mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 05:54:08 +08:00
02cc1cd6e6
* dnn/Vulkan: don't init Vulkan runtime if using other backend/target Don't need to explictly call a init API but will automatically init Vulkan environment the first time to use an VkCom object. Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> * dnn/Vulkan: depress compilier warning for "-Wsign-promo" Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
3661 lines
130 KiB
C++
3661 lines
130 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "op_halide.hpp"
|
|
#include "op_inf_engine.hpp"
|
|
#include "op_vkcom.hpp"
|
|
#include "halide_scheduler.hpp"
|
|
#include <set>
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
#include <opencv2/core/utils/configuration.private.hpp>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
namespace cv {
|
|
namespace dnn {
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
// this option is useful to run valgrind memory errors detection
|
|
static bool DNN_DISABLE_MEMORY_OPTIMIZATIONS = utils::getConfigurationParameterBool("OPENCV_DNN_DISABLE_MEMORY_OPTIMIZATIONS", false);
|
|
|
|
#ifdef HAVE_OPENCL
|
|
static bool DNN_OPENCL_ALLOW_ALL_DEVICES = utils::getConfigurationParameterBool("OPENCV_DNN_OPENCL_ALLOW_ALL_DEVICES", false);
|
|
#endif
|
|
|
|
static int PARAM_DNN_BACKEND_DEFAULT = (int)utils::getConfigurationParameterSizeT("OPENCV_DNN_BACKEND_DEFAULT",
|
|
#ifdef HAVE_INF_ENGINE
|
|
(size_t)DNN_BACKEND_INFERENCE_ENGINE
|
|
#else
|
|
(size_t)DNN_BACKEND_OPENCV
|
|
#endif
|
|
);
|
|
|
|
// Additional checks (slowdowns execution!)
|
|
static bool DNN_CHECK_NAN_INF = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF", false);
|
|
static bool DNN_CHECK_NAN_INF_DUMP = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF_DUMP", false);
|
|
static bool DNN_CHECK_NAN_INF_RAISE_ERROR = utils::getConfigurationParameterBool("OPENCV_DNN_CHECK_NAN_INF_RAISE_ERROR", false);
|
|
|
|
using std::vector;
|
|
using std::map;
|
|
using std::make_pair;
|
|
using std::set;
|
|
|
|
namespace
|
|
{
|
|
typedef std::vector<MatShape> ShapesVec;
|
|
|
|
struct LayerShapes
|
|
{
|
|
ShapesVec in, out, internal;
|
|
// No guarantees that layer which support in-place computations
|
|
// will be computed in-place (input.data_ptr == output.data_ptr).
|
|
// If layer said that it could work in-place and layers after it
|
|
// no longer use input blob, we'll set output = input.
|
|
bool supportInPlace;
|
|
LayerShapes() {supportInPlace = false;}
|
|
};
|
|
}
|
|
|
|
Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
|
|
const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
Mat blob;
|
|
blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
return blob;
|
|
}
|
|
|
|
void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
|
|
const Size& size, const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
std::vector<Mat> images(1, image.getMat());
|
|
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
}
|
|
|
|
Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
|
|
const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
Mat blob;
|
|
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
return blob;
|
|
}
|
|
|
|
void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
|
|
Size size, const Scalar& mean_, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_CheckType(ddepth, ddepth == CV_32F || ddepth == CV_8U, "Blob depth should be CV_32F or CV_8U");
|
|
if (ddepth == CV_8U)
|
|
{
|
|
CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth");
|
|
CV_Assert(mean_ == Scalar() && "Mean subtraction is not supported for CV_8U blob depth");
|
|
}
|
|
|
|
std::vector<Mat> images;
|
|
images_.getMatVector(images);
|
|
CV_Assert(!images.empty());
|
|
for (int i = 0; i < images.size(); i++)
|
|
{
|
|
Size imgSize = images[i].size();
|
|
if (size == Size())
|
|
size = imgSize;
|
|
if (size != imgSize)
|
|
{
|
|
if(crop)
|
|
{
|
|
float resizeFactor = std::max(size.width / (float)imgSize.width,
|
|
size.height / (float)imgSize.height);
|
|
resize(images[i], images[i], Size(), resizeFactor, resizeFactor, INTER_LINEAR);
|
|
Rect crop(Point(0.5 * (images[i].cols - size.width),
|
|
0.5 * (images[i].rows - size.height)),
|
|
size);
|
|
images[i] = images[i](crop);
|
|
}
|
|
else
|
|
resize(images[i], images[i], size, 0, 0, INTER_LINEAR);
|
|
}
|
|
if(images[i].depth() == CV_8U && ddepth == CV_32F)
|
|
images[i].convertTo(images[i], CV_32F);
|
|
Scalar mean = mean_;
|
|
if (swapRB)
|
|
std::swap(mean[0], mean[2]);
|
|
|
|
images[i] -= mean;
|
|
images[i] *= scalefactor;
|
|
}
|
|
|
|
size_t i, nimages = images.size();
|
|
Mat image0 = images[0];
|
|
int nch = image0.channels();
|
|
CV_Assert(image0.dims == 2);
|
|
Mat image;
|
|
if (nch == 3 || nch == 4)
|
|
{
|
|
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
|
|
blob_.create(4, sz, ddepth);
|
|
Mat blob = blob_.getMat();
|
|
Mat ch[4];
|
|
|
|
for( i = 0; i < nimages; i++ )
|
|
{
|
|
image = images[i];
|
|
CV_Assert(image.depth() == blob_.depth());
|
|
nch = image.channels();
|
|
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
for( int j = 0; j < nch; j++ )
|
|
ch[j] = Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, j));
|
|
if(swapRB)
|
|
std::swap(ch[0], ch[2]);
|
|
split(image, ch);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(nch == 1);
|
|
int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
|
|
blob_.create(4, sz, ddepth);
|
|
Mat blob = blob_.getMat();
|
|
|
|
for( i = 0; i < nimages; i++ )
|
|
{
|
|
Mat image = images[i];
|
|
CV_Assert(image.depth() == blob_.depth());
|
|
nch = image.channels();
|
|
CV_Assert(image.dims == 2 && (nch == 1));
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
image.copyTo(Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, 0)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
//A blob is a 4 dimensional matrix in floating point precision
|
|
//blob_[0] = batchSize = nbOfImages
|
|
//blob_[1] = nbOfChannels
|
|
//blob_[2] = height
|
|
//blob_[3] = width
|
|
CV_Assert(blob_.depth() == CV_32F);
|
|
CV_Assert(blob_.dims == 4);
|
|
|
|
images_.create(cv::Size(1, blob_.size[0]), blob_.depth());
|
|
|
|
std::vector<Mat> vectorOfChannels(blob_.size[1]);
|
|
for (int n = 0; n < blob_.size[0]; ++n)
|
|
{
|
|
for (int c = 0; c < blob_.size[1]; ++c)
|
|
{
|
|
vectorOfChannels[c] = getPlane(blob_, n, c);
|
|
}
|
|
cv::merge(vectorOfChannels, images_.getMatRef(n));
|
|
}
|
|
}
|
|
|
|
class OpenCLBackendWrapper : public BackendWrapper
|
|
{
|
|
public:
|
|
OpenCLBackendWrapper(Mat& m) : BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
|
|
{
|
|
m.copyTo(umat);
|
|
host = &m;
|
|
hostDirty = false;
|
|
}
|
|
|
|
OpenCLBackendWrapper(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
|
|
: BackendWrapper(DNN_BACKEND_OPENCV, DNN_TARGET_OPENCL)
|
|
{
|
|
Ptr<OpenCLBackendWrapper> base = baseBuffer.dynamicCast<OpenCLBackendWrapper>();
|
|
CV_Assert(!base.empty());
|
|
|
|
host = &m;
|
|
|
|
int shape[] = {1, (int)base->umat.total()};
|
|
umat = base->umat.reshape(1, 2, &shape[0])
|
|
.colRange(0, host->total())
|
|
.reshape(1, host->dims, &host->size[0]);
|
|
hostDirty = false;
|
|
}
|
|
|
|
static Ptr<BackendWrapper> create(Mat& m)
|
|
{
|
|
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(m));
|
|
}
|
|
|
|
static Ptr<BackendWrapper> create(const Ptr<BackendWrapper>& baseBuffer, Mat& m)
|
|
{
|
|
return Ptr<BackendWrapper>(new OpenCLBackendWrapper(baseBuffer, m));
|
|
}
|
|
|
|
static std::vector<UMat> getUMatVector(const std::vector<Ptr<BackendWrapper> >& wrappers)
|
|
{
|
|
const int numWrappers = wrappers.size();
|
|
std::vector<UMat> mats(wrappers.size());
|
|
for (int i = 0; i < numWrappers; ++i)
|
|
{
|
|
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
|
|
CV_Assert(!umatWrapper.empty());
|
|
umatWrapper->copyToDevice();
|
|
mats[i] = umatWrapper->umat;
|
|
}
|
|
return mats;
|
|
}
|
|
|
|
// Replaces all umats in wrappers to specific ones.
|
|
static void update(const std::vector<Ptr<BackendWrapper> >& wrappers,
|
|
const std::vector<UMat>& umats)
|
|
{
|
|
CV_Assert(wrappers.size() == umats.size());
|
|
for (int i = 0, n = umats.size(); i < n; ++i)
|
|
{
|
|
Ptr<OpenCLBackendWrapper> umatWrapper = wrappers[i].dynamicCast<OpenCLBackendWrapper>();
|
|
CV_Assert(!umatWrapper.empty());
|
|
umatWrapper->umat = umats[i];
|
|
}
|
|
}
|
|
|
|
~OpenCLBackendWrapper() {}
|
|
|
|
// Copies data from device to a host memory.
|
|
virtual void copyToHost() CV_OVERRIDE
|
|
{
|
|
umat.copyTo(*host);
|
|
}
|
|
|
|
virtual void setHostDirty() CV_OVERRIDE
|
|
{
|
|
hostDirty = true;
|
|
};
|
|
|
|
void copyToDevice()
|
|
{
|
|
if (hostDirty)
|
|
{
|
|
host->copyTo(umat);
|
|
hostDirty = false;
|
|
}
|
|
}
|
|
|
|
private:
|
|
UMat umat;
|
|
Mat* host;
|
|
bool hostDirty;
|
|
};
|
|
|
|
struct LayerPin
|
|
{
|
|
int lid;
|
|
int oid;
|
|
|
|
LayerPin(int layerId = -1, int outputId = -1)
|
|
: lid(layerId), oid(outputId) {}
|
|
|
|
bool valid() const
|
|
{
|
|
return (lid >= 0 && oid >= 0);
|
|
}
|
|
|
|
bool equal(const LayerPin &r) const
|
|
{
|
|
return (lid == r.lid && oid == r.oid);
|
|
}
|
|
|
|
bool operator<(const LayerPin &r) const
|
|
{
|
|
return lid < r.lid || (lid == r.lid && oid < r.oid);
|
|
}
|
|
|
|
bool operator ==(const LayerPin &r) const
|
|
{
|
|
return lid == r.lid && oid == r.oid;
|
|
}
|
|
};
|
|
|
|
struct LayerData
|
|
{
|
|
LayerData() : id(-1), skip(false), flag(0) {}
|
|
LayerData(int _id, const String &_name, const String &_type, LayerParams &_params)
|
|
: id(_id), name(_name), type(_type), params(_params), skip(false), flag(0)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
//add logging info
|
|
params.name = name;
|
|
params.type = type;
|
|
}
|
|
|
|
int id;
|
|
String name;
|
|
String type;
|
|
LayerParams params;
|
|
|
|
std::vector<LayerPin> inputBlobsId;
|
|
std::set<int> inputLayersId;
|
|
std::set<int> requiredOutputs;
|
|
std::vector<LayerPin> consumers;
|
|
std::vector<Ptr<BackendWrapper> > outputBlobsWrappers;
|
|
std::vector<Ptr<BackendWrapper> > inputBlobsWrappers;
|
|
std::vector<Ptr<BackendWrapper> > internalBlobsWrappers;
|
|
|
|
Ptr<Layer> layerInstance;
|
|
std::vector<Mat> outputBlobs;
|
|
std::vector<Mat*> inputBlobs;
|
|
std::vector<Mat> internals;
|
|
// Computation nodes of implemented backends (except DEFAULT).
|
|
std::map<int, Ptr<BackendNode> > backendNodes;
|
|
// Flag for skip layer computation for specific backend.
|
|
bool skip;
|
|
|
|
int flag;
|
|
|
|
Ptr<Layer> getLayerInstance()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
if (layerInstance)
|
|
return layerInstance;
|
|
|
|
layerInstance = LayerFactory::createLayerInstance(type, params);
|
|
if (!layerInstance)
|
|
{
|
|
CV_Error(Error::StsError, "Can't create layer \"" + name + "\" of type \"" + type + "\"");
|
|
}
|
|
|
|
return layerInstance;
|
|
}
|
|
};
|
|
|
|
//fake layer containing network input blobs
|
|
struct DataLayer : public Layer
|
|
{
|
|
DataLayer() : Layer()
|
|
{
|
|
skip = false;
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
(backendId == DNN_BACKEND_INFERENCE_ENGINE && inputsData.size() == 1);
|
|
}
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (outputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> outputs, internals;
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
// Supported modes:
|
|
// | Input type | Output type |
|
|
// | fp32 | fp32 |
|
|
// | uint8 | fp32 |
|
|
for (int i = 0; i < inputsData.size(); ++i)
|
|
{
|
|
double scale = scaleFactors[i];
|
|
Scalar& mean = means[i];
|
|
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
|
|
CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
|
|
|
|
bool singleMean = true;
|
|
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
|
|
{
|
|
singleMean = mean[j] == mean[j - 1];
|
|
}
|
|
|
|
if (singleMean)
|
|
{
|
|
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
|
|
}
|
|
else
|
|
{
|
|
for (int n = 0; n < inputsData[i].size[0]; ++n)
|
|
for (int c = 0; c < inputsData[i].size[1]; ++c)
|
|
{
|
|
Mat inp = getPlane(inputsData[i], n, c);
|
|
Mat out = getPlane(outputs[i], n, c);
|
|
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
std::vector<Mat> tmp_expressions;
|
|
bool forward_ocl(InputArrayOfArrays, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
// Supported modes:
|
|
// | Input type | Output type |
|
|
// | fp32 | fp32 |
|
|
// | fp32 | fp16 |
|
|
// | uint8 | fp32 |
|
|
std::vector<UMat> outputs;
|
|
outputs_.getUMatVector(outputs);
|
|
|
|
tmp_expressions.clear();
|
|
for (int i = 0; i < inputsData.size(); ++i)
|
|
{
|
|
Mat inputData = inputsData[i];
|
|
|
|
double scale = scaleFactors[i];
|
|
Scalar& mean = means[i];
|
|
|
|
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
|
|
bool singleMean = true;
|
|
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
|
|
{
|
|
singleMean = mean[j] == mean[j - 1];
|
|
}
|
|
|
|
if (outputs_.depth() == CV_16S)
|
|
{
|
|
if (singleMean)
|
|
{
|
|
tmp_expressions.push_back(Mat(scale * (inputsData[i] - mean[0])));
|
|
convertFp16(tmp_expressions.back(), outputs[i]);
|
|
}
|
|
else
|
|
{
|
|
for (int n = 0; n < inputsData[i].size[0]; ++n)
|
|
for (int c = 0; c < inputsData[i].size[1]; ++c)
|
|
{
|
|
Mat inp = getPlane(inputsData[i], n, c);
|
|
|
|
std::vector<cv::Range> plane(4, Range::all());
|
|
plane[0] = Range(n, n + 1);
|
|
plane[1] = Range(c, c + 1);
|
|
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
|
|
|
|
tmp_expressions.push_back(scale * (inp - mean[c]));
|
|
convertFp16(tmp_expressions.back(), out);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(outputs_.depth() == CV_32F);
|
|
if (singleMean)
|
|
{
|
|
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
|
|
}
|
|
else
|
|
{
|
|
for (int n = 0; n < inputsData[i].size[0]; ++n)
|
|
for (int c = 0; c < inputsData[i].size[1]; ++c)
|
|
{
|
|
Mat inp = getPlane(inputsData[i], n, c);
|
|
|
|
std::vector<cv::Range> plane(4, Range::all());
|
|
plane[0] = Range(n, n + 1);
|
|
plane[1] = Range(c, c + 1);
|
|
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
|
|
|
|
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
int outputNameToIndex(const String& tgtName) CV_OVERRIDE
|
|
{
|
|
int idx = (int)(std::find(outNames.begin(), outNames.end(), tgtName) - outNames.begin());
|
|
return (idx < (int)outNames.size()) ? idx : -1;
|
|
}
|
|
|
|
void setNames(const std::vector<String> &names)
|
|
{
|
|
outNames.assign(names.begin(), names.end());
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == requiredOutputs);
|
|
outputs.assign(inputs.begin(), inputs.end());
|
|
return false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
std::vector<Mat> outputs;
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
CV_Assert_N(outputs.size() == scaleFactors.size(), outputs.size() == means.size(),
|
|
inputsData.size() == outputs.size());
|
|
skip = true;
|
|
for (int i = 0; skip && i < inputsData.size(); ++i)
|
|
{
|
|
if (inputsData[i].data != outputs[i].data || scaleFactors[i] != 1.0 || means[i] != Scalar())
|
|
skip = false;
|
|
}
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
InferenceEngine::LayerParams lp;
|
|
lp.name = name;
|
|
lp.type = "ScaleShift";
|
|
lp.precision = InferenceEngine::Precision::FP32;
|
|
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
|
|
|
|
CV_CheckEQ(inputsData.size(), (size_t)1, "");
|
|
CV_CheckEQ(inputsData[0].dims, 4, "");
|
|
const size_t numChannels = inputsData[0].size[1];
|
|
CV_Assert(numChannels <= 4);
|
|
|
|
// Scale
|
|
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
|
|
{numChannels});
|
|
weights->allocate();
|
|
weights->set(std::vector<float>(numChannels, scaleFactors[0]));
|
|
ieLayer->_weights = weights;
|
|
|
|
// Mean subtraction
|
|
auto biases = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
|
|
{numChannels});
|
|
biases->allocate();
|
|
std::vector<float> biasesVec(numChannels);
|
|
for (int i = 0; i < numChannels; ++i)
|
|
{
|
|
biasesVec[i] = -means[0][i] * scaleFactors[0];
|
|
}
|
|
biases->set(biasesVec);
|
|
ieLayer->_biases = biases;
|
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
#endif // HAVE_INF_ENGINE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
std::vector<String> outNames;
|
|
// Preprocessing parameters for each network's input.
|
|
std::vector<double> scaleFactors;
|
|
std::vector<Scalar> means;
|
|
std::vector<Mat> inputsData;
|
|
bool skip;
|
|
};
|
|
|
|
struct BlobManager
|
|
{
|
|
public:
|
|
// Increase references counter to layer output.
|
|
void addReference(const LayerPin& lp)
|
|
{
|
|
std::map<LayerPin, int>::iterator it = refCounter.find(lp);
|
|
if (it == refCounter.end())
|
|
refCounter[lp] = 1;
|
|
else
|
|
it->second += 1;
|
|
}
|
|
|
|
void addReferences(const std::vector<LayerPin>& pins)
|
|
{
|
|
for (int i = 0; i < pins.size(); i++)
|
|
{
|
|
addReference(pins[i]);
|
|
}
|
|
}
|
|
|
|
// Returns number of references to allocated memory that used in specific
|
|
// layer blob.
|
|
int numReferences(const LayerPin& lp)
|
|
{
|
|
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
|
|
CV_Assert(mapIt != reuseMap.end());
|
|
LayerPin memHost = mapIt->second;
|
|
|
|
std::map<LayerPin, int>::iterator refIt = refCounter.find(memHost);
|
|
CV_Assert(refIt != refCounter.end());
|
|
return refIt->second;
|
|
}
|
|
|
|
// Reuse data allocated in <host> inside the <user> blob.
|
|
void reuse(const LayerPin& host, const LayerPin& user)
|
|
{
|
|
CV_Assert(reuseMap.find(user) == reuseMap.end());
|
|
CV_Assert(reuseMap.find(host) != reuseMap.end());
|
|
LayerPin memHost = reuseMap[host];
|
|
reuseMap[user] = memHost;
|
|
if (refCounter.find(memHost) != refCounter.end())
|
|
{
|
|
std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user);
|
|
if (userRefIt != refCounter.end())
|
|
{
|
|
refCounter[memHost] += userRefIt->second;
|
|
refCounter.erase(userRefIt);
|
|
}
|
|
else
|
|
refCounter[memHost] += 1;
|
|
}
|
|
}
|
|
|
|
// Decrease references counter to allocated memory inside specific blob.
|
|
void releaseReference(const LayerPin& lp)
|
|
{
|
|
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
|
|
CV_Assert(mapIt != reuseMap.end());
|
|
|
|
std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second);
|
|
CV_Assert(refIt != refCounter.end());
|
|
CV_Assert(refIt->second > 0);
|
|
refIt->second -= 1;
|
|
}
|
|
|
|
void releaseReferences(const std::vector<LayerPin>& pins)
|
|
{
|
|
for (int i = 0; i < pins.size(); i++)
|
|
{
|
|
releaseReference(pins[i]);
|
|
}
|
|
}
|
|
|
|
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, bool use_half)
|
|
{
|
|
if (!DNN_DISABLE_MEMORY_OPTIMIZATIONS)
|
|
{
|
|
Mat bestBlob;
|
|
LayerPin bestBlobPin;
|
|
|
|
std::map<LayerPin, Mat>::iterator hostIt;
|
|
std::map<LayerPin, int>::iterator refIt;
|
|
|
|
const int targetTotal = total(shape);
|
|
int bestBlobTotal = INT_MAX;
|
|
|
|
for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt)
|
|
{
|
|
refIt = refCounter.find(hostIt->first);
|
|
// Use only blobs that had references before because if not,
|
|
// it might be used as output.
|
|
if (refIt != refCounter.end() && refIt->second == 0)
|
|
{
|
|
Mat& unusedBlob = hostIt->second;
|
|
if (unusedBlob.total() >= targetTotal &&
|
|
unusedBlob.total() < bestBlobTotal)
|
|
{
|
|
bestBlobPin = hostIt->first;
|
|
bestBlob = unusedBlob;
|
|
bestBlobTotal = unusedBlob.total();
|
|
}
|
|
}
|
|
}
|
|
if (!bestBlob.empty())
|
|
{
|
|
reuse(bestBlobPin, lp);
|
|
dst = bestBlob.reshape(1, 1).colRange(0, targetTotal).reshape(1, shape);
|
|
return;
|
|
}
|
|
}
|
|
|
|
{
|
|
// if dst already has been allocated with total(shape) elements,
|
|
// it won't be recreated and pointer of dst.data remains the same.
|
|
dst.create(shape, use_half ? CV_16S : CV_32F);
|
|
addHost(lp, dst);
|
|
}
|
|
}
|
|
|
|
void allocateBlobsForLayer(LayerData &ld, const LayerShapes& layerShapes,
|
|
std::vector<LayerPin>& pinsForInternalBlobs,
|
|
bool use_half = false)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
pinsForInternalBlobs.clear();
|
|
|
|
std::vector<Mat>& outputBlobs = ld.outputBlobs,
|
|
&internalBlobs = ld.internals;
|
|
|
|
const ShapesVec& outShapes = layerShapes.out,
|
|
internalShapes = layerShapes.internal;
|
|
|
|
outputBlobs.resize(std::max((size_t)1, outShapes.size())); //layer produce at least one output blob
|
|
internalBlobs.resize(internalShapes.size());
|
|
|
|
CV_Assert(ld.requiredOutputs.size() <= outShapes.size());
|
|
|
|
// Check that layer could work in-place.
|
|
bool inPlace = false;
|
|
if (layerShapes.supportInPlace)
|
|
{
|
|
if (ld.inputBlobs.size() == 1)
|
|
{
|
|
// Get number of references to the input memory.
|
|
int numRef = numReferences(ld.inputBlobsId[0]);
|
|
// If current layer is one and only customer of this blob.
|
|
inPlace = numRef == 1;
|
|
}
|
|
}
|
|
|
|
ShapesVec shapes(outShapes);
|
|
shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end());
|
|
std::vector<Mat*> blobs;
|
|
for(int i = 0; i < outputBlobs.size(); i++)
|
|
{
|
|
blobs.push_back(&outputBlobs[i]);
|
|
}
|
|
|
|
for(int i = 0; i < internalBlobs.size(); i++)
|
|
{
|
|
blobs.push_back(&internalBlobs[i]);
|
|
if (total(internalShapes[i]))
|
|
{
|
|
pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i));
|
|
}
|
|
}
|
|
|
|
addReferences(pinsForInternalBlobs);
|
|
|
|
std::map<int, std::vector<int> > idxSizes;
|
|
for(int i = 0; i < shapes.size(); i++)
|
|
{
|
|
idxSizes[total(shapes[i])].push_back(i);
|
|
}
|
|
|
|
std::map<int, std::vector<int> >::reverse_iterator it;
|
|
for(it = idxSizes.rbegin(); it != idxSizes.rend(); it++)
|
|
{
|
|
for(int j = 0; j < it->second.size(); j++)
|
|
{
|
|
int index = it->second[j];
|
|
if (total(shapes[index]))
|
|
{
|
|
LayerPin blobPin(ld.id, index);
|
|
if (index < outShapes.size() && inPlace)
|
|
{
|
|
CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index]));
|
|
ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]);
|
|
reuse(ld.inputBlobsId[0], blobPin);
|
|
}
|
|
else
|
|
reuseOrCreate(shapes[index], blobPin, *blobs[index], use_half);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clear internal state. Calls before an every reallocation.
|
|
void reset()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
refCounter.clear();
|
|
reuseMap.clear();
|
|
memHosts.clear();
|
|
}
|
|
|
|
private:
|
|
// Register allocated memory.
|
|
void addHost(const LayerPin& lp, const Mat& mat)
|
|
{
|
|
CV_Assert(memHosts.find(lp) == memHosts.end());
|
|
reuseMap[lp] = lp;
|
|
memHosts[lp] = mat;
|
|
}
|
|
|
|
std::map<LayerPin, int> refCounter;
|
|
// Maps pin to origin blob (for whom memory was allocated firstly).
|
|
// For origin blobs key == value.
|
|
std::map<LayerPin, LayerPin> reuseMap;
|
|
std::map<LayerPin, Mat> memHosts;
|
|
};
|
|
|
|
static Ptr<BackendWrapper> wrapMat(int backendId, int targetId, cv::Mat& m)
|
|
{
|
|
if (backendId == DNN_BACKEND_OPENCV)
|
|
{
|
|
if (targetId == DNN_TARGET_CPU)
|
|
return Ptr<BackendWrapper>();
|
|
else if (IS_DNN_OPENCL_TARGET(targetId))
|
|
return OpenCLBackendWrapper::create(m);
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unknown target identifier");
|
|
}
|
|
else if (backendId == DNN_BACKEND_HALIDE)
|
|
{
|
|
CV_Assert(haveHalide());
|
|
#ifdef HAVE_HALIDE
|
|
return Ptr<BackendWrapper>(new HalideBackendWrapper(targetId, m));
|
|
#endif // HAVE_HALIDE
|
|
}
|
|
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
|
|
{
|
|
CV_Assert(haveInfEngine());
|
|
#ifdef HAVE_INF_ENGINE
|
|
return Ptr<BackendWrapper>(new InfEngineBackendWrapper(targetId, m));
|
|
#endif // HAVE_INF_ENGINE
|
|
}
|
|
else if (backendId == DNN_BACKEND_VKCOM)
|
|
{
|
|
CV_Assert(haveVulkan());
|
|
#ifdef HAVE_VULKAN
|
|
return Ptr<BackendWrapper>(new VkComBackendWrapper(m));
|
|
#endif // HAVE_VULKAN
|
|
}
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
return Ptr<BackendWrapper>();
|
|
}
|
|
|
|
struct Net::Impl
|
|
{
|
|
typedef std::map<int, LayerShapes> LayersShapesMap;
|
|
typedef std::map<int, LayerData> MapIdToLayerData;
|
|
|
|
Impl()
|
|
{
|
|
//allocate fake net input layer
|
|
netInputLayer = Ptr<DataLayer>(new DataLayer());
|
|
LayerData &inpl = layers.insert( make_pair(0, LayerData()) ).first->second;
|
|
inpl.id = 0;
|
|
netInputLayer->name = inpl.name = "_input";
|
|
inpl.type = "__NetInputLayer__";
|
|
inpl.layerInstance = netInputLayer;
|
|
layerNameToId.insert(std::make_pair(inpl.name, inpl.id));
|
|
|
|
lastLayerId = 0;
|
|
netWasAllocated = false;
|
|
fusion = true;
|
|
preferableBackend = DNN_BACKEND_DEFAULT;
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
skipInfEngineInit = false;
|
|
}
|
|
|
|
Ptr<DataLayer> netInputLayer;
|
|
std::vector<LayerPin> blobsToKeep;
|
|
MapIdToLayerData layers;
|
|
std::map<String, int> layerNameToId;
|
|
BlobManager blobManager;
|
|
int preferableBackend;
|
|
int preferableTarget;
|
|
String halideConfigFile;
|
|
bool skipInfEngineInit;
|
|
// Map host data to backend specific wrapper.
|
|
std::map<void*, Ptr<BackendWrapper> > backendWrappers;
|
|
|
|
int lastLayerId;
|
|
|
|
bool netWasAllocated;
|
|
bool fusion;
|
|
std::vector<int64> layersTimings;
|
|
Mat output_blob;
|
|
|
|
Ptr<BackendWrapper> wrap(Mat& host)
|
|
{
|
|
if (preferableBackend == DNN_BACKEND_OPENCV && preferableTarget == DNN_TARGET_CPU)
|
|
return Ptr<BackendWrapper>();
|
|
|
|
MatShape shape(host.dims);
|
|
for (int i = 0; i < host.dims; ++i)
|
|
shape[i] = host.size[i];
|
|
|
|
void* data = host.data;
|
|
if (backendWrappers.find(data) != backendWrappers.end())
|
|
{
|
|
Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
|
|
if (preferableBackend == DNN_BACKEND_OPENCV)
|
|
{
|
|
CV_Assert(IS_DNN_OPENCL_TARGET(preferableTarget));
|
|
return OpenCLBackendWrapper::create(baseBuffer, host);
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
{
|
|
CV_Assert(haveHalide());
|
|
#ifdef HAVE_HALIDE
|
|
return Ptr<BackendWrapper>(new HalideBackendWrapper(baseBuffer, shape));
|
|
#endif // HAVE_HALIDE
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
|
|
{
|
|
return wrapMat(preferableBackend, preferableTarget, host);
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_VKCOM)
|
|
{
|
|
#ifdef HAVE_VULKAN
|
|
return Ptr<BackendWrapper>(new VkComBackendWrapper(baseBuffer, host));
|
|
#endif
|
|
}
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
}
|
|
|
|
Ptr<BackendWrapper> wrapper = wrapMat(preferableBackend, preferableTarget, host);
|
|
backendWrappers[data] = wrapper;
|
|
return wrapper;
|
|
}
|
|
|
|
#ifdef HAVE_HALIDE
|
|
void compileHalide()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE);
|
|
|
|
HalideScheduler scheduler(halideConfigFile);
|
|
std::vector< std::reference_wrapper<LayerData> > compileList; compileList.reserve(64);
|
|
for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
|
|
{
|
|
LayerData &ld = it->second;
|
|
Ptr<Layer> layer = ld.layerInstance;
|
|
if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skip)
|
|
{
|
|
CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
|
|
bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
|
|
if (!scheduled)
|
|
{
|
|
// Use automatic scheduling provided by layer.
|
|
layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
|
|
ld.inputBlobs, ld.outputBlobs,
|
|
preferableTarget);
|
|
}
|
|
compileList.emplace_back(ld);
|
|
}
|
|
}
|
|
std::atomic<int> progress(0);
|
|
auto fn = ([&] () -> void
|
|
{
|
|
for (;;)
|
|
{
|
|
int id = progress.fetch_add(1);
|
|
if ((size_t)id >= compileList.size())
|
|
return;
|
|
const LayerData& ld = compileList[id].get();
|
|
Ptr<BackendNode> node = ld.backendNodes.find(DNN_BACKEND_HALIDE)->second;
|
|
dnn::compileHalide(ld.outputBlobs, node, preferableTarget);
|
|
}
|
|
});
|
|
size_t num_threads = std::min(compileList.size(), (size_t)std::thread::hardware_concurrency());
|
|
num_threads = std::max((size_t)1u, std::min((size_t)8u, num_threads));
|
|
std::vector<std::thread> threads(num_threads - 1);
|
|
for (auto& t: threads) t = std::thread(fn);
|
|
fn(); // process own tasks
|
|
for (auto& t: threads) t.join();
|
|
}
|
|
#endif
|
|
|
|
void clear()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
MapIdToLayerData::iterator it;
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
{
|
|
if (it->second.id != 0) {
|
|
it->second.inputBlobs.clear();
|
|
it->second.outputBlobs.clear();
|
|
it->second.internals.clear();
|
|
}
|
|
it->second.skip = false;
|
|
//it->second.consumers.clear();
|
|
Ptr<Layer> currLayer = it->second.layerInstance;
|
|
|
|
if( currLayer.empty() )
|
|
continue;
|
|
|
|
currLayer->unsetAttached();
|
|
|
|
Ptr<PoolingLayer> poolingLayer = currLayer.dynamicCast<PoolingLayer>();
|
|
if( !poolingLayer.empty() )
|
|
{
|
|
poolingLayer->computeMaxIdx = true;
|
|
}
|
|
}
|
|
|
|
layersTimings.clear();
|
|
}
|
|
|
|
void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>())
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
if (preferableBackend == DNN_BACKEND_DEFAULT)
|
|
preferableBackend = (Backend)PARAM_DNN_BACKEND_DEFAULT;
|
|
|
|
CV_Assert(preferableBackend != DNN_BACKEND_OPENCV ||
|
|
preferableTarget == DNN_TARGET_CPU ||
|
|
preferableTarget == DNN_TARGET_OPENCL ||
|
|
preferableTarget == DNN_TARGET_OPENCL_FP16);
|
|
CV_Assert(preferableBackend != DNN_BACKEND_HALIDE ||
|
|
preferableTarget == DNN_TARGET_CPU ||
|
|
preferableTarget == DNN_TARGET_OPENCL);
|
|
CV_Assert(preferableBackend != DNN_BACKEND_INFERENCE_ENGINE ||
|
|
preferableTarget == DNN_TARGET_CPU ||
|
|
preferableTarget == DNN_TARGET_OPENCL ||
|
|
preferableTarget == DNN_TARGET_OPENCL_FP16 ||
|
|
preferableTarget == DNN_TARGET_MYRIAD ||
|
|
preferableTarget == DNN_TARGET_FPGA);
|
|
CV_Assert(preferableBackend != DNN_BACKEND_VKCOM ||
|
|
preferableTarget == DNN_TARGET_VULKAN);
|
|
if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
|
|
{
|
|
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
|
|
#ifndef HAVE_OPENCL
|
|
{
|
|
CV_LOG_WARNING(NULL, "DNN: OpenCL target is not available in this OpenCV build, switching to CPU.");
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
}
|
|
#else
|
|
{
|
|
if (!DNN_OPENCL_ALLOW_ALL_DEVICES)
|
|
{
|
|
// Current implementation is only valid for GPU (#11494)
|
|
if (ocl::Device::getDefault().type() != ocl::Device::TYPE_GPU)
|
|
{
|
|
CV_LOG_WARNING(NULL, "DNN: OpenCL target is not supported with current OpenCL device (tested with GPUs only), switching to CPU.");
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
}
|
|
else if (preferableTarget == DNN_TARGET_OPENCL_FP16 && !ocl::Device::getDefault().isIntel())
|
|
{
|
|
CV_LOG_WARNING(NULL,
|
|
"DNN: OpenCL target with fp16 precision is not supported "
|
|
"with current OpenCL device (tested with Intel GPUs only), "
|
|
"switching to OpenCL with fp32 precision.");
|
|
preferableTarget = DNN_TARGET_OPENCL;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (preferableBackend == DNN_BACKEND_VKCOM && !haveVulkan())
|
|
{
|
|
preferableBackend = DNN_BACKEND_OPENCV;
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
}
|
|
|
|
clear();
|
|
|
|
allocateLayers(blobsToKeep_);
|
|
|
|
MapIdToLayerData::iterator it = layers.find(0);
|
|
CV_Assert(it != layers.end());
|
|
it->second.skip = netInputLayer->skip;
|
|
|
|
initBackend();
|
|
|
|
if (!netWasAllocated )
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
compileHalide();
|
|
#else
|
|
CV_Assert(preferableBackend != DNN_BACKEND_HALIDE);
|
|
#endif
|
|
}
|
|
|
|
netWasAllocated = true;
|
|
this->blobsToKeep = blobsToKeep_;
|
|
}
|
|
}
|
|
|
|
int getLayerId(const String &layerName)
|
|
{
|
|
std::map<String, int>::iterator it = layerNameToId.find(layerName);
|
|
return (it != layerNameToId.end()) ? it->second : -1;
|
|
}
|
|
|
|
int getLayerId(int id)
|
|
{
|
|
MapIdToLayerData::iterator it = layers.find(id);
|
|
return (it != layers.end()) ? id : -1;
|
|
}
|
|
|
|
int getLayerId(DictValue &layerDesc)
|
|
{
|
|
if (layerDesc.isInt())
|
|
return getLayerId(layerDesc.get<int>());
|
|
else if (layerDesc.isString())
|
|
return getLayerId(layerDesc.get<String>());
|
|
|
|
CV_Assert(layerDesc.isInt() || layerDesc.isString());
|
|
return -1;
|
|
}
|
|
|
|
String getLayerName(int id)
|
|
{
|
|
MapIdToLayerData::iterator it = layers.find(id);
|
|
return (it != layers.end()) ? it->second.name : "(unknown layer)";
|
|
}
|
|
|
|
LayerData& getLayerData(int id)
|
|
{
|
|
MapIdToLayerData::iterator it = layers.find(id);
|
|
|
|
if (it == layers.end())
|
|
CV_Error(Error::StsObjectNotFound, format("Layer with requested id=%d not found", id));
|
|
|
|
return it->second;
|
|
}
|
|
|
|
LayerData& getLayerData(const String &layerName)
|
|
{
|
|
int id = getLayerId(layerName);
|
|
|
|
if (id < 0)
|
|
CV_Error(Error::StsError, "Requested layer \"" + layerName + "\" not found");
|
|
|
|
return getLayerData(id);
|
|
}
|
|
|
|
LayerData& getLayerData(const DictValue &layerDesc)
|
|
{
|
|
CV_Assert(layerDesc.isInt() || layerDesc.isString());
|
|
if (layerDesc.isInt())
|
|
return getLayerData(layerDesc.get<int>());
|
|
else /*if (layerDesc.isString())*/
|
|
return getLayerData(layerDesc.get<String>());
|
|
}
|
|
|
|
static void addLayerInput(LayerData &ld, int inNum, LayerPin from)
|
|
{
|
|
if ((int)ld.inputBlobsId.size() <= inNum)
|
|
{
|
|
ld.inputBlobsId.resize(inNum + 1);
|
|
}
|
|
else
|
|
{
|
|
LayerPin storedFrom = ld.inputBlobsId[inNum];
|
|
if (storedFrom.valid() && !storedFrom.equal(from))
|
|
CV_Error(Error::StsError, format("Input #%d of layer \"%s\" already was connected",
|
|
inNum, ld.name.c_str()));
|
|
}
|
|
|
|
ld.inputBlobsId[inNum] = from;
|
|
}
|
|
|
|
int resolvePinOutputName(LayerData &ld, const String &outName)
|
|
{
|
|
if (outName.empty())
|
|
return 0;
|
|
return ld.getLayerInstance()->outputNameToIndex(outName);
|
|
}
|
|
|
|
LayerPin getPinByAlias(const String &layerName)
|
|
{
|
|
LayerPin pin;
|
|
pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName);
|
|
|
|
if (pin.lid >= 0)
|
|
pin.oid = resolvePinOutputName(getLayerData(pin.lid), layerName);
|
|
|
|
return pin;
|
|
}
|
|
|
|
std::vector<LayerPin> getLayerOutPins(const String &layerName)
|
|
{
|
|
int lid = (layerName.empty()) ? 0 : getLayerId(layerName);
|
|
|
|
std::vector<LayerPin> pins;
|
|
|
|
for (int i = 0; i < layers[lid].outputBlobs.size(); i++)
|
|
{
|
|
pins.push_back(LayerPin(lid, i));
|
|
}
|
|
|
|
return pins;
|
|
}
|
|
|
|
void connect(int outLayerId, int outNum, int inLayerId, int inNum)
|
|
{
|
|
CV_Assert(outLayerId < inLayerId);
|
|
LayerData &ldOut = getLayerData(outLayerId);
|
|
LayerData &ldInp = getLayerData(inLayerId);
|
|
|
|
addLayerInput(ldInp, inNum, LayerPin(outLayerId, outNum));
|
|
ldOut.requiredOutputs.insert(outNum);
|
|
ldOut.consumers.push_back(LayerPin(inLayerId, outNum));
|
|
}
|
|
|
|
void initBackend()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
if (preferableBackend == DNN_BACKEND_OPENCV)
|
|
CV_Assert(preferableTarget == DNN_TARGET_CPU || IS_DNN_OPENCL_TARGET(preferableTarget));
|
|
else if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
initHalideBackend();
|
|
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
|
|
initInfEngineBackend();
|
|
else if (preferableBackend == DNN_BACKEND_VKCOM)
|
|
initVkComBackend();
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
}
|
|
|
|
void initHalideBackend()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_Assert_N(preferableBackend == DNN_BACKEND_HALIDE, haveHalide());
|
|
|
|
// Iterator to current layer.
|
|
MapIdToLayerData::iterator it = layers.begin();
|
|
// Iterator to base layer for fusion. In example, in case of conv+bn+relu
|
|
// it'll be a conv layer.
|
|
MapIdToLayerData::iterator baseIt = layers.begin();
|
|
for (; it != layers.end(); it++)
|
|
{
|
|
LayerData &ldTop = it->second;
|
|
Ptr<Layer> layerTop = ldTop.layerInstance;
|
|
if (!layerTop->supportBackend(preferableBackend))
|
|
{
|
|
// Move base iterator to layer that don't support preferable
|
|
// backend to prevent fusion over layer of different backend.
|
|
baseIt = it;
|
|
continue;
|
|
}
|
|
// Try to do layers fusion.
|
|
LayerData &ldBot = baseIt->second;
|
|
Ptr<Layer> layerBot = ldBot.layerInstance;
|
|
// 1. Check that bottom and top from the same backends.
|
|
if (it != layers.begin() && layerBot->supportBackend(preferableBackend))
|
|
{
|
|
// 2. Check that current layer works in-place.
|
|
bool inPlace = ldTop.inputBlobs.size() == 1 &&
|
|
ldBot.outputBlobs.size() == 1 &&
|
|
ldTop.inputBlobs[0]->data ==
|
|
ldBot.outputBlobs[0].data;
|
|
if (inPlace)
|
|
{
|
|
// 3. Try to attach node.
|
|
CV_Assert(!ldBot.backendNodes[preferableBackend].empty());
|
|
Ptr<BackendNode> fusedNode =
|
|
layerTop->tryAttach(ldBot.backendNodes[preferableBackend]);
|
|
if (!fusedNode.empty())
|
|
{
|
|
ldTop.skip = true;
|
|
ldBot.backendNodes[preferableBackend] = fusedNode;
|
|
ldBot.outputBlobsWrappers = ldTop.outputBlobsWrappers;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
// No layers fusion.
|
|
ldTop.skip = false;
|
|
ldTop.backendNodes[DNN_BACKEND_HALIDE] =
|
|
layerTop->initHalide(ldTop.inputBlobsWrappers);
|
|
baseIt = it;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
// Before launching Inference Engine graph we need to specify output blobs.
|
|
// This function requests output blobs based on inputs references of
|
|
// layers from default backend or layers from different graphs.
|
|
void addInfEngineNetOutputs(LayerData &ld)
|
|
{
|
|
Ptr<InfEngineBackendNet> layerNet;
|
|
if (ld.backendNodes.find(preferableBackend) != ld.backendNodes.end())
|
|
{
|
|
Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
|
|
if (!node.empty())
|
|
{
|
|
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
|
CV_Assert(!ieNode.empty()); CV_Assert(!ieNode->net.empty());
|
|
layerNet = ieNode->net;
|
|
}
|
|
}
|
|
// For an every input reference we check that it belongs to one of
|
|
// the Inference Engine backend graphs. Request an output blob if it is.
|
|
// Do nothing if layer's input is from the same graph.
|
|
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
|
|
{
|
|
LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
|
|
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
|
|
if (!inpNode.empty())
|
|
{
|
|
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
|
|
CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
|
|
if (layerNet != ieInpNode->net)
|
|
{
|
|
// layerNet is empty or nodes are from different graphs.
|
|
ieInpNode->net->addOutput(ieInpNode->layer->name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
void initVkComBackend()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_Assert(preferableBackend == DNN_BACKEND_VKCOM);
|
|
#ifdef HAVE_VULKAN
|
|
if (!haveVulkan())
|
|
return;
|
|
|
|
MapIdToLayerData::iterator it = layers.begin();
|
|
for (; it != layers.end(); it++)
|
|
{
|
|
LayerData &ld = it->second;
|
|
Ptr<Layer> layer = ld.layerInstance;
|
|
if (!layer->supportBackend(preferableBackend))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (ld.type == "Convolution")
|
|
{
|
|
std::vector<MatShape> in_shapes;
|
|
std::vector<MatShape> out_shapes;
|
|
CV_Assert(ld.inputBlobs.size() == ld.outputBlobs.size());
|
|
|
|
for (int i = 0; i < ld.inputBlobs.size(); i++)
|
|
{
|
|
in_shapes.push_back(shape(*ld.inputBlobs[i]));
|
|
out_shapes.push_back(shape(ld.outputBlobs[i]));
|
|
}
|
|
int64 flops = layer->getFLOPS(in_shapes, out_shapes);
|
|
// FIXME
|
|
//
|
|
// This is a workaround for GPU hang on heavy convolution workload ( > 10 GFLOPS).
|
|
// For the long time task, vkWaitForFences() return without error but next call on
|
|
// vkQueueSubmit() return -4, i.e. "VK_ERROR_DEVICE_LOST" and driver reports GPU hang.
|
|
//
|
|
// Need more investigation on root cause of GPU hang and need to optimize convolution shader
|
|
// to reduce process time.
|
|
if (flops > CV_BIG_INT(10) * 1000 * 1000 * 1000)
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ld.skip = false;
|
|
|
|
try
|
|
{
|
|
ld.backendNodes[DNN_BACKEND_VKCOM] =
|
|
layer->initVkCom(ld.inputBlobsWrappers);
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
CV_LOG_ERROR(NULL, "initVkCom failed, fallback to CPU implementation. " << e.what());
|
|
ld.backendNodes[DNN_BACKEND_VKCOM] = Ptr<BackendNode>();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void initInfEngineBackend()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_Assert_N(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine());
|
|
#ifdef HAVE_INF_ENGINE
|
|
MapIdToLayerData::iterator it;
|
|
Ptr<InfEngineBackendNet> net;
|
|
|
|
for (it = layers.begin(); it != layers.end(); ++it)
|
|
{
|
|
LayerData &ld = it->second;
|
|
if (ld.id == 0)
|
|
{
|
|
CV_Assert((netInputLayer->outNames.empty() && ld.outputBlobsWrappers.size() == 1) ||
|
|
(netInputLayer->outNames.size() == ld.outputBlobsWrappers.size()));
|
|
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
|
|
{
|
|
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
|
|
dataPtr->name = netInputLayer->outNames.empty() ? ld.name : netInputLayer->outNames[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
|
|
{
|
|
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
|
|
dataPtr->name = ld.name;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (skipInfEngineInit)
|
|
{
|
|
Ptr<BackendNode> node = layers[lastLayerId].backendNodes[preferableBackend];
|
|
CV_Assert(!node.empty());
|
|
|
|
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
|
CV_Assert(!ieNode.empty());
|
|
|
|
for (it = layers.begin(); it != layers.end(); ++it)
|
|
{
|
|
LayerData &ld = it->second;
|
|
if (ld.id == 0)
|
|
{
|
|
for (int i = 0; i < ld.inputBlobsWrappers.size(); ++i)
|
|
{
|
|
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.inputBlobsWrappers[i]);
|
|
dataPtr->name = netInputLayer->outNames[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
|
|
{
|
|
InferenceEngine::DataPtr dataPtr = infEngineDataNode(ld.outputBlobsWrappers[i]);
|
|
dataPtr->name = ld.name;
|
|
}
|
|
}
|
|
ieNode->net->addBlobs(ld.inputBlobsWrappers);
|
|
ieNode->net->addBlobs(ld.outputBlobsWrappers);
|
|
ld.skip = true;
|
|
}
|
|
layers[lastLayerId].skip = false;
|
|
ieNode->net->init(preferableTarget);
|
|
return;
|
|
}
|
|
|
|
// Build Inference Engine networks from sets of layers that support this
|
|
// backend. Split a whole model on several Inference Engine networks if
|
|
// some of layers is not implemented.
|
|
|
|
// Set of all input and output blobs wrappers for current network.
|
|
std::map<LayerPin, Ptr<BackendWrapper> > netBlobsWrappers;
|
|
for (it = layers.begin(); it != layers.end(); ++it)
|
|
{
|
|
LayerData &ld = it->second;
|
|
if (ld.id == 0 && ld.skip)
|
|
continue;
|
|
bool fused = ld.skip;
|
|
|
|
Ptr<Layer> layer = ld.layerInstance;
|
|
if (!fused && !layer->supportBackend(preferableBackend))
|
|
{
|
|
addInfEngineNetOutputs(ld);
|
|
net = Ptr<InfEngineBackendNet>();
|
|
netBlobsWrappers.clear();
|
|
layer->preferableTarget = DNN_TARGET_CPU;
|
|
continue;
|
|
}
|
|
ld.skip = true; // Initially skip all Inference Engine supported layers.
|
|
|
|
// Create a new network if one of inputs from different Inference Engine graph.
|
|
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
|
|
{
|
|
LayerData &inpLd = layers[ld.inputBlobsId[i].lid];
|
|
Ptr<BackendNode> inpNode = inpLd.backendNodes[preferableBackend];
|
|
if (!inpNode.empty())
|
|
{
|
|
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>();
|
|
CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty());
|
|
if (ieInpNode->net != net)
|
|
{
|
|
net = Ptr<InfEngineBackendNet>();
|
|
netBlobsWrappers.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The same blobs wrappers cannot be shared between two Inference Engine
|
|
// networks because of explicit references between layers and blobs.
|
|
// So we need to rewrap all the external blobs.
|
|
for (int i = 0; i < ld.inputBlobsId.size(); ++i)
|
|
{
|
|
LayerPin inPin = ld.inputBlobsId[i];
|
|
auto it = netBlobsWrappers.find(inPin);
|
|
if (it == netBlobsWrappers.end())
|
|
{
|
|
ld.inputBlobsWrappers[i] = InfEngineBackendWrapper::create(ld.inputBlobsWrappers[i]);
|
|
netBlobsWrappers[inPin] = ld.inputBlobsWrappers[i];
|
|
}
|
|
else
|
|
ld.inputBlobsWrappers[i] = it->second;
|
|
}
|
|
netBlobsWrappers[LayerPin(ld.id, 0)] = ld.outputBlobsWrappers[0];
|
|
|
|
Ptr<BackendNode> node;
|
|
if (!net.empty())
|
|
{
|
|
if (fused)
|
|
{
|
|
bool inPlace = ld.inputBlobsId.size() == 1 && ld.outputBlobs.size() == 1 &&
|
|
ld.inputBlobs[0]->data == ld.outputBlobs[0].data;
|
|
CV_Assert(inPlace);
|
|
node = layers[ld.inputBlobsId[0].lid].backendNodes[preferableBackend];
|
|
ld.inputBlobsWrappers = layers[ld.inputBlobsId[0].lid].inputBlobsWrappers;
|
|
}
|
|
}
|
|
else
|
|
net = Ptr<InfEngineBackendNet>(new InfEngineBackendNet());
|
|
|
|
if (!fused)
|
|
{
|
|
node = layer->initInfEngine(ld.inputBlobsWrappers);
|
|
}
|
|
else if (node.empty())
|
|
continue;
|
|
|
|
CV_Assert(!node.empty());
|
|
ld.backendNodes[preferableBackend] = node;
|
|
|
|
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
|
CV_Assert(!ieNode.empty());
|
|
ieNode->net = net;
|
|
|
|
auto weightableLayer = std::dynamic_pointer_cast<InferenceEngine::WeightableLayer>(ieNode->layer);
|
|
if ((preferableTarget == DNN_TARGET_OPENCL_FP16 ||
|
|
preferableTarget == DNN_TARGET_MYRIAD ||
|
|
preferableTarget == DNN_TARGET_FPGA) && !fused)
|
|
{
|
|
ieNode->layer->precision = InferenceEngine::Precision::FP16;
|
|
if (weightableLayer)
|
|
{
|
|
if (weightableLayer->_weights)
|
|
weightableLayer->_weights = convertFp16(weightableLayer->_weights);
|
|
if (weightableLayer->_biases)
|
|
weightableLayer->_biases = convertFp16(weightableLayer->_biases);
|
|
}
|
|
else
|
|
{
|
|
for (const auto& weights : {"weights", "biases"})
|
|
{
|
|
auto it = ieNode->layer->blobs.find(weights);
|
|
if (it != ieNode->layer->blobs.end())
|
|
it->second = convertFp16(it->second);
|
|
}
|
|
}
|
|
}
|
|
if (weightableLayer)
|
|
{
|
|
if (weightableLayer->_weights)
|
|
weightableLayer->blobs["weights"] = weightableLayer->_weights;
|
|
if (weightableLayer->_biases)
|
|
weightableLayer->blobs["biases"] = weightableLayer->_biases;
|
|
}
|
|
ieNode->connect(ld.inputBlobsWrappers, ld.outputBlobsWrappers);
|
|
net->addBlobs(ld.inputBlobsWrappers);
|
|
net->addBlobs(ld.outputBlobsWrappers);
|
|
|
|
if (!fused)
|
|
net->addLayer(ieNode->layer);
|
|
addInfEngineNetOutputs(ld);
|
|
}
|
|
|
|
// Initialize all networks.
|
|
std::set<InfEngineBackendNet> initializedNets;
|
|
for (MapIdToLayerData::reverse_iterator it = layers.rbegin(); it != layers.rend(); ++it)
|
|
{
|
|
LayerData &ld = it->second;
|
|
if (ld.backendNodes.find(preferableBackend) == ld.backendNodes.end())
|
|
continue;
|
|
|
|
Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
|
|
if (node.empty())
|
|
continue;
|
|
|
|
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
|
if (ieNode.empty())
|
|
continue;
|
|
|
|
CV_Assert(!ieNode->net.empty());
|
|
|
|
if (!ieNode->net->isInitialized())
|
|
{
|
|
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R3)
|
|
// For networks which is built in runtime we need to specify a
|
|
// version of it's hyperparameters.
|
|
std::string versionTrigger = "<net name=\"TestInput\" version=\"3\" batch=\"1\">"
|
|
"<layers>"
|
|
"<layer name=\"data\" type=\"Input\" precision=\"FP32\" id=\"0\">"
|
|
"<output>"
|
|
"<port id=\"0\">"
|
|
"<dim>1</dim>"
|
|
"</port>"
|
|
"</output>"
|
|
"</layer>"
|
|
"</layers>"
|
|
"</net>";
|
|
InferenceEngine::CNNNetReader reader;
|
|
reader.ReadNetwork(versionTrigger.data(), versionTrigger.size());
|
|
#endif
|
|
ieNode->net->init(preferableTarget);
|
|
ld.skip = false;
|
|
}
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
}
|
|
|
|
void allocateLayer(int lid, const LayersShapesMap& layersShapes)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
LayerData &ld = layers[lid];
|
|
|
|
//already allocated
|
|
if (ld.flag)
|
|
return;
|
|
|
|
size_t ninputs = ld.inputBlobsId.size();
|
|
#if 0
|
|
printf("layer %s:", ld.name.c_str());
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
{
|
|
int inp_lid = ld.inputBlobsId[i].lid;
|
|
LayerData &inp_ld = layers[inp_lid];
|
|
int inp_outputs = (int)inp_ld.outputBlobs.size();
|
|
std::cout << " " << inp_ld.name << "(" << inp_outputs;
|
|
|
|
for( int j = 0; j < inp_outputs; j++ )
|
|
{
|
|
std::cout << (j == 0 ? ": " : ", ") << inp_ld.outputBlobs[j].size;
|
|
}
|
|
std::cout << ")";
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
//determine parent layers
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
ld.inputLayersId.insert(ld.inputBlobsId[i].lid);
|
|
|
|
//allocate parents
|
|
for (set<int>::iterator i = ld.inputLayersId.begin(); i != ld.inputLayersId.end(); i++)
|
|
allocateLayer(*i, layersShapes);
|
|
|
|
//bind inputs
|
|
if (ld.id == 0) // DataLayer
|
|
{
|
|
ninputs = netInputLayer->inputsData.size();
|
|
ld.inputBlobsWrappers.resize(ninputs);
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
{
|
|
ld.inputBlobsWrappers[i] = wrap(netInputLayer->inputsData[i]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ld.inputBlobs.resize(ninputs);
|
|
ld.inputBlobsWrappers.resize(ninputs);
|
|
for (size_t i = 0; i < ninputs; i++)
|
|
{
|
|
LayerPin from = ld.inputBlobsId[i];
|
|
CV_Assert(from.valid());
|
|
CV_DbgAssert(layers.count(from.lid) && (int)layers[from.lid].outputBlobs.size() > from.oid);
|
|
ld.inputBlobs[i] = &layers[from.lid].outputBlobs[from.oid];
|
|
ld.inputBlobsWrappers[i] = layers[from.lid].outputBlobsWrappers[from.oid];
|
|
}
|
|
}
|
|
|
|
LayersShapesMap::const_iterator layerShapesIt = layersShapes.find(lid);
|
|
|
|
CV_Assert(layerShapesIt != layersShapes.end());
|
|
|
|
std::vector<LayerPin> pinsForInternalBlobs;
|
|
blobManager.allocateBlobsForLayer(ld, layerShapesIt->second, pinsForInternalBlobs,
|
|
preferableBackend == DNN_BACKEND_OPENCV &&
|
|
preferableTarget == DNN_TARGET_OPENCL_FP16);
|
|
ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
|
|
for (int i = 0; i < ld.outputBlobs.size(); ++i)
|
|
{
|
|
ld.outputBlobsWrappers[i] = wrap(ld.outputBlobs[i]);
|
|
}
|
|
ld.internalBlobsWrappers.resize(ld.internals.size());
|
|
for (int i = 0; i < ld.internals.size(); ++i)
|
|
{
|
|
ld.internalBlobsWrappers[i] = wrap(ld.internals[i]);
|
|
}
|
|
|
|
Ptr<Layer> layerPtr = ld.getLayerInstance();
|
|
{
|
|
std::vector<Mat> inps(ld.inputBlobs.size());
|
|
for (int i = 0; i < ld.inputBlobs.size(); ++i)
|
|
{
|
|
inps[i] = *ld.inputBlobs[i];
|
|
}
|
|
layerPtr->finalize(inps, ld.outputBlobs);
|
|
layerPtr->preferableTarget = preferableTarget;
|
|
#if 0
|
|
std::cout << "\toutputs:";
|
|
size_t noutputs = ld.outputBlobs.size();
|
|
for (size_t j = 0; j < noutputs; j++)
|
|
{
|
|
std::cout << (j == 0 ? " " : ", ") << ld.outputBlobs[j].size;
|
|
}
|
|
std::cout << "\n";
|
|
#endif
|
|
}
|
|
|
|
// After allocation of layer, we decrease counters to it's input blobs.
|
|
blobManager.releaseReferences(ld.inputBlobsId);
|
|
blobManager.releaseReferences(pinsForInternalBlobs);
|
|
|
|
ld.flag = 1;
|
|
}
|
|
|
|
#if 0
|
|
#define printf_(args) printf args
|
|
#else
|
|
#define printf_(args)
|
|
#endif
|
|
|
|
void fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
|
|
{
|
|
if( !fusion || (preferableBackend != DNN_BACKEND_OPENCV &&
|
|
preferableBackend != DNN_BACKEND_INFERENCE_ENGINE))
|
|
return;
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
// scan through all the layers. If there is convolution layer followed by the activation layer,
|
|
// we try to embed this activation into the convolution and disable separate execution of the activation
|
|
std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(),
|
|
blobsToKeep_.end());
|
|
MapIdToLayerData::iterator it;
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
{
|
|
int lid = it->first;
|
|
LayerData& ld = layers[lid];
|
|
if( ld.skip )
|
|
{
|
|
printf_(("skipped %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
|
|
continue;
|
|
}
|
|
printf_(("analyzing %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
|
|
|
|
// the optimization #1. try to fuse batch norm, scaling and/or activation layers
|
|
// with the current layer if they follow it. Normally, the are fused with the convolution layer,
|
|
// but some of them (like activation) may be fused with fully-connected, elemwise (+) and
|
|
// some other layers.
|
|
Ptr<Layer>& currLayer = ld.layerInstance;
|
|
if( ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0 )
|
|
{
|
|
LayerData* nextData = &layers[ld.consumers[0].lid];
|
|
LayerPin lpNext(ld.consumers[0].lid, 0);
|
|
while (nextData)
|
|
{
|
|
Ptr<Layer> nextLayer = nextData->layerInstance;
|
|
if (currLayer->tryFuse(nextLayer))
|
|
{
|
|
printf_(("\tfused with %s\n", nextLayer->name.c_str()));
|
|
nextData->skip = true;
|
|
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
|
|
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
|
|
if (nextData->consumers.size() == 1)
|
|
{
|
|
int nextLayerId = nextData->consumers[0].lid;
|
|
nextData = &layers[nextLayerId];
|
|
lpNext = LayerPin(nextLayerId, 0);
|
|
}
|
|
else
|
|
{
|
|
nextData = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (preferableBackend != DNN_BACKEND_OPENCV)
|
|
continue; // Go to the next layer.
|
|
|
|
// TODO: OpenCL target support more fusion styles.
|
|
if ( preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
|
(!cv::ocl::useOpenCL() || (ld.layerInstance->type != "Convolution" &&
|
|
ld.layerInstance->type != "MVN" && ld.layerInstance->type != "Pooling" &&
|
|
ld.layerInstance->type != "Concat")) )
|
|
continue;
|
|
|
|
while (nextData)
|
|
{
|
|
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
|
|
if (IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
|
nextData->type != "ReLU" &&
|
|
nextData->type != "ChannelsPReLU" &&
|
|
nextData->type != "ReLU6" &&
|
|
nextData->type != "TanH" &&
|
|
nextData->type != "Power")
|
|
break;
|
|
|
|
Ptr<ActivationLayer> nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
|
|
if (nextActivLayer.empty())
|
|
break;
|
|
|
|
if (currLayer->setActivation(nextActivLayer))
|
|
{
|
|
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
|
|
nextData->skip = true;
|
|
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
|
|
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
|
|
if (nextData->consumers.size() == 1)
|
|
{
|
|
int nextLayerId = nextData->consumers[0].lid;
|
|
nextData = &layers[nextLayerId];
|
|
lpNext = LayerPin(nextLayerId, 0);
|
|
}
|
|
else
|
|
{
|
|
nextData = 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
// fuse convolution layer followed by eltwise + relu
|
|
if ( IS_DNN_OPENCL_TARGET(preferableTarget) && ld.layerInstance->type == "Convolution" )
|
|
{
|
|
Ptr<EltwiseLayer> nextEltwiseLayer;
|
|
if( nextData )
|
|
nextEltwiseLayer = nextData->layerInstance.dynamicCast<EltwiseLayer>();
|
|
|
|
if( !nextEltwiseLayer.empty() && pinsToKeep.count(lpNext) == 0 &&
|
|
nextData && nextData->inputBlobsId.size() == 2 )
|
|
{
|
|
LayerData *eltwiseData = nextData;
|
|
|
|
// Eltwise layer has two inputs. We need to determine which
|
|
// is a base convolution layer and which could be used as it's bias.
|
|
LayerData* biasLayerData = 0;
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
LayerData *downLayerData = &layers[eltwiseData->inputBlobsId[i].lid];
|
|
CV_Assert(downLayerData);
|
|
while (downLayerData->skip)
|
|
{
|
|
if (downLayerData->inputBlobsId.size() == 1)
|
|
downLayerData = &layers[downLayerData->inputBlobsId[0].lid];
|
|
else
|
|
{
|
|
downLayerData = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (downLayerData && ld.id == downLayerData->id)
|
|
{
|
|
biasLayerData = &layers[eltwiseData->inputBlobsId[1 - i].lid];
|
|
break;
|
|
}
|
|
}
|
|
CV_Assert(biasLayerData);
|
|
{
|
|
if( eltwiseData->consumers.size() == 1 )
|
|
{
|
|
// fuse eltwise + activation layer
|
|
if (biasLayerData->id < ld.id)
|
|
{
|
|
nextData = &layers[eltwiseData->consumers[0].lid];
|
|
lpNext = LayerPin(eltwiseData->consumers[0].lid, 0);
|
|
Ptr<ActivationLayer> nextActivLayer;
|
|
if( nextData )
|
|
nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
|
|
|
|
if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0 &&
|
|
(!nextData->type.compare("ReLU") ||
|
|
!nextData->type.compare("ChannelsPReLU") ||
|
|
!nextData->type.compare("Power")) &&
|
|
currLayer->setActivation(nextActivLayer) )
|
|
{
|
|
CV_Assert_N(biasLayerData->outputBlobsWrappers.size() == 1, ld.inputBlobsWrappers.size() == 1);
|
|
ld.inputBlobsWrappers.push_back(biasLayerData->outputBlobsWrappers[0]);
|
|
printf_(("\tfused with %s\n", nextEltwiseLayer->name.c_str()));
|
|
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
|
|
eltwiseData->skip = true;
|
|
nextData->skip = true;
|
|
// This optimization for cases like
|
|
// some_layer conv
|
|
// | |
|
|
// +-- eltwise --+
|
|
// |
|
|
// activ
|
|
// This way all the element-wise computations
|
|
// (i.e. some_layer+conv or some_layer*conv)
|
|
// would be done at [conv] layer. So we need to
|
|
// replace [conv]'s output blob to [eltwise]'s one
|
|
// considering that [activ] is an in-place layer.
|
|
// Also we need to move all the consumers' references.
|
|
// To prevent memory collisions (i.e. when input of
|
|
// [conv] and output of [eltwise] is the same blob)
|
|
// we allocate a new blob.
|
|
CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1);
|
|
ld.outputBlobs[0] = ld.outputBlobs[0].clone();
|
|
ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]);
|
|
|
|
eltwiseData->outputBlobs = ld.outputBlobs;
|
|
nextData->outputBlobs = ld.outputBlobs;
|
|
eltwiseData->outputBlobsWrappers = ld.outputBlobsWrappers;
|
|
nextData->outputBlobsWrappers = ld.outputBlobsWrappers;
|
|
|
|
// Move references of [activ] layer consumers to the newly allocated blob.
|
|
for (int i = 0; i < nextData->consumers.size(); ++i)
|
|
{
|
|
LayerData& consumer = layers[nextData->consumers[i].lid];
|
|
for (int j = 0; j < consumer.inputBlobsId.size(); ++j)
|
|
{
|
|
if (consumer.inputBlobsId[j].lid == lpNext.lid)
|
|
{
|
|
consumer.inputBlobs[j] = &ld.outputBlobs[0];
|
|
consumer.inputBlobsWrappers[j] = ld.outputBlobsWrappers[0];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (preferableBackend != DNN_BACKEND_OPENCV)
|
|
continue; // Go to the next layer.
|
|
|
|
// the optimization #2. if there is no layer that takes max pooling layer's computed
|
|
// max indices (and only some semantical segmentation networks might need this;
|
|
// many others only take the maximum values), then we switch the max pooling
|
|
// layer to the faster operating mode.
|
|
Ptr<PoolingLayer> poolingLayer = ld.layerInstance.dynamicCast<PoolingLayer>();
|
|
if( !poolingLayer.empty() && !ld.consumers.empty() )
|
|
{
|
|
size_t i = 0, nconsumers = ld.consumers.size();
|
|
for( ; i < nconsumers; i++ )
|
|
if( ld.consumers[i].oid > 0 )
|
|
break;
|
|
// if there is no layer that takes the second output pin of the pooling layer
|
|
// on input then we don't need to compute the indices
|
|
if( i >= nconsumers )
|
|
{
|
|
poolingLayer->computeMaxIdx = false;
|
|
printf_(("\tsimplified pooling layer %s\n", poolingLayer->name.c_str()));
|
|
}
|
|
}
|
|
|
|
// the optimization #3. if there is concat layer that concatenates channels
|
|
// from the inputs together (i.e. axis == 1) then we make the inputs of
|
|
// the concat layer to write to the concatenation output buffer
|
|
// (and so we eliminate the concatenation layer, because the channels
|
|
// are concatenated implicitly).
|
|
Ptr<ConcatLayer> concatLayer = ld.layerInstance.dynamicCast<ConcatLayer>();
|
|
if( !concatLayer.empty() && concatLayer->axis == 1 && !concatLayer->padding &&
|
|
ld.outputBlobs.size() == 1 )
|
|
{
|
|
Mat& output = ld.outputBlobs[0];
|
|
UMat umat_output;
|
|
if (!ld.outputBlobsWrappers.empty() &&
|
|
(preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget)))
|
|
{
|
|
size_t i, ninputs = ld.inputBlobsId.size();
|
|
bool conv_layer = true;
|
|
for( i = 0; i < ninputs; i++ )
|
|
{
|
|
LayerPin pin = ld.inputBlobsId[i];
|
|
LayerData* inp_i_data = &layers[pin.lid];
|
|
while(inp_i_data->skip &&
|
|
inp_i_data->inputBlobsId.size() == 1 &&
|
|
inp_i_data->consumers.size() == 1)
|
|
{
|
|
pin = inp_i_data->inputBlobsId[0];
|
|
inp_i_data = &layers[pin.lid];
|
|
}
|
|
conv_layer = conv_layer && (inp_i_data->getLayerInstance()->type == "Convolution");
|
|
}
|
|
if (!conv_layer)
|
|
continue;
|
|
std::vector<UMat> umat_outputBlobs;
|
|
umat_outputBlobs = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
|
|
umat_output = umat_outputBlobs[0];
|
|
}
|
|
|
|
// TODO: in general, this optimization can always be done, but
|
|
// many layers currently check that the input/output blobs are
|
|
// continuous arrays. Unfortunately, this is not true when
|
|
// the concatenation optimization is applied with batch_size > 1.
|
|
// so, for now, we only apply this optimization in the most popular
|
|
// case batch_size == 1.
|
|
if( output.dims == 4 && output.size[0] == 1 )
|
|
{
|
|
size_t i, ninputs = ld.inputBlobsId.size();
|
|
std::vector<LayerPin> realinputs(ninputs);
|
|
for( i = 0; i < ninputs; i++ )
|
|
{
|
|
LayerPin pin = ld.inputBlobsId[i];
|
|
LayerData* inp_i_data = &layers[pin.lid];
|
|
while(inp_i_data->skip &&
|
|
inp_i_data->inputBlobsId.size() == 1 &&
|
|
inp_i_data->consumers.size() == 1)
|
|
{
|
|
pin = inp_i_data->inputBlobsId[0];
|
|
inp_i_data = &layers[pin.lid];
|
|
}
|
|
printf_(("\treal input for %s is %s\n",
|
|
layers[ld.inputBlobsId[i].lid].getLayerInstance()->name.c_str(),
|
|
inp_i_data->getLayerInstance()->name.c_str()));
|
|
|
|
if(inp_i_data->skip || inp_i_data->consumers.size() != 1)
|
|
break;
|
|
realinputs[i] = pin;
|
|
}
|
|
|
|
if( i >= ninputs )
|
|
{
|
|
// Allocate new memory to prevent collisions during memory
|
|
// reusing (see https://github.com/opencv/opencv/pull/10456).
|
|
output = output.clone();
|
|
if (preferableBackend == DNN_BACKEND_OPENCV &&
|
|
IS_DNN_OPENCL_TARGET(preferableTarget))
|
|
{
|
|
std::vector<UMat> umats(1);
|
|
umat_output = umat_output.clone();
|
|
umats[0] = umat_output;
|
|
OpenCLBackendWrapper::update(ld.outputBlobsWrappers, umats);
|
|
}
|
|
Range chrange[] = { Range::all(), Range::all(), Range::all(), Range::all() };
|
|
int ofs = 0;
|
|
for( i = 0; i < ninputs; i++ )
|
|
{
|
|
LayerPin pin = realinputs[i];
|
|
LayerData* inp_i_data = &layers[pin.lid];
|
|
int channels_i = ld.inputBlobs[i]->size[1];
|
|
chrange[1] = Range(ofs, ofs + channels_i);
|
|
printf_(("\toutput %s(%d) to channels (%d, %d)\n", inp_i_data->layerInstance->name.c_str(),
|
|
pin.oid, ofs, ofs + channels_i));
|
|
ofs += channels_i;
|
|
Mat output_slice = output(chrange);
|
|
Mat& curr_output = inp_i_data->outputBlobs[pin.oid];
|
|
CV_Assert(output_slice.isContinuous() && output_slice.size == curr_output.size);
|
|
Mat* oldPtr = &curr_output;
|
|
curr_output = output_slice;
|
|
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
|
|
{
|
|
std::vector<UMat> umats(inp_i_data->outputBlobsWrappers.size());
|
|
umats[pin.oid] = umat_output(chrange);
|
|
OpenCLBackendWrapper::update(inp_i_data->outputBlobsWrappers, umats);
|
|
}
|
|
// Layers that refer old input Mat will refer to the
|
|
// new data but the same Mat object.
|
|
CV_Assert_N(curr_output.data == output_slice.data, oldPtr == &curr_output);
|
|
}
|
|
ld.skip = true;
|
|
printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void allocateLayers(const std::vector<LayerPin>& blobsToKeep_)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
MapIdToLayerData::iterator it;
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
it->second.flag = 0;
|
|
|
|
CV_Assert(!layers[0].outputBlobs.empty());
|
|
ShapesVec inputShapes;
|
|
for(int i = 0; i < layers[0].outputBlobs.size(); i++)
|
|
{
|
|
Mat& inp = layers[0].outputBlobs[i];
|
|
CV_Assert(inp.total());
|
|
if (preferableBackend == DNN_BACKEND_OPENCV &&
|
|
preferableTarget == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
layers[0].outputBlobs[i].create(inp.dims, inp.size, CV_16S);
|
|
}
|
|
inputShapes.push_back(shape(inp));
|
|
}
|
|
LayersShapesMap layersShapes;
|
|
getLayersShapes(inputShapes, layersShapes);
|
|
|
|
blobManager.reset();
|
|
backendWrappers.clear();
|
|
// Fake references to input blobs.
|
|
for (int i = 0; i < layers[0].outputBlobs.size(); ++i)
|
|
blobManager.addReference(LayerPin(0, i));
|
|
for (it = layers.begin(); it != layers.end(); ++it)
|
|
{
|
|
const LayerData& ld = it->second;
|
|
blobManager.addReferences(ld.inputBlobsId);
|
|
}
|
|
|
|
for (int i = 0; i < blobsToKeep_.size(); i++)
|
|
{
|
|
blobManager.addReference(blobsToKeep_[i]);
|
|
}
|
|
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
{
|
|
int lid = it->first;
|
|
allocateLayer(lid, layersShapes);
|
|
}
|
|
|
|
layersTimings.resize(lastLayerId + 1, 0);
|
|
fuseLayers(blobsToKeep_);
|
|
}
|
|
|
|
void forwardLayer(LayerData &ld)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
Ptr<Layer> layer = ld.layerInstance;
|
|
|
|
TickMeter tm;
|
|
tm.start();
|
|
|
|
if( !ld.skip )
|
|
{
|
|
std::map<int, Ptr<BackendNode> >::iterator it = ld.backendNodes.find(preferableBackend);
|
|
if (preferableBackend == DNN_BACKEND_OPENCV || it == ld.backendNodes.end() || it->second.empty())
|
|
{
|
|
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
|
|
{
|
|
std::vector<UMat> umat_inputBlobs = OpenCLBackendWrapper::getUMatVector(ld.inputBlobsWrappers);
|
|
std::vector<UMat> umat_outputBlobs = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
|
|
std::vector<UMat> umat_internalBlobs = OpenCLBackendWrapper::getUMatVector(ld.internalBlobsWrappers);
|
|
layer->forward(umat_inputBlobs,
|
|
umat_outputBlobs,
|
|
umat_internalBlobs);
|
|
if (DNN_CHECK_NAN_INF)
|
|
{
|
|
bool fail = false;
|
|
for (size_t i = 0; i < umat_outputBlobs.size(); ++i)
|
|
{
|
|
UMat& u = umat_outputBlobs[i];
|
|
Mat m;
|
|
if (u.depth() == CV_16S) // FP16
|
|
convertFp16(u, m);
|
|
else
|
|
m = u.getMat(ACCESS_READ);
|
|
if (!checkRange(m))
|
|
{
|
|
std::cerr << "WARNING: NaN detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
|
|
std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
|
|
fail = true;
|
|
}
|
|
else if (!checkRange(m, true, NULL, -1e6, 1e6))
|
|
{
|
|
std::cerr << "WARNING: Inf detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
|
|
std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
|
|
fail = true;
|
|
}
|
|
}
|
|
if (fail)
|
|
{
|
|
for (size_t i = 0; i < umat_inputBlobs.size(); ++i)
|
|
{
|
|
UMat& u = umat_inputBlobs[i];
|
|
Mat m;
|
|
if (u.depth() == CV_16S) // FP16
|
|
convertFp16(u, m);
|
|
else
|
|
m = u.getMat(ACCESS_READ);
|
|
std::cout << "INPUT " << i << " " << cv::typeToString(u.type()) << " " << shape(m) << std::endl;
|
|
if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
|
|
}
|
|
for (size_t i = 0; i < umat_outputBlobs.size(); ++i)
|
|
{
|
|
UMat& u = umat_outputBlobs[i];
|
|
Mat m;
|
|
if (u.depth() == CV_16S) // FP16
|
|
convertFp16(u, m);
|
|
else
|
|
m = u.getMat(ACCESS_READ);
|
|
std::cout << "OUTPUT " << i << " " << cv::typeToString(u.type()) << " " << shape(m) << std::endl;
|
|
if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
|
|
}
|
|
for (size_t i = 0; i < umat_internalBlobs.size(); ++i)
|
|
{
|
|
UMat& u = umat_internalBlobs[i];
|
|
Mat m;
|
|
if (u.depth() == CV_16S) // FP16
|
|
convertFp16(u, m);
|
|
else
|
|
m = u.getMat(ACCESS_READ);
|
|
std::cout << "INTERNAL " << i << " " << shape(m) << std::endl;
|
|
if (DNN_CHECK_NAN_INF_DUMP) std::cout << cv::typeToString(u.type()) << " " << m.reshape(1, 1) << std::endl;
|
|
}
|
|
if (DNN_CHECK_NAN_INF_RAISE_ERROR)
|
|
CV_Assert(!fail);
|
|
}
|
|
}
|
|
OpenCLBackendWrapper::update(ld.outputBlobsWrappers, umat_outputBlobs);
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0, n = ld.inputBlobsWrappers.size(); i < n; ++i)
|
|
{
|
|
if (!ld.inputBlobsWrappers[i].empty())
|
|
ld.inputBlobsWrappers[i]->copyToHost();
|
|
}
|
|
|
|
std::vector<Mat> inps(ld.inputBlobs.size());
|
|
for (int i = 0; i < ld.inputBlobs.size(); ++i)
|
|
{
|
|
inps[i] = *ld.inputBlobs[i];
|
|
}
|
|
layer->forward(inps, ld.outputBlobs, ld.internals);
|
|
|
|
if (DNN_CHECK_NAN_INF)
|
|
{
|
|
bool fail = false;
|
|
for (size_t i = 0; i < ld.outputBlobs.size(); ++i)
|
|
{
|
|
const Mat& m = ld.outputBlobs[i];
|
|
if (!checkRange(m))
|
|
{
|
|
std::cerr << "WARNING: NaN detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
|
|
std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
|
|
fail = true;
|
|
}
|
|
else if (!checkRange(m, true, NULL, -1e6, 1e6))
|
|
{
|
|
std::cerr << "WARNING: Inf detected in layer output: id=" << ld.id << " name=" << layer->name << std::endl;
|
|
std::cerr << "output id=" << i << " output shape=" << shape(m) << std::endl;
|
|
fail = true;
|
|
}
|
|
}
|
|
if (fail)
|
|
{
|
|
for (size_t i = 0; i < ld.inputBlobs.size(); ++i)
|
|
{
|
|
const Mat* pM = ld.inputBlobs[i];
|
|
if (!pM)
|
|
{
|
|
std::cout << "INPUT " << i << " is NULL" << std::endl;
|
|
continue;
|
|
}
|
|
const Mat& m = *pM;
|
|
std::cout << "INPUT " << i << " " << cv::typeToString(m.type()) << " " << shape(m) << std::endl;
|
|
if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
|
|
}
|
|
for (size_t i = 0; i < ld.outputBlobs.size(); ++i)
|
|
{
|
|
const Mat& m = ld.outputBlobs[i];
|
|
std::cout << "OUTPUT " << i << " " << cv::typeToString(m.type()) << " " << shape(m) << std::endl;
|
|
if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
|
|
}
|
|
for (size_t i = 0; i < ld.internals.size(); ++i)
|
|
{
|
|
const Mat& m = ld.internals[i];
|
|
std::cout << "INTERNAL " << i << " " << cv::typeToString(m.type()) << " " << shape(m) << std::endl;
|
|
if (DNN_CHECK_NAN_INF_DUMP) std::cout << m.reshape(1, 1) << std::endl;
|
|
}
|
|
if (DNN_CHECK_NAN_INF_RAISE_ERROR)
|
|
CV_Assert(!fail);
|
|
}
|
|
}
|
|
|
|
for (int i = 0, n = ld.outputBlobsWrappers.size(); i < n; ++i)
|
|
{
|
|
if (!ld.outputBlobsWrappers[i].empty())
|
|
ld.outputBlobsWrappers[i]->setHostDirty();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Ptr<BackendNode> node = it->second;
|
|
CV_Assert(!node.empty());
|
|
if (preferableBackend == DNN_BACKEND_HALIDE)
|
|
{
|
|
forwardHalide(ld.outputBlobsWrappers, node);
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
|
|
{
|
|
forwardInfEngine(node);
|
|
}
|
|
else if (preferableBackend == DNN_BACKEND_VKCOM)
|
|
{
|
|
try
|
|
{
|
|
forwardVkCom(ld.outputBlobsWrappers, node);
|
|
}
|
|
catch (const cv::Exception& e)
|
|
{
|
|
CV_LOG_ERROR(NULL, "forwardVkCom failed, fallback to CPU implementation. " << e.what());
|
|
it->second = Ptr<BackendNode>();
|
|
forwardLayer(ld);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
|
}
|
|
}
|
|
}
|
|
else
|
|
tm.reset();
|
|
|
|
tm.stop();
|
|
layersTimings[ld.id] = tm.getTimeTicks();
|
|
|
|
ld.flag = 1;
|
|
}
|
|
|
|
void forwardToLayer(LayerData &ld, bool clearFlags = true)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
if (clearFlags)
|
|
{
|
|
MapIdToLayerData::iterator it;
|
|
for (it = layers.begin(); it != layers.end(); it++)
|
|
it->second.flag = 0;
|
|
}
|
|
|
|
//already was forwarded
|
|
if (ld.flag)
|
|
return;
|
|
|
|
//forward parents
|
|
MapIdToLayerData::iterator it;
|
|
for (it = layers.begin(); it != layers.end() && (it->second.id < ld.id); ++it)
|
|
{
|
|
LayerData &ld = it->second;
|
|
if (ld.flag)
|
|
continue;
|
|
forwardLayer(ld);
|
|
}
|
|
|
|
//forward itself
|
|
forwardLayer(ld);
|
|
}
|
|
|
|
void forwardAll()
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
MapIdToLayerData::reverse_iterator last_layer = layers.rbegin();
|
|
CV_Assert(last_layer != layers.rend());
|
|
forwardToLayer(last_layer->second, true);
|
|
}
|
|
|
|
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
|
|
{
|
|
std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId;
|
|
|
|
if (inOutShapes[id].in.empty())
|
|
{
|
|
for(int i = 0; i < inputLayerIds.size(); i++)
|
|
{
|
|
int layerId = inputLayerIds[i].lid;
|
|
LayersShapesMap::iterator it =
|
|
inOutShapes.find(layerId);
|
|
if(it == inOutShapes.end() ||
|
|
it->second.out.empty())
|
|
{
|
|
getLayerShapesRecursively(layerId, inOutShapes);
|
|
}
|
|
const MatShape& shape = inOutShapes[layerId].out[inputLayerIds[i].oid];
|
|
inOutShapes[id].in.push_back(shape);
|
|
}
|
|
}
|
|
const ShapesVec& is = inOutShapes[id].in;
|
|
ShapesVec& os = inOutShapes[id].out;
|
|
ShapesVec& ints = inOutShapes[id].internal;
|
|
int requiredOutputs = layers[id].requiredOutputs.size();
|
|
inOutShapes[id].supportInPlace =
|
|
layers[id].getLayerInstance()->getMemoryShapes(is, requiredOutputs, os, ints);
|
|
}
|
|
|
|
void getLayersShapes(const ShapesVec& netInputShapes,
|
|
LayersShapesMap& inOutShapes)
|
|
{
|
|
inOutShapes.clear();
|
|
|
|
inOutShapes[0].in = netInputShapes; //insert shape for first input layer
|
|
for (MapIdToLayerData::iterator it = layers.begin();
|
|
it != layers.end(); it++)
|
|
{
|
|
getLayerShapesRecursively(it->first, inOutShapes);
|
|
}
|
|
}
|
|
|
|
void getLayerShapes(const ShapesVec& netInputShapes,
|
|
const int layerId,
|
|
LayerShapes& shapes)
|
|
{
|
|
LayersShapesMap inOutShapes;
|
|
inOutShapes[0].in = netInputShapes; //insert shape for first input layer
|
|
getLayerShapesRecursively(layerId, inOutShapes);
|
|
shapes = inOutShapes[layerId];
|
|
}
|
|
|
|
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
|
|
{
|
|
return *std::max_element(pins.begin(), pins.end());
|
|
}
|
|
|
|
Mat getBlob(const LayerPin& pin)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
if (!pin.valid())
|
|
CV_Error(Error::StsObjectNotFound, "Requested blob not found");
|
|
|
|
LayerData &ld = layers[pin.lid];
|
|
if ((size_t)pin.oid >= ld.outputBlobs.size())
|
|
{
|
|
CV_Error(Error::StsOutOfRange, format("Layer \"%s\" produce only %zu outputs, "
|
|
"the #%d was requested", ld.name.c_str(),
|
|
ld.outputBlobs.size(), pin.oid));
|
|
}
|
|
if (preferableTarget != DNN_TARGET_CPU)
|
|
{
|
|
CV_Assert(!ld.outputBlobsWrappers.empty() && !ld.outputBlobsWrappers[pin.oid].empty());
|
|
// Transfer data to CPU if it's require.
|
|
ld.outputBlobsWrappers[pin.oid]->copyToHost();
|
|
}
|
|
|
|
if (ld.outputBlobs[pin.oid].depth() == CV_16S)
|
|
{
|
|
convertFp16(ld.outputBlobs[pin.oid], output_blob);
|
|
return output_blob;
|
|
}
|
|
else
|
|
return ld.outputBlobs[pin.oid];
|
|
}
|
|
|
|
Mat getBlob(String outputName)
|
|
{
|
|
return getBlob(getPinByAlias(outputName));
|
|
}
|
|
};
|
|
|
|
Net::Net() : impl(new Net::Impl)
|
|
{
|
|
}
|
|
|
|
Net Net::readFromModelOptimizer(const String& xml, const String& bin)
|
|
{
|
|
#ifndef HAVE_INF_ENGINE
|
|
CV_Error(Error::StsError, "Build OpenCV with Inference Engine to enable loading models from Model Optimizer.");
|
|
#else
|
|
InferenceEngine::CNNNetReader reader;
|
|
reader.ReadNetwork(xml);
|
|
reader.ReadWeights(bin);
|
|
|
|
InferenceEngine::CNNNetwork ieNet = reader.getNetwork();
|
|
|
|
std::vector<String> inputsNames;
|
|
for (auto& it : ieNet.getInputsInfo())
|
|
{
|
|
inputsNames.push_back(it.first);
|
|
}
|
|
|
|
Net cvNet;
|
|
cvNet.setInputsNames(inputsNames);
|
|
|
|
Ptr<InfEngineBackendNode> backendNode(new InfEngineBackendNode(0));
|
|
backendNode->net = Ptr<InfEngineBackendNet>(new InfEngineBackendNet(ieNet));
|
|
for (auto& it : ieNet.getOutputsInfo())
|
|
{
|
|
Ptr<Layer> cvLayer(new InfEngineBackendLayer(it.second));
|
|
InferenceEngine::CNNLayerPtr ieLayer = ieNet.getLayerByName(it.first.c_str());
|
|
CV_Assert(ieLayer);
|
|
|
|
LayerParams lp;
|
|
int lid = cvNet.addLayer(it.first, "", lp);
|
|
|
|
LayerData& ld = cvNet.impl->layers[lid];
|
|
cvLayer->name = it.first;
|
|
cvLayer->type = ieLayer->type;
|
|
ld.layerInstance = cvLayer;
|
|
ld.backendNodes[DNN_BACKEND_INFERENCE_ENGINE] = backendNode;
|
|
|
|
for (int i = 0; i < inputsNames.size(); ++i)
|
|
cvNet.connect(0, i, lid, i);
|
|
}
|
|
cvNet.setPreferableBackend(DNN_BACKEND_INFERENCE_ENGINE);
|
|
|
|
cvNet.impl->skipInfEngineInit = true;
|
|
return cvNet;
|
|
#endif // HAVE_INF_ENGINE
|
|
}
|
|
|
|
Net::~Net()
|
|
{
|
|
}
|
|
|
|
int Net::addLayer(const String &name, const String &type, LayerParams ¶ms)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
if (impl->getLayerId(name) >= 0)
|
|
{
|
|
CV_Error(Error::StsBadArg, "Layer \"" + name + "\" already into net");
|
|
return -1;
|
|
}
|
|
|
|
int id = ++impl->lastLayerId;
|
|
impl->layerNameToId.insert(std::make_pair(name, id));
|
|
impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params)));
|
|
|
|
return id;
|
|
}
|
|
|
|
int Net::addLayerToPrev(const String &name, const String &type, LayerParams ¶ms)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
int prvLid = impl->lastLayerId;
|
|
int newLid = this->addLayer(name, type, params);
|
|
this->connect(prvLid, 0, newLid, 0);
|
|
return newLid;
|
|
}
|
|
|
|
void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
impl->connect(outLayerId, outNum, inpLayerId, inpNum);
|
|
}
|
|
|
|
void Net::connect(String _outPin, String _inPin)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
LayerPin outPin = impl->getPinByAlias(_outPin);
|
|
LayerPin inpPin = impl->getPinByAlias(_inPin);
|
|
|
|
CV_Assert(outPin.valid() && inpPin.valid());
|
|
|
|
impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
|
|
}
|
|
|
|
Mat Net::forward(const String& outputName)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
String layerName = outputName;
|
|
|
|
if (layerName.empty())
|
|
layerName = getLayerNames().back();
|
|
|
|
std::vector<LayerPin> pins(1, impl->getPinByAlias(layerName));
|
|
impl->setUpNet(pins);
|
|
impl->forwardToLayer(impl->getLayerData(layerName));
|
|
|
|
return impl->getBlob(layerName);
|
|
}
|
|
|
|
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
String layerName = outputName;
|
|
|
|
if (layerName.empty())
|
|
layerName = getLayerNames().back();
|
|
|
|
std::vector<LayerPin> pins(1, impl->getPinByAlias(layerName));
|
|
impl->setUpNet(pins);
|
|
impl->forwardToLayer(impl->getLayerData(layerName));
|
|
|
|
LayerPin pin = impl->getPinByAlias(layerName);
|
|
LayerData &ld = impl->layers[pin.lid];
|
|
|
|
if (outputBlobs.isUMat())
|
|
{
|
|
impl->getBlob(layerName).copyTo(outputBlobs);
|
|
}
|
|
else if (outputBlobs.isMat())
|
|
{
|
|
outputBlobs.assign(impl->getBlob(layerName));
|
|
}
|
|
else if (outputBlobs.isMatVector())
|
|
{
|
|
if (impl->preferableTarget != DNN_TARGET_CPU)
|
|
{
|
|
for (int i = 0; i < ld.outputBlobsWrappers.size(); ++i)
|
|
{
|
|
CV_Assert(!ld.outputBlobsWrappers[i].empty());
|
|
ld.outputBlobsWrappers[i]->copyToHost();
|
|
}
|
|
}
|
|
if (ld.outputBlobs[0].depth() == CV_32F)
|
|
{
|
|
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
|
|
outputvec = ld.outputBlobs;
|
|
} else {
|
|
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
|
|
outputvec.resize(ld.outputBlobs.size());
|
|
for (int i = 0; i < outputvec.size(); i++)
|
|
convertFp16(ld.outputBlobs[i], outputvec[i]);
|
|
}
|
|
}
|
|
else if (outputBlobs.isUMatVector())
|
|
{
|
|
std::vector<UMat> & outputvec = *(std::vector<UMat> *)outputBlobs.getObj();
|
|
|
|
if (impl->preferableBackend == DNN_BACKEND_OPENCV &&
|
|
IS_DNN_OPENCL_TARGET(impl->preferableTarget))
|
|
{
|
|
if (impl->preferableTarget == DNN_TARGET_OPENCL)
|
|
outputvec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
|
|
else if (impl->preferableTarget == DNN_TARGET_OPENCL_FP16)
|
|
{
|
|
std::vector<UMat> out_vec = OpenCLBackendWrapper::getUMatVector(ld.outputBlobsWrappers);
|
|
outputvec.resize(out_vec.size());
|
|
for (int i = 0; i < out_vec.size(); i++)
|
|
convertFp16(out_vec[i], outputvec[i]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
outputvec.resize(ld.outputBlobs.size());
|
|
for (int i = 0; i < outputvec.size(); ++i)
|
|
ld.outputBlobs[i].copyTo(outputvec[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Net::forward(OutputArrayOfArrays outputBlobs,
|
|
const std::vector<String>& outBlobNames)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
std::vector<LayerPin> pins;
|
|
for (int i = 0; i < outBlobNames.size(); i++)
|
|
{
|
|
pins.push_back(impl->getPinByAlias(outBlobNames[i]));
|
|
}
|
|
|
|
impl->setUpNet(pins);
|
|
|
|
LayerPin out = impl->getLatestLayerPin(pins);
|
|
|
|
impl->forwardToLayer(impl->getLayerData(out.lid));
|
|
|
|
std::vector<Mat> matvec;
|
|
for (int i = 0; i < pins.size(); i++)
|
|
{
|
|
matvec.push_back(impl->getBlob(pins[i]));
|
|
}
|
|
|
|
std::vector<Mat> & outputvec = *(std::vector<Mat> *)outputBlobs.getObj();
|
|
outputvec = matvec;
|
|
}
|
|
|
|
void Net::forward(std::vector<std::vector<Mat> >& outputBlobs,
|
|
const std::vector<String>& outBlobNames)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
std::vector<LayerPin> pins;
|
|
for (int i = 0; i < outBlobNames.size(); i++)
|
|
{
|
|
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
|
|
pins.insert(pins.end(), lp.begin(), lp.end());
|
|
}
|
|
|
|
impl->setUpNet(pins);
|
|
|
|
LayerPin out = impl->getLatestLayerPin(pins);
|
|
|
|
impl->forwardToLayer(impl->getLayerData(out.lid));
|
|
|
|
outputBlobs.resize(outBlobNames.size());
|
|
for (int i = 0; i < outBlobNames.size(); i++)
|
|
{
|
|
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
|
|
for (int i = 0; i < lp.size(); i++)
|
|
{
|
|
outputBlobs[i].push_back(impl->getBlob(lp[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
void Net::setPreferableBackend(int backendId)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG(backendId);
|
|
|
|
if( impl->preferableBackend != backendId )
|
|
{
|
|
impl->preferableBackend = backendId;
|
|
impl->netWasAllocated = false;
|
|
impl->clear();
|
|
}
|
|
}
|
|
|
|
void Net::setPreferableTarget(int targetId)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG(targetId);
|
|
|
|
if( impl->preferableTarget != targetId )
|
|
{
|
|
impl->preferableTarget = targetId;
|
|
if (IS_DNN_OPENCL_TARGET(targetId))
|
|
{
|
|
#ifndef HAVE_OPENCL
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (impl->preferableBackend == DNN_BACKEND_OPENCV)
|
|
#else
|
|
if (impl->preferableBackend == DNN_BACKEND_DEFAULT ||
|
|
impl->preferableBackend == DNN_BACKEND_OPENCV)
|
|
#endif // HAVE_INF_ENGINE
|
|
impl->preferableTarget = DNN_TARGET_CPU;
|
|
#else
|
|
bool fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
|
|
if (!fp16 && targetId == DNN_TARGET_OPENCL_FP16)
|
|
impl->preferableTarget = DNN_TARGET_OPENCL;
|
|
#endif
|
|
}
|
|
impl->netWasAllocated = false;
|
|
impl->clear();
|
|
}
|
|
}
|
|
|
|
void Net::setInputsNames(const std::vector<String> &inputBlobNames)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
impl->netInputLayer->setNames(inputBlobNames);
|
|
}
|
|
|
|
void Net::setInput(InputArray blob, const String& name, double scalefactor, const Scalar& mean)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
LayerPin pin;
|
|
pin.lid = 0;
|
|
pin.oid = impl->resolvePinOutputName(impl->getLayerData(pin.lid), name);
|
|
|
|
if (!pin.valid())
|
|
CV_Error(Error::StsObjectNotFound, "Requested blob \"" + name + "\" not found");
|
|
|
|
LayerData &ld = impl->layers[pin.lid];
|
|
const int numInputs = std::max(pin.oid+1, (int)ld.requiredOutputs.size());
|
|
ld.outputBlobs.resize(numInputs);
|
|
ld.outputBlobsWrappers.resize(numInputs);
|
|
impl->netInputLayer->inputsData.resize(numInputs);
|
|
impl->netInputLayer->scaleFactors.resize(numInputs);
|
|
impl->netInputLayer->means.resize(numInputs);
|
|
|
|
MatShape prevShape = shape(impl->netInputLayer->inputsData[pin.oid]);
|
|
Mat blob_ = blob.getMat();
|
|
bool oldShape = prevShape == shape(blob_);
|
|
if (oldShape)
|
|
{
|
|
blob_.copyTo(impl->netInputLayer->inputsData[pin.oid]);
|
|
}
|
|
else
|
|
{
|
|
ld.outputBlobs[pin.oid] = blob_.clone();
|
|
impl->netInputLayer->inputsData[pin.oid] = ld.outputBlobs[pin.oid];
|
|
}
|
|
|
|
if (!ld.outputBlobsWrappers[pin.oid].empty())
|
|
{
|
|
ld.outputBlobsWrappers[pin.oid]->setHostDirty();
|
|
}
|
|
impl->netInputLayer->scaleFactors[pin.oid] = scalefactor;
|
|
impl->netInputLayer->means[pin.oid] = mean;
|
|
impl->netWasAllocated = impl->netWasAllocated && oldShape;
|
|
}
|
|
|
|
Mat Net::getParam(LayerId layer, int numParam)
|
|
{
|
|
LayerData &ld = impl->getLayerData(layer);
|
|
std::vector<Mat> &layerBlobs = ld.getLayerInstance()->blobs;
|
|
CV_Assert(numParam < (int)layerBlobs.size());
|
|
return layerBlobs[numParam];
|
|
}
|
|
|
|
void Net::setParam(LayerId layer, int numParam, const Mat &blob)
|
|
{
|
|
LayerData &ld = impl->getLayerData(layer);
|
|
|
|
std::vector<Mat> &layerBlobs = ld.getLayerInstance()->blobs;
|
|
CV_Assert(numParam < (int)layerBlobs.size());
|
|
//we don't make strong checks, use this function carefully
|
|
layerBlobs[numParam] = blob;
|
|
}
|
|
|
|
int Net::getLayerId(const String &layer)
|
|
{
|
|
return impl->getLayerId(layer);
|
|
}
|
|
|
|
Ptr<Layer> Net::getLayer(LayerId layerId)
|
|
{
|
|
LayerData &ld = impl->getLayerData(layerId);
|
|
return ld.getLayerInstance();
|
|
}
|
|
|
|
std::vector<Ptr<Layer> > Net::getLayerInputs(LayerId layerId)
|
|
{
|
|
LayerData &ld = impl->getLayerData(layerId);
|
|
if (!ld.layerInstance)
|
|
CV_Error(Error::StsNullPtr, format("Requested layer \"%s\" was not initialized", ld.name.c_str()));
|
|
|
|
std::vector<Ptr<Layer> > inputLayers;
|
|
inputLayers.reserve(ld.inputLayersId.size());
|
|
std::set<int>::iterator it;
|
|
for (it = ld.inputLayersId.begin(); it != ld.inputLayersId.end(); ++it) {
|
|
inputLayers.push_back(getLayer(*it));
|
|
}
|
|
return inputLayers;
|
|
}
|
|
|
|
std::vector<String> Net::getLayerNames() const
|
|
{
|
|
std::vector<String> res;
|
|
res.reserve(impl->layers.size());
|
|
|
|
Impl::MapIdToLayerData::iterator it;
|
|
for (it = impl->layers.begin(); it != impl->layers.end(); it++)
|
|
{
|
|
if (it->second.id) //skip Data layer
|
|
res.push_back(it->second.name);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
bool Net::empty() const
|
|
{
|
|
return impl->layers.size() <= 1; //first layer is default Data layer
|
|
}
|
|
|
|
std::vector<int> Net::getUnconnectedOutLayers() const
|
|
{
|
|
std::vector<int> layersIds;
|
|
|
|
Impl::MapIdToLayerData::iterator it;
|
|
for (it = impl->layers.begin(); it != impl->layers.end(); it++)
|
|
{
|
|
int lid = it->first;
|
|
LayerData &ld = it->second;
|
|
|
|
if (ld.requiredOutputs.size() == 0)
|
|
layersIds.push_back(lid);
|
|
}
|
|
|
|
return layersIds;
|
|
}
|
|
|
|
std::vector<String> Net::getUnconnectedOutLayersNames() const
|
|
{
|
|
std::vector<int> ids = getUnconnectedOutLayers();
|
|
const size_t n = ids.size();
|
|
std::vector<String> names(n);
|
|
for (size_t i = 0; i < n; ++i)
|
|
{
|
|
names[i] = impl->layers[ids[i]].name;
|
|
}
|
|
return names;
|
|
}
|
|
|
|
void Net::getLayersShapes(const ShapesVec& netInputShapes,
|
|
std::vector<int>& layersIds,
|
|
std::vector<ShapesVec>& inLayersShapes,
|
|
std::vector<ShapesVec>& outLayersShapes) const
|
|
{
|
|
layersIds.clear();
|
|
inLayersShapes.clear();
|
|
outLayersShapes.clear();
|
|
|
|
Impl::LayersShapesMap inOutShapes;
|
|
impl->getLayersShapes(netInputShapes, inOutShapes);
|
|
|
|
for(Impl::LayersShapesMap::const_iterator it = inOutShapes.begin();
|
|
it != inOutShapes.end(); it++)
|
|
{
|
|
layersIds.push_back(it->first);
|
|
inLayersShapes.push_back(it->second.in);
|
|
outLayersShapes.push_back(it->second.out);
|
|
}
|
|
}
|
|
|
|
void Net::getLayersShapes(const MatShape& netInputShape,
|
|
std::vector<int>& layerIds,
|
|
std::vector<ShapesVec>& inLayersShapes,
|
|
std::vector<ShapesVec>& outLayersShapes) const
|
|
{
|
|
getLayersShapes(ShapesVec(1, netInputShape),
|
|
layerIds, inLayersShapes, outLayersShapes);
|
|
}
|
|
|
|
void Net::getLayerShapes(const MatShape& netInputShape,
|
|
const int layerId,
|
|
ShapesVec& inLayerShapes,
|
|
ShapesVec& outLayerShapes) const
|
|
{
|
|
getLayerShapes(ShapesVec(1, netInputShape),
|
|
layerId, inLayerShapes, outLayerShapes);
|
|
|
|
}
|
|
|
|
void Net::getLayerShapes(const ShapesVec& netInputShapes,
|
|
const int layerId,
|
|
ShapesVec& inLayerShapes,
|
|
ShapesVec& outLayerShapes) const
|
|
{
|
|
LayerShapes shapes;
|
|
impl->getLayerShapes(netInputShapes, layerId, shapes);
|
|
inLayerShapes = shapes.in;
|
|
outLayerShapes = shapes.out;
|
|
}
|
|
|
|
int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
int64 flops = 0;
|
|
std::vector<int> ids;
|
|
std::vector<std::vector<MatShape> > inShapes, outShapes;
|
|
getLayersShapes(netInputShapes, ids, inShapes, outShapes);
|
|
CV_Assert(inShapes.size() == outShapes.size());
|
|
CV_Assert(inShapes.size() == ids.size());
|
|
|
|
for(int i = 0; i < ids.size(); i++)
|
|
{
|
|
flops += impl->layers[ids[i]].getLayerInstance()->getFLOPS(inShapes[i],
|
|
outShapes[i]);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
|
|
int64 Net::getFLOPS(const MatShape& netInputShape) const
|
|
{
|
|
return getFLOPS(std::vector<MatShape>(1, netInputShape));
|
|
}
|
|
|
|
int64 Net::getFLOPS(const int layerId,
|
|
const std::vector<MatShape>& netInputShapes) const
|
|
{
|
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
|
|
CV_Assert(layer != impl->layers.end());
|
|
|
|
LayerShapes shapes;
|
|
impl->getLayerShapes(netInputShapes, layerId, shapes);
|
|
|
|
return layer->second.getLayerInstance()->getFLOPS(shapes.in, shapes.out);
|
|
}
|
|
|
|
int64 Net::getFLOPS(const int layerId,
|
|
const MatShape& netInputShape) const
|
|
{
|
|
return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape));
|
|
}
|
|
|
|
void Net::getLayerTypes(std::vector<String>& layersTypes) const
|
|
{
|
|
layersTypes.clear();
|
|
|
|
std::map<String, int> layers;
|
|
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
|
|
it != impl->layers.end(); it++)
|
|
{
|
|
if (layers.find(it->second.type) == layers.end())
|
|
layers[it->second.type] = 0;
|
|
layers[it->second.type]++;
|
|
}
|
|
|
|
for (std::map<String, int>::iterator it = layers.begin();
|
|
it != layers.end(); it++)
|
|
{
|
|
layersTypes.push_back(it->first);
|
|
}
|
|
}
|
|
|
|
int Net::getLayersCount(const String& layerType) const
|
|
{
|
|
int count = 0;
|
|
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
|
|
it != impl->layers.end(); it++)
|
|
{
|
|
if (it->second.type == layerType)
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void Net::getMemoryConsumption(const int layerId,
|
|
const std::vector<MatShape>& netInputShapes,
|
|
size_t& weights, size_t& blobs) const
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
|
|
CV_Assert(layer != impl->layers.end());
|
|
|
|
weights = blobs = 0;
|
|
|
|
for(int i = 0; i < layer->second.params.blobs.size(); i++)
|
|
{
|
|
const Mat& weightsBlob = layer->second.params.blobs[i];
|
|
weights += weightsBlob.total()*weightsBlob.elemSize();
|
|
}
|
|
|
|
ShapesVec inLayerShapes, outLayerShapes;
|
|
getLayerShapes(netInputShapes, layerId, inLayerShapes, outLayerShapes);
|
|
for(int i = 0; i < outLayerShapes.size(); i++)
|
|
{
|
|
blobs += total(outLayerShapes[i]) * sizeof(float);
|
|
}
|
|
}
|
|
|
|
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
|
|
size_t& weights, size_t& blobs) const
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
std::vector<int> layerIds;
|
|
std::vector<size_t> w, b;
|
|
getMemoryConsumption(netInputShapes, layerIds, w, b);
|
|
|
|
weights = blobs = 0;
|
|
for(int i = 0; i < layerIds.size(); i++)
|
|
{
|
|
weights += w[i];
|
|
blobs += b[i];
|
|
}
|
|
}
|
|
|
|
void Net::getMemoryConsumption(const int layerId,
|
|
const MatShape& netInputShape,
|
|
size_t& weights, size_t& blobs) const
|
|
{
|
|
getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape),
|
|
weights, blobs);
|
|
}
|
|
|
|
void Net::getMemoryConsumption(const MatShape& netInputShape,
|
|
size_t& weights, size_t& blobs) const
|
|
{
|
|
getMemoryConsumption(std::vector<MatShape>(1, netInputShape),
|
|
weights, blobs);
|
|
}
|
|
|
|
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
|
|
std::vector<int>& layerIds, std::vector<size_t>& weights,
|
|
std::vector<size_t>& blobs) const
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
layerIds.clear();
|
|
weights.clear();
|
|
blobs.clear();
|
|
|
|
std::vector<std::vector<MatShape> > inLayerShapes, outLayerShapes;
|
|
|
|
getLayersShapes(netInputShapes, layerIds, inLayerShapes, outLayerShapes);
|
|
|
|
for(int i = 0; i < layerIds.size(); i++)
|
|
{
|
|
int w = 0, b = 0;
|
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerIds[i]);
|
|
CV_Assert(layer != impl->layers.end());
|
|
|
|
for(int j = 0; j < layer->second.params.blobs.size(); j++)
|
|
{
|
|
const Mat& weightsBlob = layer->second.params.blobs[j];
|
|
w += weightsBlob.total()*weightsBlob.elemSize();
|
|
}
|
|
|
|
for(int j = 0; j < outLayerShapes[i].size(); j++)
|
|
{
|
|
b += total(outLayerShapes[i][j]) * sizeof(float);
|
|
}
|
|
|
|
weights.push_back(w);
|
|
blobs.push_back(b);
|
|
}
|
|
}
|
|
|
|
void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds,
|
|
std::vector<size_t>& weights, std::vector<size_t>& blobs) const
|
|
{
|
|
getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds,
|
|
weights, blobs);
|
|
}
|
|
|
|
void Net::enableFusion(bool fusion)
|
|
{
|
|
if( impl->fusion != fusion )
|
|
{
|
|
impl->fusion = fusion;
|
|
impl->netWasAllocated = false;
|
|
impl->clear();
|
|
}
|
|
}
|
|
|
|
void Net::setHalideScheduler(const String& scheduler)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(scheduler, "scheduler", scheduler.c_str());
|
|
|
|
impl->halideConfigFile = scheduler;
|
|
}
|
|
|
|
int64 Net::getPerfProfile(std::vector<double>& timings)
|
|
{
|
|
timings = std::vector<double>(impl->layersTimings.begin() + 1, impl->layersTimings.end());
|
|
int64 total = (int64)std::accumulate(timings.begin(), timings.end(), 0.0);
|
|
return total;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
Layer::Layer() { preferableTarget = DNN_TARGET_CPU; }
|
|
|
|
Layer::Layer(const LayerParams ¶ms)
|
|
: blobs(params.blobs), name(params.name), type(params.type)
|
|
{
|
|
preferableTarget = DNN_TARGET_CPU;
|
|
}
|
|
|
|
void Layer::setParamsFrom(const LayerParams ¶ms)
|
|
{
|
|
blobs = params.blobs;
|
|
name = params.name;
|
|
type = params.type;
|
|
}
|
|
|
|
int Layer::inputNameToIndex(String)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int Layer::outputNameToIndex(const String&)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
bool Layer::supportBackend(int backendId)
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV;
|
|
}
|
|
|
|
Ptr<BackendNode> Layer::initVkCom(const std::vector<Ptr<BackendWrapper> > &)
|
|
{
|
|
CV_Error(Error::StsNotImplemented, "VkCom pipeline of " + type +
|
|
" layers is not defined.");
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper> > &)
|
|
{
|
|
CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type +
|
|
" layers is not defined.");
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
Ptr<BackendNode> Layer::initInfEngine(const std::vector<Ptr<BackendWrapper> > &)
|
|
{
|
|
CV_Error(Error::StsNotImplemented, "Inference Engine pipeline of " + type +
|
|
" layers is not defined.");
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
void Layer::applyHalideScheduler(Ptr<BackendNode>& node, const std::vector<Mat*> &inputs,
|
|
const std::vector<Mat> &outputs, int targetId) const
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
CV_TRACE_FUNCTION();
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"),
|
|
xo("xo"), xi("xi"), yo("yo"), yi("yi"), tile("tile");
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();
|
|
|
|
int outW, outH, outC, outN;
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
if (targetId == DNN_TARGET_CPU)
|
|
{
|
|
if (outW == 1 && outH == 1)
|
|
{
|
|
if (outC + outN == 1)
|
|
return;
|
|
|
|
if (outC > 8)
|
|
top.split(c, co, ci, 8)
|
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
|
|
.parallel(tile)
|
|
.vectorize(ci, 8);
|
|
else
|
|
top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile)
|
|
.parallel(tile);
|
|
}
|
|
else
|
|
{
|
|
if (outH > 2)
|
|
{
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.fuse(yo, n, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
}
|
|
}
|
|
}
|
|
else if (targetId == DNN_TARGET_OPENCL)
|
|
{
|
|
if (outW == 1 && outH == 1)
|
|
{
|
|
int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : outC;
|
|
top.split(c, co, ci, c_split)
|
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
|
|
.gpu_blocks(tile)
|
|
.gpu_threads(ci);
|
|
}
|
|
else
|
|
{
|
|
int x_split = outW > 8 ? (outW >= 32 ? 16 : 8) : outW;
|
|
int y_split = outH > 8 ? (outH >= 32 ? 16 : 8) : outH;
|
|
// Supported vectorization widths: 2, 3, 4, 8, 16
|
|
int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : std::min(4, outC);
|
|
top.split(x, xo, xi, x_split).split(y, yo, yi, y_split)
|
|
.split(c, co, ci, c_split)
|
|
.gpu_blocks(xo, yo, co)
|
|
.gpu_threads(xi, yi)
|
|
.reorder(xi, yi, ci, xo, yo, co)
|
|
.vectorize(ci);
|
|
}
|
|
}
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unknown target identifier");
|
|
#endif // HAVE_HALIDE
|
|
}
|
|
|
|
Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
|
|
{
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; }
|
|
bool Layer::tryFuse(Ptr<Layer>&) { return false; }
|
|
void Layer::getScaleShift(Mat& scale, Mat& shift) const
|
|
{
|
|
scale = Mat();
|
|
shift = Mat();
|
|
}
|
|
|
|
void Layer::unsetAttached()
|
|
{
|
|
setActivation(Ptr<ActivationLayer>());
|
|
}
|
|
|
|
template <typename T>
|
|
static void vecToPVec(const std::vector<T> &v, std::vector<T*> &pv)
|
|
{
|
|
pv.resize(v.size());
|
|
for (size_t i = 0; i < v.size(); i++)
|
|
pv[i] = const_cast<T*>(&v[i]);
|
|
}
|
|
|
|
void Layer::finalize(const std::vector<Mat> &inputs, std::vector<Mat> &outputs)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
this->finalize((InputArrayOfArrays)inputs, (OutputArrayOfArrays)outputs);
|
|
}
|
|
|
|
void Layer::finalize(const std::vector<Mat*> &input, std::vector<Mat> &output)
|
|
{
|
|
CV_UNUSED(input);CV_UNUSED(output);
|
|
}
|
|
|
|
void Layer::finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
std::vector<Mat*> inputsp;
|
|
vecToPVec(inputs, inputsp);
|
|
this->finalize(inputsp, outputs);
|
|
}
|
|
|
|
std::vector<Mat> Layer::finalize(const std::vector<Mat> &inputs)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
std::vector<Mat> outputs;
|
|
this->finalize(inputs, outputs);
|
|
return outputs;
|
|
}
|
|
|
|
void Layer::forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals)
|
|
{
|
|
// We kept this method for compatibility. DNN calls it now only to support users' implementations.
|
|
}
|
|
|
|
void Layer::forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
}
|
|
|
|
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
if (preferableTarget == DNN_TARGET_OPENCL_FP16 && inputs_arr.depth() == CV_16S)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
std::vector<UMat> internals;
|
|
|
|
std::vector<UMat> orig_inputs;
|
|
std::vector<UMat> orig_outputs;
|
|
std::vector<UMat> orig_internals;
|
|
|
|
inputs_arr.getUMatVector(orig_inputs);
|
|
outputs_arr.getUMatVector(orig_outputs);
|
|
internals_arr.getUMatVector(orig_internals);
|
|
|
|
inputs.resize(orig_inputs.size());
|
|
for (size_t i = 0; i < orig_inputs.size(); i++)
|
|
convertFp16(orig_inputs[i], inputs[i]);
|
|
|
|
outputs.resize(orig_outputs.size());
|
|
for (size_t i = 0; i < orig_outputs.size(); i++)
|
|
outputs[i].create(shape(orig_outputs[i]), CV_32F);
|
|
|
|
internals.resize(orig_internals.size());
|
|
for (size_t i = 0; i < orig_internals.size(); i++)
|
|
internals[i].create(shape(orig_internals[i]), CV_32F);
|
|
|
|
forward(inputs, outputs, internals);
|
|
|
|
for (size_t i = 0; i < outputs.size(); i++)
|
|
convertFp16(outputs[i], orig_outputs[i]);
|
|
|
|
// sync results back
|
|
outputs_arr.assign(orig_outputs);
|
|
internals_arr.assign(orig_internals);
|
|
return;
|
|
}
|
|
std::vector<Mat> inpvec;
|
|
std::vector<Mat> outputs;
|
|
std::vector<Mat> internals;
|
|
|
|
inputs_arr.getMatVector(inpvec);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
std::vector<Mat*> inputs(inpvec.size());
|
|
for (int i = 0; i < inpvec.size(); i++)
|
|
inputs[i] = &inpvec[i];
|
|
|
|
this->forward(inputs, outputs, internals);
|
|
|
|
// sync results back
|
|
outputs_arr.assign(outputs);
|
|
internals_arr.assign(internals);
|
|
}
|
|
|
|
void Layer::run(const std::vector<Mat> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
this->finalize(inputs, outputs);
|
|
this->forward(inputs, outputs, internals);
|
|
}
|
|
|
|
Layer::~Layer() {}
|
|
|
|
bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(inputs.size());
|
|
outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]);
|
|
return false;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
static Mutex& getLayerFactoryMutex()
|
|
{
|
|
static Mutex* volatile instance = NULL;
|
|
if (instance == NULL)
|
|
{
|
|
cv::AutoLock lock(getInitializationMutex());
|
|
if (instance == NULL)
|
|
instance = new Mutex();
|
|
}
|
|
return *instance;
|
|
}
|
|
|
|
typedef std::map<String, std::vector<LayerFactory::Constructor> > LayerFactory_Impl;
|
|
|
|
static LayerFactory_Impl& getLayerFactoryImpl_()
|
|
{
|
|
static LayerFactory_Impl impl;
|
|
return impl;
|
|
}
|
|
|
|
static LayerFactory_Impl& getLayerFactoryImpl()
|
|
{
|
|
static LayerFactory_Impl* volatile instance = NULL;
|
|
if (instance == NULL)
|
|
{
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
|
if (instance == NULL)
|
|
{
|
|
instance = &getLayerFactoryImpl_();
|
|
initializeLayerFactory();
|
|
}
|
|
}
|
|
return *instance;
|
|
}
|
|
|
|
void LayerFactory::registerLayer(const String &type, Constructor constructor)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
|
String type_ = toLowerCase(type);
|
|
LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type_);
|
|
|
|
if (it != getLayerFactoryImpl().end())
|
|
{
|
|
if (it->second.back() == constructor)
|
|
CV_Error(cv::Error::StsBadArg, "Layer \"" + type_ + "\" already was registered");
|
|
it->second.push_back(constructor);
|
|
}
|
|
getLayerFactoryImpl().insert(std::make_pair(type_, std::vector<Constructor>(1, constructor)));
|
|
}
|
|
|
|
void LayerFactory::unregisterLayer(const String &type)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
|
String type_ = toLowerCase(type);
|
|
|
|
LayerFactory_Impl::iterator it = getLayerFactoryImpl().find(type_);
|
|
if (it != getLayerFactoryImpl().end())
|
|
{
|
|
if (it->second.size() > 1)
|
|
it->second.pop_back();
|
|
else
|
|
getLayerFactoryImpl().erase(it);
|
|
}
|
|
}
|
|
|
|
Ptr<Layer> LayerFactory::createLayerInstance(const String &type, LayerParams& params)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(type, "type", type.c_str());
|
|
|
|
cv::AutoLock lock(getLayerFactoryMutex());
|
|
String type_ = toLowerCase(type);
|
|
LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type_);
|
|
|
|
if (it != getLayerFactoryImpl().end())
|
|
{
|
|
CV_Assert(!it->second.empty());
|
|
return it->second.back()(params);
|
|
}
|
|
else
|
|
{
|
|
return Ptr<Layer>(); //NULL
|
|
}
|
|
}
|
|
|
|
BackendNode::BackendNode(int backendId) : backendId(backendId) {}
|
|
|
|
BackendNode::~BackendNode() {};
|
|
|
|
BackendWrapper::BackendWrapper(int backendId, int targetId)
|
|
: backendId(backendId), targetId(targetId) {}
|
|
|
|
BackendWrapper::BackendWrapper(int targetId, const cv::Mat& m)
|
|
{
|
|
CV_Error(Error::StsNotImplemented,
|
|
"Constructor of backend wrapper must be implemented");
|
|
}
|
|
|
|
BackendWrapper::BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape)
|
|
{
|
|
CV_Error(Error::StsNotImplemented,
|
|
"Constructor of backend wrapper must be implemented");
|
|
}
|
|
|
|
BackendWrapper::~BackendWrapper() {}
|
|
|
|
Net readNet(const String& _model, const String& _config, const String& _framework)
|
|
{
|
|
String framework = toLowerCase(_framework);
|
|
String model = _model;
|
|
String config = _config;
|
|
const std::string modelExt = model.substr(model.rfind('.') + 1);
|
|
const std::string configExt = config.substr(config.rfind('.') + 1);
|
|
if (framework == "caffe" || modelExt == "caffemodel" || configExt == "caffemodel" ||
|
|
modelExt == "prototxt" || configExt == "prototxt")
|
|
{
|
|
if (modelExt == "prototxt" || configExt == "caffemodel")
|
|
std::swap(model, config);
|
|
return readNetFromCaffe(config, model);
|
|
}
|
|
if (framework == "tensorflow" || modelExt == "pb" || configExt == "pb" ||
|
|
modelExt == "pbtxt" || configExt == "pbtxt")
|
|
{
|
|
if (modelExt == "pbtxt" || configExt == "pb")
|
|
std::swap(model, config);
|
|
return readNetFromTensorflow(model, config);
|
|
}
|
|
if (framework == "torch" || modelExt == "t7" || modelExt == "net" ||
|
|
configExt == "t7" || configExt == "net")
|
|
{
|
|
return readNetFromTorch(model.empty() ? config : model);
|
|
}
|
|
if (framework == "darknet" || modelExt == "weights" || configExt == "weights" ||
|
|
modelExt == "cfg" || configExt == "cfg")
|
|
{
|
|
if (modelExt == "cfg" || configExt == "weights")
|
|
std::swap(model, config);
|
|
return readNetFromDarknet(config, model);
|
|
}
|
|
if (framework == "dldt" || modelExt == "bin" || configExt == "bin" ||
|
|
modelExt == "xml" || configExt == "xml")
|
|
{
|
|
if (modelExt == "xml" || configExt == "bin")
|
|
std::swap(model, config);
|
|
return readNetFromModelOptimizer(config, model);
|
|
}
|
|
if (framework == "onnx" || modelExt == "onnx")
|
|
{
|
|
return readNetFromONNX(model);
|
|
}
|
|
CV_Error(Error::StsError, "Cannot determine an origin framework of files: " +
|
|
model + (config.empty() ? "" : ", " + config));
|
|
}
|
|
|
|
Net readNet(const String& _framework, const std::vector<uchar>& bufferModel,
|
|
const std::vector<uchar>& bufferConfig)
|
|
{
|
|
String framework = toLowerCase(_framework);
|
|
if (framework == "caffe")
|
|
return readNetFromCaffe(bufferConfig, bufferModel);
|
|
else if (framework == "tensorflow")
|
|
return readNetFromTensorflow(bufferModel, bufferConfig);
|
|
else if (framework == "darknet")
|
|
return readNetFromDarknet(bufferConfig, bufferModel);
|
|
else if (framework == "torch")
|
|
CV_Error(Error::StsNotImplemented, "Reading Torch models from buffers");
|
|
else if (framework == "dldt")
|
|
CV_Error(Error::StsNotImplemented, "Reading Intel's Model Optimizer models from buffers");
|
|
CV_Error(Error::StsError, "Cannot determine an origin framework with a name " + framework);
|
|
}
|
|
|
|
Net readNetFromModelOptimizer(const String &xml, const String &bin)
|
|
{
|
|
return Net::readFromModelOptimizer(xml, bin);
|
|
}
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
}} // namespace
|