opencv/modules/dnn/src/layers/prior_box_layer.cpp
2018-03-01 12:12:40 +03:00

596 lines
20 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_inf_engine.hpp"
#include <float.h>
#include <algorithm>
#include <cmath>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
namespace cv
{
namespace dnn
{
class PriorBoxLayerImpl : public PriorBoxLayer
{
public:
static bool getParameterDict(const LayerParams &params,
const std::string &parameterName,
DictValue& result)
{
if (!params.has(parameterName))
{
return false;
}
result = params.get(parameterName);
return true;
}
template<typename T>
T getParameter(const LayerParams &params,
const std::string &parameterName,
const size_t &idx=0,
const bool required=true,
const T& defaultValue=T())
{
DictValue dictValue;
bool success = getParameterDict(params, parameterName, dictValue);
if(!success)
{
if(required)
{
std::string message = _layerName;
message += " layer parameter does not contain ";
message += parameterName;
message += " parameter.";
CV_Error(Error::StsBadArg, message);
}
else
{
return defaultValue;
}
}
return dictValue.get<T>(idx);
}
void getAspectRatios(const LayerParams &params)
{
DictValue aspectRatioParameter;
bool aspectRatioRetieved = getParameterDict(params, "aspect_ratio", aspectRatioParameter);
if (!aspectRatioRetieved)
return;
for (int i = 0; i < aspectRatioParameter.size(); ++i)
{
float aspectRatio = aspectRatioParameter.get<float>(i);
bool alreadyExists = false;
for (size_t j = 0; j < _aspectRatios.size(); ++j)
{
if (fabs(aspectRatio - _aspectRatios[j]) < 1e-6)
{
alreadyExists = true;
break;
}
}
if (!alreadyExists)
{
_aspectRatios.push_back(aspectRatio);
if (_flip)
{
_aspectRatios.push_back(1./aspectRatio);
}
}
}
}
static void getParams(const std::string& name, const LayerParams &params,
std::vector<float>* values)
{
DictValue dict;
if (getParameterDict(params, name, dict))
{
values->resize(dict.size());
for (int i = 0; i < dict.size(); ++i)
{
(*values)[i] = dict.get<float>(i);
}
}
else
values->clear();
}
void getVariance(const LayerParams &params)
{
DictValue varianceParameter;
bool varianceParameterRetrieved = getParameterDict(params, "variance", varianceParameter);
CV_Assert(varianceParameterRetrieved);
int varianceSize = varianceParameter.size();
if (varianceSize > 1)
{
// Must and only provide 4 variance.
CV_Assert(varianceSize == 4);
for (int i = 0; i < varianceSize; ++i)
{
float variance = varianceParameter.get<float>(i);
CV_Assert(variance > 0);
_variance.push_back(variance);
}
}
else
{
if (varianceSize == 1)
{
float variance = varianceParameter.get<float>(0);
CV_Assert(variance > 0);
_variance.push_back(variance);
}
else
{
// Set default to 0.1.
_variance.push_back(0.1f);
}
}
}
PriorBoxLayerImpl(const LayerParams &params)
{
setParamsFrom(params);
_minSize = getParameter<float>(params, "min_size", 0, false, 0);
_flip = getParameter<bool>(params, "flip", 0, false, true);
_clip = getParameter<bool>(params, "clip", 0, false, true);
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
_aspectRatios.clear();
getAspectRatios(params);
getVariance(params);
_maxSize = -1;
if (params.has("max_size"))
{
_maxSize = params.get("max_size").get<float>(0);
CV_Assert(_maxSize > _minSize);
}
std::vector<float> widths, heights;
getParams("width", params, &widths);
getParams("height", params, &heights);
_explicitSizes = !widths.empty();
CV_Assert(widths.size() == heights.size());
if (_explicitSizes)
{
CV_Assert(_aspectRatios.empty(), !params.has("min_size"), !params.has("max_size"));
_boxWidths = widths;
_boxHeights = heights;
}
else
{
CV_Assert(!_aspectRatios.empty(), _minSize > 0);
_boxWidths.resize(1 + (_maxSize > 0 ? 1 : 0) + _aspectRatios.size());
_boxHeights.resize(_boxWidths.size());
_boxWidths[0] = _boxHeights[0] = _minSize;
int i = 1;
if (_maxSize > 0)
{
// second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
_boxWidths[i] = _boxHeights[i] = sqrt(_minSize * _maxSize);
i += 1;
}
// rest of priors
for (size_t r = 0; r < _aspectRatios.size(); ++r)
{
float arSqrt = sqrt(_aspectRatios[r]);
_boxWidths[i + r] = _minSize * arSqrt;
_boxHeights[i + r] = _minSize / arSqrt;
}
}
CV_Assert(_boxWidths.size() == _boxHeights.size());
_numPriors = _boxWidths.size();
if (params.has("step_h") || params.has("step_w")) {
CV_Assert(!params.has("step"));
_stepY = getParameter<float>(params, "step_h");
CV_Assert(_stepY > 0.);
_stepX = getParameter<float>(params, "step_w");
CV_Assert(_stepX > 0.);
} else if (params.has("step")) {
const float step = getParameter<float>(params, "step");
CV_Assert(step > 0);
_stepY = step;
_stepX = step;
} else {
_stepY = 0;
_stepX = 0;
}
if (params.has("offset_h") || params.has("offset_w"))
{
CV_Assert(!params.has("offset"), params.has("offset_h"), params.has("offset_w"));
getParams("offset_h", params, &_offsetsY);
getParams("offset_w", params, &_offsetsX);
CV_Assert(_offsetsX.size() == _offsetsY.size());
_numPriors *= std::max((size_t)1, 2 * (_offsetsX.size() - 1));
}
else
{
float offset = getParameter<float>(params, "offset", 0, false, 0.5);
_offsetsX.assign(1, offset);
_offsetsY.assign(1, offset);
}
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && !_explicitSizes;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
CV_Assert(!inputs.empty());
int layerHeight = inputs[0][2];
int layerWidth = inputs[0][3];
// Since all images in a batch has same height and width, we only need to
// generate one set of priors which can be shared across all images.
size_t outNum = 1;
// 2 channels. First channel stores the mean of each prior coordinate.
// Second channel stores the variance of each prior coordinate.
size_t outChannels = 2;
outputs.resize(1, shape(outNum, outChannels,
layerHeight * layerWidth * _numPriors * 4));
return false;
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
int _layerWidth = inputs[0].size[3];
int _layerHeight = inputs[0].size[2];
int _imageWidth = inputs[1].size[3];
int _imageHeight = inputs[1].size[2];
float stepX, stepY;
if (_stepX == 0 || _stepY == 0)
{
stepX = static_cast<float>(_imageWidth) / _layerWidth;
stepY = static_cast<float>(_imageHeight) / _layerHeight;
} else {
stepX = _stepX;
stepY = _stepY;
}
if (umat_offsetsX.empty())
{
Mat offsetsX(1, _offsetsX.size(), CV_32FC1, &_offsetsX[0]);
Mat offsetsY(1, _offsetsY.size(), CV_32FC1, &_offsetsY[0]);
Mat variance(1, _variance.size(), CV_32FC1, &_variance[0]);
Mat widths(1, _boxWidths.size(), CV_32FC1, &_boxWidths[0]);
Mat heights(1, _boxHeights.size(), CV_32FC1, &_boxHeights[0]);
offsetsX.copyTo(umat_offsetsX);
offsetsY.copyTo(umat_offsetsY);
variance.copyTo(umat_variance);
widths.copyTo(umat_widths);
heights.copyTo(umat_heights);
}
size_t nthreads = _layerHeight * _layerWidth;
ocl::Kernel kernel("prior_box", ocl::dnn::prior_box_oclsrc);
kernel.set(0, (int)nthreads);
kernel.set(1, (float)stepX);
kernel.set(2, (float)stepY);
kernel.set(3, ocl::KernelArg::PtrReadOnly(umat_offsetsX));
kernel.set(4, ocl::KernelArg::PtrReadOnly(umat_offsetsY));
kernel.set(5, (int)_offsetsX.size());
kernel.set(6, ocl::KernelArg::PtrReadOnly(umat_widths));
kernel.set(7, ocl::KernelArg::PtrReadOnly(umat_heights));
kernel.set(8, (int)_boxWidths.size());
kernel.set(9, ocl::KernelArg::PtrWriteOnly(outputs[0]));
kernel.set(10, (int)_layerHeight);
kernel.set(11, (int)_layerWidth);
kernel.set(12, (int)_imageHeight);
kernel.set(13, (int)_imageWidth);
kernel.run(1, &nthreads, NULL, false);
// clip the prior's coordidate such that it is within [0, 1]
if (_clip)
{
Mat mat = outputs[0].getMat(ACCESS_READ);
int aspect_count = (_maxSize > 0) ? 1 : 0;
int offset = nthreads * 4 * _offsetsX.size() * (1 + aspect_count + _aspectRatios.size());
float* outputPtr = mat.ptr<float>() + offset;
int _outChannelSize = _layerHeight * _layerWidth * _numPriors * 4;
for (size_t d = 0; d < _outChannelSize; ++d)
{
outputPtr[d] = std::min<float>(std::max<float>(outputPtr[d], 0.), 1.);
}
}
// set the variance.
{
ocl::Kernel kernel("set_variance", ocl::dnn::prior_box_oclsrc);
int offset = total(shape(outputs[0]), 2);
size_t nthreads = _layerHeight * _layerWidth * _numPriors;
kernel.set(0, (int)nthreads);
kernel.set(1, (int)offset);
kernel.set(2, (int)_variance.size());
kernel.set(3, ocl::KernelArg::PtrReadOnly(umat_variance));
kernel.set(4, ocl::KernelArg::PtrWriteOnly(outputs[0]));
if (!kernel.run(1, &nthreads, NULL, false))
return false;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(inputs.size() == 2);
int _layerWidth = inputs[0]->size[3];
int _layerHeight = inputs[0]->size[2];
int _imageWidth = inputs[1]->size[3];
int _imageHeight = inputs[1]->size[2];
float stepX, stepY;
if (_stepX == 0 || _stepY == 0) {
stepX = static_cast<float>(_imageWidth) / _layerWidth;
stepY = static_cast<float>(_imageHeight) / _layerHeight;
} else {
stepX = _stepX;
stepY = _stepY;
}
int _outChannelSize = _layerHeight * _layerWidth * _numPriors * 4;
float* outputPtr = outputs[0].ptr<float>();
float _boxWidth, _boxHeight;
for (size_t h = 0; h < _layerHeight; ++h)
{
for (size_t w = 0; w < _layerWidth; ++w)
{
for (size_t i = 0; i < _boxWidths.size(); ++i)
{
_boxWidth = _boxWidths[i];
_boxHeight = _boxHeights[i];
for (int j = 0; j < _offsetsX.size(); ++j)
{
float center_x = (w + _offsetsX[j]) * stepX;
float center_y = (h + _offsetsY[j]) * stepY;
outputPtr = addPrior(center_x, center_y, _boxWidth, _boxHeight, _imageWidth,
_imageHeight, _bboxesNormalized, outputPtr);
}
}
}
}
// clip the prior's coordidate such that it is within [0, 1]
if (_clip)
{
for (size_t d = 0; d < _outChannelSize; ++d)
{
outputPtr[d] = std::min<float>(std::max<float>(outputPtr[d], 0.), 1.);
}
}
// set the variance.
outputPtr = outputs[0].ptr<float>(0, 1);
if(_variance.size() == 1)
{
Mat secondChannel(outputs[0].size[2], outputs[0].size[3], CV_32F, outputPtr);
secondChannel.setTo(Scalar(_variance[0]));
}
else
{
int count = 0;
for (size_t h = 0; h < _layerHeight; ++h)
{
for (size_t w = 0; w < _layerWidth; ++w)
{
for (size_t i = 0; i < _numPriors; ++i)
{
for (int j = 0; j < 4; ++j)
{
outputPtr[count] = _variance[j];
++count;
}
}
}
}
}
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&)
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "PriorBox";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
ieLayer->params["min_size"] = format("%f", _minSize);
ieLayer->params["max_size"] = _maxSize > 0 ? format("%f", _maxSize) : "";
CV_Assert(!_aspectRatios.empty());
ieLayer->params["aspect_ratio"] = format("%f", _aspectRatios[0]);
for (int i = 1; i < _aspectRatios.size(); ++i)
ieLayer->params["aspect_ratio"] += format(",%f", _aspectRatios[i]);
ieLayer->params["flip"] = _flip ? "1" : "0";
ieLayer->params["clip"] = _clip ? "1" : "0";
CV_Assert(!_variance.empty());
ieLayer->params["variance"] = format("%f", _variance[0]);
for (int i = 1; i < _variance.size(); ++i)
ieLayer->params["variance"] += format(",%f", _variance[i]);
ieLayer->params["step"] = _stepX == _stepY ? format("%f", _stepX) : "0";
ieLayer->params["step_h"] = _stepY;
ieLayer->params["step_w"] = _stepX;
CV_Assert(_offsetsX.size() == 1, _offsetsY.size() == 1, _offsetsX[0] == _offsetsY[0]);
ieLayer->params["offset"] = format("%f", _offsetsX[0]);;
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)outputs; // suppress unused variable warning
long flops = 0;
for (int i = 0; i < inputs.size(); i++)
{
flops += total(inputs[i], 2) * _numPriors * 4;
}
return flops;
}
private:
float _minSize;
float _maxSize;
float _stepX, _stepY;
std::vector<float> _aspectRatios;
std::vector<float> _variance;
std::vector<float> _offsetsX;
std::vector<float> _offsetsY;
// Precomputed final widhts and heights based on aspect ratios or explicit sizes.
std::vector<float> _boxWidths;
std::vector<float> _boxHeights;
#ifdef HAVE_OPENCL
UMat umat_offsetsX;
UMat umat_offsetsY;
UMat umat_widths;
UMat umat_heights;
UMat umat_variance;
#endif
bool _flip;
bool _clip;
bool _explicitSizes;
bool _bboxesNormalized;
size_t _numPriors;
static const size_t _numAxes = 4;
static const std::string _layerName;
static float* addPrior(float center_x, float center_y, float width, float height,
float imgWidth, float imgHeight, bool normalized, float* dst)
{
if (normalized)
{
dst[0] = (center_x - width * 0.5f) / imgWidth; // xmin
dst[1] = (center_y - height * 0.5f) / imgHeight; // ymin
dst[2] = (center_x + width * 0.5f) / imgWidth; // xmax
dst[3] = (center_y + height * 0.5f) / imgHeight; // ymax
}
else
{
dst[0] = center_x - width * 0.5f; // xmin
dst[1] = center_y - height * 0.5f; // ymin
dst[2] = center_x + width * 0.5f - 1.0f; // xmax
dst[3] = center_y + height * 0.5f - 1.0f; // ymax
}
return dst + 4;
}
};
const std::string PriorBoxLayerImpl::_layerName = std::string("PriorBox");
Ptr<PriorBoxLayer> PriorBoxLayer::create(const LayerParams &params)
{
return Ptr<PriorBoxLayer>(new PriorBoxLayerImpl(params));
}
}
}