 0;
|
|
int min_idx = -1;
|
|
|
|
CV_CALL( ab = cvCreateMat( 1, 256, CV_64F ));
|
|
|
|
// build the main tree sequence, calculate alpha's
|
|
for(;;tree_count++)
|
|
{
|
|
double min_alpha = update_tree_rnc(tree_count, -1);
|
|
if( cut_tree(tree_count, -1, min_alpha) )
|
|
break;
|
|
|
|
if( ab->cols <= tree_count )
|
|
{
|
|
CV_CALL( temp = cvCreateMat( 1, ab->cols*3/2, CV_64F ));
|
|
for( ti = 0; ti < ab->cols; ti++ )
|
|
temp->data.db[ti] = ab->data.db[ti];
|
|
cvReleaseMat( &ab );
|
|
ab = temp;
|
|
temp = 0;
|
|
}
|
|
|
|
ab->data.db[tree_count] = min_alpha;
|
|
}
|
|
|
|
ab->data.db[0] = 0.;
|
|
|
|
if( tree_count > 0 )
|
|
{
|
|
for( ti = 1; ti < tree_count-1; ti++ )
|
|
ab->data.db[ti] = sqrt(ab->data.db[ti]*ab->data.db[ti+1]);
|
|
ab->data.db[tree_count-1] = DBL_MAX*0.5;
|
|
|
|
CV_CALL( err_jk = cvCreateMat( cv_n, tree_count, CV_64F ));
|
|
err = err_jk->data.db;
|
|
|
|
for( j = 0; j < cv_n; j++ )
|
|
{
|
|
int tj = 0, tk = 0;
|
|
for( ; tk < tree_count; tj++ )
|
|
{
|
|
double min_alpha = update_tree_rnc(tj, j);
|
|
if( cut_tree(tj, j, min_alpha) )
|
|
min_alpha = DBL_MAX;
|
|
|
|
for( ; tk < tree_count; tk++ )
|
|
{
|
|
if( ab->data.db[tk] > min_alpha )
|
|
break;
|
|
err[j*tree_count + tk] = root->tree_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
for( ti = 0; ti < tree_count; ti++ )
|
|
{
|
|
double sum_err = 0;
|
|
for( j = 0; j < cv_n; j++ )
|
|
sum_err += err[j*tree_count + ti];
|
|
if( ti == 0 || sum_err < min_err )
|
|
{
|
|
min_err = sum_err;
|
|
min_idx = ti;
|
|
if( use_1se )
|
|
min_err_se = sqrt( sum_err*(n - sum_err) );
|
|
}
|
|
else if( sum_err < min_err + min_err_se )
|
|
min_idx = ti;
|
|
}
|
|
}
|
|
|
|
pruned_tree_idx = min_idx;
|
|
free_prune_data(data->params.truncate_pruned_tree != 0);
|
|
|
|
__END__;
|
|
|
|
cvReleaseMat( &err_jk );
|
|
cvReleaseMat( &ab );
|
|
cvReleaseMat( &temp );
|
|
}
|
|
|
|
|
|
double CvDTree::update_tree_rnc( int T, int fold )
|
|
{
|
|
CvDTreeNode* node = root;
|
|
double min_alpha = DBL_MAX;
|
|
|
|
for(;;)
|
|
{
|
|
CvDTreeNode* parent;
|
|
for(;;)
|
|
{
|
|
int t = fold >= 0 ? node->cv_Tn[fold] : node->Tn;
|
|
if( t <= T || !node->left )
|
|
{
|
|
node->complexity = 1;
|
|
node->tree_risk = node->node_risk;
|
|
node->tree_error = 0.;
|
|
if( fold >= 0 )
|
|
{
|
|
node->tree_risk = node->cv_node_risk[fold];
|
|
node->tree_error = node->cv_node_error[fold];
|
|
}
|
|
break;
|
|
}
|
|
node = node->left;
|
|
}
|
|
|
|
for( parent = node->parent; parent && parent->right == node;
|
|
node = parent, parent = parent->parent )
|
|
{
|
|
parent->complexity += node->complexity;
|
|
parent->tree_risk += node->tree_risk;
|
|
parent->tree_error += node->tree_error;
|
|
|
|
parent->alpha = ((fold >= 0 ? parent->cv_node_risk[fold] : parent->node_risk)
|
|
- parent->tree_risk)/(parent->complexity - 1);
|
|
min_alpha = MIN( min_alpha, parent->alpha );
|
|
}
|
|
|
|
if( !parent )
|
|
break;
|
|
|
|
parent->complexity = node->complexity;
|
|
parent->tree_risk = node->tree_risk;
|
|
parent->tree_error = node->tree_error;
|
|
node = parent->right;
|
|
}
|
|
|
|
return min_alpha;
|
|
}
|
|
|
|
|
|
int CvDTree::cut_tree( int T, int fold, double min_alpha )
|
|
{
|
|
CvDTreeNode* node = root;
|
|
if( !node->left )
|
|
return 1;
|
|
|
|
for(;;)
|
|
{
|
|
CvDTreeNode* parent;
|
|
for(;;)
|
|
{
|
|
int t = fold >= 0 ? node->cv_Tn[fold] : node->Tn;
|
|
if( t <= T || !node->left )
|
|
break;
|
|
if( node->alpha <= min_alpha + FLT_EPSILON )
|
|
{
|
|
if( fold >= 0 )
|
|
node->cv_Tn[fold] = T;
|
|
else
|
|
node->Tn = T;
|
|
if( node == root )
|
|
return 1;
|
|
break;
|
|
}
|
|
node = node->left;
|
|
}
|
|
|
|
for( parent = node->parent; parent && parent->right == node;
|
|
node = parent, parent = parent->parent )
|
|
;
|
|
|
|
if( !parent )
|
|
break;
|
|
|
|
node = parent->right;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void CvDTree::free_prune_data(bool cut_tree)
|
|
{
|
|
CvDTreeNode* node = root;
|
|
|
|
for(;;)
|
|
{
|
|
CvDTreeNode* parent;
|
|
for(;;)
|
|
{
|
|
// do not call cvSetRemoveByPtr( cv_heap, node->cv_Tn )
|
|
// as we will clear the whole cross-validation heap at the end
|
|
node->cv_Tn = 0;
|
|
node->cv_node_error = node->cv_node_risk = 0;
|
|
if( !node->left )
|
|
break;
|
|
node = node->left;
|
|
}
|
|
|
|
for( parent = node->parent; parent && parent->right == node;
|
|
node = parent, parent = parent->parent )
|
|
{
|
|
if( cut_tree && parent->Tn <= pruned_tree_idx )
|
|
{
|
|
data->free_node( parent->left );
|
|
data->free_node( parent->right );
|
|
parent->left = parent->right = 0;
|
|
}
|
|
}
|
|
|
|
if( !parent )
|
|
break;
|
|
|
|
node = parent->right;
|
|
}
|
|
|
|
if( data->cv_heap )
|
|
cvClearSet( data->cv_heap );
|
|
}
|
|
|
|
|
|
void CvDTree::free_tree()
|
|
{
|
|
if( root && data && data->shared )
|
|
{
|
|
pruned_tree_idx = INT_MIN;
|
|
free_prune_data(true);
|
|
data->free_node(root);
|
|
root = 0;
|
|
}
|
|
}
|
|
|
|
CvDTreeNode* CvDTree::predict( const CvMat* _sample,
|
|
const CvMat* _missing, bool preprocessed_input ) const
|
|
{
|
|
cv::AutoBuffer<int> catbuf;
|
|
|
|
int i, mstep = 0;
|
|
const uchar* m = 0;
|
|
CvDTreeNode* node = root;
|
|
|
|
if( !node )
|
|
CV_Error( CV_StsError, "The tree has not been trained yet" );
|
|
|
|
if( !CV_IS_MAT(_sample) || CV_MAT_TYPE(_sample->type) != CV_32FC1 ||
|
|
(_sample->cols != 1 && _sample->rows != 1) ||
|
|
(_sample->cols + _sample->rows - 1 != data->var_all && !preprocessed_input) ||
|
|
(_sample->cols + _sample->rows - 1 != data->var_count && preprocessed_input) )
|
|
CV_Error( CV_StsBadArg,
|
|
"the input sample must be 1d floating-point vector with the same "
|
|
"number of elements as the total number of variables used for training" );
|
|
|
|
const float* sample = _sample->data.fl;
|
|
int step = CV_IS_MAT_CONT(_sample->type) ? 1 : _sample->step/sizeof(sample[0]);
|
|
|
|
if( data->cat_count && !preprocessed_input ) // cache for categorical variables
|
|
{
|
|
int n = data->cat_count->cols;
|
|
catbuf.allocate(n);
|
|
for( i = 0; i < n; i++ )
|
|
catbuf[i] = -1;
|
|
}
|
|
|
|
if( _missing )
|
|
{
|
|
if( !CV_IS_MAT(_missing) || !CV_IS_MASK_ARR(_missing) ||
|
|
!CV_ARE_SIZES_EQ(_missing, _sample) )
|
|
CV_Error( CV_StsBadArg,
|
|
"the missing data mask must be 8-bit vector of the same size as input sample" );
|
|
m = _missing->data.ptr;
|
|
mstep = CV_IS_MAT_CONT(_missing->type) ? 1 : _missing->step/sizeof(m[0]);
|
|
}
|
|
|
|
const int* vtype = data->var_type->data.i;
|
|
const int* vidx = data->var_idx && !preprocessed_input ? data->var_idx->data.i : 0;
|
|
const int* cmap = data->cat_map ? data->cat_map->data.i : 0;
|
|
const int* cofs = data->cat_ofs ? data->cat_ofs->data.i : 0;
|
|
|
|
while( node->Tn > pruned_tree_idx && node->left )
|
|
{
|
|
CvDTreeSplit* split = node->split;
|
|
int dir = 0;
|
|
for( ; !dir && split != 0; split = split->next )
|
|
{
|
|
int vi = split->var_idx;
|
|
int ci = vtype[vi];
|
|
i = vidx ? vidx[vi] : vi;
|
|
float val = sample[i*step];
|
|
if( m && m[i*mstep] )
|
|
continue;
|
|
if( ci < 0 ) // ordered
|
|
dir = val <= split->ord.c ? -1 : 1;
|
|
else // categorical
|
|
{
|
|
int c;
|
|
if( preprocessed_input )
|
|
c = cvRound(val);
|
|
else
|
|
{
|
|
c = catbuf[ci];
|
|
if( c < 0 )
|
|
{
|
|
int a = c = cofs[ci];
|
|
int b = (ci+1 >= data->cat_ofs->cols) ? data->cat_map->cols : cofs[ci+1];
|
|
|
|
int ival = cvRound(val);
|
|
if( ival != val )
|
|
CV_Error( CV_StsBadArg,
|
|
"one of input categorical variable is not an integer" );
|
|
|
|
int sh = 0;
|
|
while( a < b )
|
|
{
|
|
sh++;
|
|
c = (a + b) >> 1;
|
|
if( ival < cmap[c] )
|
|
b = c;
|
|
else if( ival > cmap[c] )
|
|
a = c+1;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if( c < 0 || ival != cmap[c] )
|
|
continue;
|
|
|
|
catbuf[ci] = c -= cofs[ci];
|
|
}
|
|
}
|
|
c = ( (c == 65535) && data->is_buf_16u ) ? -1 : c;
|
|
dir = CV_DTREE_CAT_DIR(c, split->subset);
|
|
}
|
|
|
|
if( split->inversed )
|
|
dir = -dir;
|
|
}
|
|
|
|
if( !dir )
|
|
{
|
|
double diff = node->right->sample_count - node->left->sample_count;
|
|
dir = diff < 0 ? -1 : 1;
|
|
}
|
|
node = dir < 0 ? node->left : node->right;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
CvDTreeNode* CvDTree::predict( const Mat& _sample, const Mat& _missing, bool preprocessed_input ) const
|
|
{
|
|
CvMat sample = _sample, mmask = _missing;
|
|
return predict(&sample, mmask.data.ptr ? &mmask : 0, preprocessed_input);
|
|
}
|
|
|
|
|
|
const CvMat* CvDTree::get_var_importance()
|
|
{
|
|
if( !var_importance )
|
|
{
|
|
CvDTreeNode* node = root;
|
|
double* importance;
|
|
if( !node )
|
|
return 0;
|
|
var_importance = cvCreateMat( 1, data->var_count, CV_64F );
|
|
cvZero( var_importance );
|
|
importance = var_importance->data.db;
|
|
|
|
for(;;)
|
|
{
|
|
CvDTreeNode* parent;
|
|
for( ;; node = node->left )
|
|
{
|
|
CvDTreeSplit* split = node->split;
|
|
|
|
if( !node->left || node->Tn <= pruned_tree_idx )
|
|
break;
|
|
|
|
for( ; split != 0; split = split->next )
|
|
importance[split->var_idx] += split->quality;
|
|
}
|
|
|
|
for( parent = node->parent; parent && parent->right == node;
|
|
node = parent, parent = parent->parent )
|
|
;
|
|
|
|
if( !parent )
|
|
break;
|
|
|
|
node = parent->right;
|
|
}
|
|
|
|
cvNormalize( var_importance, var_importance, 1., 0, CV_L1 );
|
|
}
|
|
|
|
return var_importance;
|
|
}
|
|
|
|
|
|
void CvDTree::write_split( CvFileStorage* fs, CvDTreeSplit* split ) const
|
|
{
|
|
int ci;
|
|
|
|
cvStartWriteStruct( fs, 0, CV_NODE_MAP + CV_NODE_FLOW );
|
|
cvWriteInt( fs, "var", split->var_idx );
|
|
cvWriteReal( fs, "quality", split->quality );
|
|
|
|
ci = data->get_var_type(split->var_idx);
|
|
if( ci >= 0 ) // split on a categorical var
|
|
{
|
|
int i, n = data->cat_count->data.i[ci], to_right = 0, default_dir;
|
|
for( i = 0; i < n; i++ )
|
|
to_right += CV_DTREE_CAT_DIR(i,split->subset) > 0;
|
|
|
|
// ad-hoc rule when to use inverse categorical split notation
|
|
// to achieve more compact and clear representation
|
|
default_dir = to_right <= 1 || to_right <= MIN(3, n/2) || to_right <= n/3 ? -1 : 1;
|
|
|
|
cvStartWriteStruct( fs, default_dir*(split->inversed ? -1 : 1) > 0 ?
|
|
"in" : "not_in", CV_NODE_SEQ+CV_NODE_FLOW );
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
int dir = CV_DTREE_CAT_DIR(i,split->subset);
|
|
if( dir*default_dir < 0 )
|
|
cvWriteInt( fs, 0, i );
|
|
}
|
|
cvEndWriteStruct( fs );
|
|
}
|
|
else
|
|
cvWriteReal( fs, !split->inversed ? "le" : "gt", split->ord.c );
|
|
|
|
cvEndWriteStruct( fs );
|
|
}
|
|
|
|
|
|
void CvDTree::write_node( CvFileStorage* fs, CvDTreeNode* node ) const
|
|
{
|
|
CvDTreeSplit* split;
|
|
|
|
cvStartWriteStruct( fs, 0, CV_NODE_MAP );
|
|
|
|
cvWriteInt( fs, "depth", node->depth );
|
|
cvWriteInt( fs, "sample_count", node->sample_count );
|
|
cvWriteReal( fs, "value", node->value );
|
|
|
|
if( data->is_classifier )
|
|
cvWriteInt( fs, "norm_class_idx", node->class_idx );
|
|
|
|
cvWriteInt( fs, "Tn", node->Tn );
|
|
cvWriteInt( fs, "complexity", node->complexity );
|
|
cvWriteReal( fs, "alpha", node->alpha );
|
|
cvWriteReal( fs, "node_risk", node->node_risk );
|
|
cvWriteReal( fs, "tree_risk", node->tree_risk );
|
|
cvWriteReal( fs, "tree_error", node->tree_error );
|
|
|
|
if( node->left )
|
|
{
|
|
cvStartWriteStruct( fs, "splits", CV_NODE_SEQ );
|
|
|
|
for( split = node->split; split != 0; split = split->next )
|
|
write_split( fs, split );
|
|
|
|
cvEndWriteStruct( fs );
|
|
}
|
|
|
|
cvEndWriteStruct( fs );
|
|
}
|
|
|
|
|
|
void CvDTree::write_tree_nodes( CvFileStorage* fs ) const
|
|
{
|
|
//CV_FUNCNAME( "CvDTree::write_tree_nodes" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvDTreeNode* node = root;
|
|
|
|
// traverse the tree and save all the nodes in depth-first order
|
|
for(;;)
|
|
{
|
|
CvDTreeNode* parent;
|
|
for(;;)
|
|
{
|
|
write_node( fs, node );
|
|
if( !node->left )
|
|
break;
|
|
node = node->left;
|
|
}
|
|
|
|
for( parent = node->parent; parent && parent->right == node;
|
|
node = parent, parent = parent->parent )
|
|
;
|
|
|
|
if( !parent )
|
|
break;
|
|
|
|
node = parent->right;
|
|
}
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
void CvDTree::write( CvFileStorage* fs, const char* name ) const
|
|
{
|
|
//CV_FUNCNAME( "CvDTree::write" );
|
|
|
|
__BEGIN__;
|
|
|
|
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_TREE );
|
|
|
|
//get_var_importance();
|
|
data->write_params( fs );
|
|
//if( var_importance )
|
|
//cvWrite( fs, "var_importance", var_importance );
|
|
write( fs );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
void CvDTree::write( CvFileStorage* fs ) const
|
|
{
|
|
//CV_FUNCNAME( "CvDTree::write" );
|
|
|
|
__BEGIN__;
|
|
|
|
cvWriteInt( fs, "best_tree_idx", pruned_tree_idx );
|
|
|
|
cvStartWriteStruct( fs, "nodes", CV_NODE_SEQ );
|
|
write_tree_nodes( fs );
|
|
cvEndWriteStruct( fs );
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
CvDTreeSplit* CvDTree::read_split( CvFileStorage* fs, CvFileNode* fnode )
|
|
{
|
|
CvDTreeSplit* split = 0;
|
|
|
|
CV_FUNCNAME( "CvDTree::read_split" );
|
|
|
|
__BEGIN__;
|
|
|
|
int vi, ci;
|
|
|
|
if( !fnode || CV_NODE_TYPE(fnode->tag) != CV_NODE_MAP )
|
|
CV_ERROR( CV_StsParseError, "some of the splits are not stored properly" );
|
|
|
|
vi = cvReadIntByName( fs, fnode, "var", -1 );
|
|
if( (unsigned)vi >= (unsigned)data->var_count )
|
|
CV_ERROR( CV_StsOutOfRange, "Split variable index is out of range" );
|
|
|
|
ci = data->get_var_type(vi);
|
|
if( ci >= 0 ) // split on categorical var
|
|
{
|
|
int i, n = data->cat_count->data.i[ci], inversed = 0, val;
|
|
CvSeqReader reader;
|
|
CvFileNode* inseq;
|
|
split = data->new_split_cat( vi, 0 );
|
|
inseq = cvGetFileNodeByName( fs, fnode, "in" );
|
|
if( !inseq )
|
|
{
|
|
inseq = cvGetFileNodeByName( fs, fnode, "not_in" );
|
|
inversed = 1;
|
|
}
|
|
if( !inseq ||
|
|
(CV_NODE_TYPE(inseq->tag) != CV_NODE_SEQ && CV_NODE_TYPE(inseq->tag) != CV_NODE_INT))
|
|
CV_ERROR( CV_StsParseError,
|
|
"Either 'in' or 'not_in' tags should be inside a categorical split data" );
|
|
|
|
if( CV_NODE_TYPE(inseq->tag) == CV_NODE_INT )
|
|
{
|
|
val = inseq->data.i;
|
|
if( (unsigned)val >= (unsigned)n )
|
|
CV_ERROR( CV_StsOutOfRange, "some of in/not_in elements are out of range" );
|
|
|
|
split->subset[val >> 5] |= 1 << (val & 31);
|
|
}
|
|
else
|
|
{
|
|
cvStartReadSeq( inseq->data.seq, &reader );
|
|
|
|
for( i = 0; i < reader.seq->total; i++ )
|
|
{
|
|
CvFileNode* inode = (CvFileNode*)reader.ptr;
|
|
val = inode->data.i;
|
|
if( CV_NODE_TYPE(inode->tag) != CV_NODE_INT || (unsigned)val >= (unsigned)n )
|
|
CV_ERROR( CV_StsOutOfRange, "some of in/not_in elements are out of range" );
|
|
|
|
split->subset[val >> 5] |= 1 << (val & 31);
|
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
|
|
}
|
|
}
|
|
|
|
// for categorical splits we do not use inversed splits,
|
|
// instead we inverse the variable set in the split
|
|
if( inversed )
|
|
for( i = 0; i < (n + 31) >> 5; i++ )
|
|
split->subset[i] ^= -1;
|
|
}
|
|
else
|
|
{
|
|
CvFileNode* cmp_node;
|
|
split = data->new_split_ord( vi, 0, 0, 0, 0 );
|
|
|
|
cmp_node = cvGetFileNodeByName( fs, fnode, "le" );
|
|
if( !cmp_node )
|
|
{
|
|
cmp_node = cvGetFileNodeByName( fs, fnode, "gt" );
|
|
split->inversed = 1;
|
|
}
|
|
|
|
split->ord.c = (float)cvReadReal( cmp_node );
|
|
}
|
|
|
|
split->quality = (float)cvReadRealByName( fs, fnode, "quality" );
|
|
|
|
__END__;
|
|
|
|
return split;
|
|
}
|
|
|
|
|
|
CvDTreeNode* CvDTree::read_node( CvFileStorage* fs, CvFileNode* fnode, CvDTreeNode* parent )
|
|
{
|
|
CvDTreeNode* node = 0;
|
|
|
|
CV_FUNCNAME( "CvDTree::read_node" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvFileNode* splits;
|
|
int i, depth;
|
|
|
|
if( !fnode || CV_NODE_TYPE(fnode->tag) != CV_NODE_MAP )
|
|
CV_ERROR( CV_StsParseError, "some of the tree elements are not stored properly" );
|
|
|
|
CV_CALL( node = data->new_node( parent, 0, 0, 0 ));
|
|
depth = cvReadIntByName( fs, fnode, "depth", -1 );
|
|
if( depth != node->depth )
|
|
CV_ERROR( CV_StsParseError, "incorrect node depth" );
|
|
|
|
node->sample_count = cvReadIntByName( fs, fnode, "sample_count" );
|
|
node->value = cvReadRealByName( fs, fnode, "value" );
|
|
if( data->is_classifier )
|
|
node->class_idx = cvReadIntByName( fs, fnode, "norm_class_idx" );
|
|
|
|
node->Tn = cvReadIntByName( fs, fnode, "Tn" );
|
|
node->complexity = cvReadIntByName( fs, fnode, "complexity" );
|
|
node->alpha = cvReadRealByName( fs, fnode, "alpha" );
|
|
node->node_risk = cvReadRealByName( fs, fnode, "node_risk" );
|
|
node->tree_risk = cvReadRealByName( fs, fnode, "tree_risk" );
|
|
node->tree_error = cvReadRealByName( fs, fnode, "tree_error" );
|
|
|
|
splits = cvGetFileNodeByName( fs, fnode, "splits" );
|
|
if( splits )
|
|
{
|
|
CvSeqReader reader;
|
|
CvDTreeSplit* last_split = 0;
|
|
|
|
if( CV_NODE_TYPE(splits->tag) != CV_NODE_SEQ )
|
|
CV_ERROR( CV_StsParseError, "splits tag must stored as a sequence" );
|
|
|
|
cvStartReadSeq( splits->data.seq, &reader );
|
|
for( i = 0; i < reader.seq->total; i++ )
|
|
{
|
|
CvDTreeSplit* split;
|
|
CV_CALL( split = read_split( fs, (CvFileNode*)reader.ptr ));
|
|
if( !last_split )
|
|
node->split = last_split = split;
|
|
else
|
|
last_split = last_split->next = split;
|
|
|
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
|
|
}
|
|
}
|
|
|
|
__END__;
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
void CvDTree::read_tree_nodes( CvFileStorage* fs, CvFileNode* fnode )
|
|
{
|
|
CV_FUNCNAME( "CvDTree::read_tree_nodes" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvSeqReader reader;
|
|
CvDTreeNode _root;
|
|
CvDTreeNode* parent = &_root;
|
|
int i;
|
|
parent->left = parent->right = parent->parent = 0;
|
|
|
|
cvStartReadSeq( fnode->data.seq, &reader );
|
|
|
|
for( i = 0; i < reader.seq->total; i++ )
|
|
{
|
|
CvDTreeNode* node;
|
|
|
|
CV_CALL( node = read_node( fs, (CvFileNode*)reader.ptr, parent != &_root ? parent : 0 ));
|
|
if( !parent->left )
|
|
parent->left = node;
|
|
else
|
|
parent->right = node;
|
|
if( node->split )
|
|
parent = node;
|
|
else
|
|
{
|
|
while( parent && parent->right )
|
|
parent = parent->parent;
|
|
}
|
|
|
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader );
|
|
}
|
|
|
|
root = _root.left;
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
void CvDTree::read( CvFileStorage* fs, CvFileNode* fnode )
|
|
{
|
|
CvDTreeTrainData* _data = new CvDTreeTrainData();
|
|
_data->read_params( fs, fnode );
|
|
|
|
read( fs, fnode, _data );
|
|
get_var_importance();
|
|
}
|
|
|
|
|
|
// a special entry point for reading weak decision trees from the tree ensembles
|
|
void CvDTree::read( CvFileStorage* fs, CvFileNode* node, CvDTreeTrainData* _data )
|
|
{
|
|
CV_FUNCNAME( "CvDTree::read" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvFileNode* tree_nodes;
|
|
|
|
clear();
|
|
data = _data;
|
|
|
|
tree_nodes = cvGetFileNodeByName( fs, node, "nodes" );
|
|
if( !tree_nodes || CV_NODE_TYPE(tree_nodes->tag) != CV_NODE_SEQ )
|
|
CV_ERROR( CV_StsParseError, "nodes tag is missing" );
|
|
|
|
pruned_tree_idx = cvReadIntByName( fs, node, "best_tree_idx", -1 );
|
|
read_tree_nodes( fs, tree_nodes );
|
|
|
|
__END__;
|
|
}
|
|
|
|
Mat CvDTree::getVarImportance()
|
|
{
|
|
return Mat(get_var_importance());
|
|
}
|
|
|
|
/* End of file. */
|