opencv/samples/dnn/face_detector/train.prototxt
2020-04-27 23:07:33 +03:00

1899 lines
30 KiB
Plaintext

layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
mean_value: 104
mean_value: 117
mean_value: 123
resize_param {
prob: 1
resize_mode: WARP
height: 300
width: 300
interp_mode: LINEAR
interp_mode: AREA
interp_mode: NEAREST
interp_mode: CUBIC
interp_mode: LANCZOS4
}
emit_constraint {
emit_type: CENTER
}
distort_param {
brightness_prob: 0.5
brightness_delta: 32
contrast_prob: 0.5
contrast_lower: 0.5
contrast_upper: 1.5
hue_prob: 0.5
hue_delta: 18
saturation_prob: 0.5
saturation_lower: 0.5
saturation_upper: 1.5
random_order_prob: 0.0
}
expand_param {
prob: 0.5
max_expand_ratio: 4.0
}
}
data_param {
source: "train_lmdb/"
batch_size: 16
backend: LMDB
}
annotated_data_param {
batch_sampler {
max_sample: 1
max_trials: 1
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.1
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.3
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.5
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.7
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
min_jaccard_overlap: 0.9
}
max_sample: 1
max_trials: 50
}
batch_sampler {
sampler {
min_scale: 0.3
max_scale: 1.0
min_aspect_ratio: 0.5
max_aspect_ratio: 2.0
}
sample_constraint {
max_jaccard_overlap: 1.0
}
max_sample: 1
max_trials: 50
}
}
}
layer {
name: "data_bn"
type: "BatchNorm"
bottom: "data"
top: "data_bn"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "data_scale"
type: "Scale"
bottom: "data_bn"
top: "data_bn"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv1_h"
type: "Convolution"
bottom: "data_bn"
top: "conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
pad: 3
kernel_size: 7
stride: 2
weight_filler {
type: "msra"
variance_norm: FAN_OUT
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv1_bn_h"
type: "BatchNorm"
bottom: "conv1_h"
top: "conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "conv1_scale_h"
type: "Scale"
bottom: "conv1_h"
top: "conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "conv1_relu"
type: "ReLU"
bottom: "conv1_h"
top: "conv1_h"
}
layer {
name: "conv1_pool"
type: "Pooling"
bottom: "conv1_h"
top: "conv1_pool"
pooling_param {
kernel_size: 3
stride: 2
}
}
layer {
name: "layer_64_1_conv1_h"
type: "Convolution"
bottom: "conv1_pool"
top: "layer_64_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_64_1_bn2_h"
type: "BatchNorm"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_64_1_scale2_h"
type: "Scale"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_64_1_relu2"
type: "ReLU"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv1_h"
}
layer {
name: "layer_64_1_conv2_h"
type: "Convolution"
bottom: "layer_64_1_conv1_h"
top: "layer_64_1_conv2_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_64_1_sum"
type: "Eltwise"
bottom: "layer_64_1_conv2_h"
bottom: "conv1_pool"
top: "layer_64_1_sum"
}
layer {
name: "layer_128_1_bn1_h"
type: "BatchNorm"
bottom: "layer_64_1_sum"
top: "layer_128_1_bn1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_128_1_scale1_h"
type: "Scale"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_bn1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_128_1_relu1"
type: "ReLU"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_bn1_h"
}
layer {
name: "layer_128_1_conv1_h"
type: "Convolution"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_128_1_bn2"
type: "BatchNorm"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_128_1_scale2"
type: "Scale"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_128_1_relu2"
type: "ReLU"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv1_h"
}
layer {
name: "layer_128_1_conv2"
type: "Convolution"
bottom: "layer_128_1_conv1_h"
top: "layer_128_1_conv2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_128_1_conv_expand_h"
type: "Convolution"
bottom: "layer_128_1_bn1_h"
top: "layer_128_1_conv_expand_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_128_1_sum"
type: "Eltwise"
bottom: "layer_128_1_conv2"
bottom: "layer_128_1_conv_expand_h"
top: "layer_128_1_sum"
}
layer {
name: "layer_256_1_bn1"
type: "BatchNorm"
bottom: "layer_128_1_sum"
top: "layer_256_1_bn1"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_256_1_scale1"
type: "Scale"
bottom: "layer_256_1_bn1"
top: "layer_256_1_bn1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_256_1_relu1"
type: "ReLU"
bottom: "layer_256_1_bn1"
top: "layer_256_1_bn1"
}
layer {
name: "layer_256_1_conv1"
type: "Convolution"
bottom: "layer_256_1_bn1"
top: "layer_256_1_conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_256_1_bn2"
type: "BatchNorm"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_256_1_scale2"
type: "Scale"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_256_1_relu2"
type: "ReLU"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
}
layer {
name: "layer_256_1_conv2"
type: "Convolution"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_256_1_conv_expand"
type: "Convolution"
bottom: "layer_256_1_bn1"
top: "layer_256_1_conv_expand"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_256_1_sum"
type: "Eltwise"
bottom: "layer_256_1_conv2"
bottom: "layer_256_1_conv_expand"
top: "layer_256_1_sum"
}
layer {
name: "layer_512_1_bn1"
type: "BatchNorm"
bottom: "layer_256_1_sum"
top: "layer_512_1_bn1"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_512_1_scale1"
type: "Scale"
bottom: "layer_512_1_bn1"
top: "layer_512_1_bn1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_512_1_relu1"
type: "ReLU"
bottom: "layer_512_1_bn1"
top: "layer_512_1_bn1"
}
layer {
name: "layer_512_1_conv1_h"
type: "Convolution"
bottom: "layer_512_1_bn1"
top: "layer_512_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1 # 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_512_1_bn2_h"
type: "BatchNorm"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv1_h"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "layer_512_1_scale2_h"
type: "Scale"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv1_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_512_1_relu2"
type: "ReLU"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv1_h"
}
layer {
name: "layer_512_1_conv2_h"
type: "Convolution"
bottom: "layer_512_1_conv1_h"
top: "layer_512_1_conv2_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 2 # 1
kernel_size: 3
stride: 1
dilation: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_512_1_conv_expand_h"
type: "Convolution"
bottom: "layer_512_1_bn1"
top: "layer_512_1_conv_expand_h"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
stride: 1 # 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "layer_512_1_sum"
type: "Eltwise"
bottom: "layer_512_1_conv2_h"
bottom: "layer_512_1_conv_expand_h"
top: "layer_512_1_sum"
}
layer {
name: "last_bn_h"
type: "BatchNorm"
bottom: "layer_512_1_sum"
top: "layer_512_1_sum"
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
param {
lr_mult: 0.0
}
}
layer {
name: "last_scale_h"
type: "Scale"
bottom: "layer_512_1_sum"
top: "layer_512_1_sum"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 1.0
}
scale_param {
bias_term: true
}
}
layer {
name: "last_relu"
type: "ReLU"
bottom: "layer_512_1_sum"
top: "fc7"
}
layer {
name: "conv6_1_h"
type: "Convolution"
bottom: "fc7"
top: "conv6_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1_h"
top: "conv6_1_h"
}
layer {
name: "conv6_2_h"
type: "Convolution"
bottom: "conv6_1_h"
top: "conv6_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2_h"
top: "conv6_2_h"
}
layer {
name: "conv7_1_h"
type: "Convolution"
bottom: "conv6_2_h"
top: "conv7_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_1_relu"
type: "ReLU"
bottom: "conv7_1_h"
top: "conv7_1_h"
}
layer {
name: "conv7_2_h"
type: "Convolution"
bottom: "conv7_1_h"
top: "conv7_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_2_relu"
type: "ReLU"
bottom: "conv7_2_h"
top: "conv7_2_h"
}
layer {
name: "conv8_1_h"
type: "Convolution"
bottom: "conv7_2_h"
top: "conv8_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_1_relu"
type: "ReLU"
bottom: "conv8_1_h"
top: "conv8_1_h"
}
layer {
name: "conv8_2_h"
type: "Convolution"
bottom: "conv8_1_h"
top: "conv8_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_2_relu"
type: "ReLU"
bottom: "conv8_2_h"
top: "conv8_2_h"
}
layer {
name: "conv9_1_h"
type: "Convolution"
bottom: "conv8_2_h"
top: "conv9_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_1_relu"
type: "ReLU"
bottom: "conv9_1_h"
top: "conv9_1_h"
}
layer {
name: "conv9_2_h"
type: "Convolution"
bottom: "conv9_1_h"
top: "conv9_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_2_relu"
type: "ReLU"
bottom: "conv9_2_h"
top: "conv9_2_h"
}
layer {
name: "conv4_3_norm"
type: "Normalize"
bottom: "layer_256_1_bn1"
top: "conv4_3_norm"
norm_param {
across_spatial: false
scale_filler {
type: "constant"
value: 20
}
channel_shared: false
}
}
layer {
name: "conv4_3_norm_mbox_loc"
type: "Convolution"
bottom: "conv4_3_norm"
top: "conv4_3_norm_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv4_3_norm_mbox_loc_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_loc"
top: "conv4_3_norm_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv4_3_norm_mbox_loc_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_loc_perm"
top: "conv4_3_norm_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv4_3_norm_mbox_conf"
type: "Convolution"
bottom: "conv4_3_norm"
top: "conv4_3_norm_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 8 # 84
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv4_3_norm_mbox_conf_perm"
type: "Permute"
bottom: "conv4_3_norm_mbox_conf"
top: "conv4_3_norm_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv4_3_norm_mbox_conf_flat"
type: "Flatten"
bottom: "conv4_3_norm_mbox_conf_perm"
top: "conv4_3_norm_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv4_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv4_3_norm"
bottom: "data"
top: "conv4_3_norm_mbox_priorbox"
prior_box_param {
min_size: 30.0
max_size: 60.0
aspect_ratio: 2
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 8
offset: 0.5
}
}
layer {
name: "fc7_mbox_loc"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "fc7_mbox_loc_perm"
type: "Permute"
bottom: "fc7_mbox_loc"
top: "fc7_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "fc7_mbox_loc_flat"
type: "Flatten"
bottom: "fc7_mbox_loc_perm"
top: "fc7_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "fc7_mbox_conf"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12 # 126
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "fc7_mbox_conf_perm"
type: "Permute"
bottom: "fc7_mbox_conf"
top: "fc7_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "fc7_mbox_conf_flat"
type: "Flatten"
bottom: "fc7_mbox_conf_perm"
top: "fc7_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "fc7_mbox_priorbox"
type: "PriorBox"
bottom: "fc7"
bottom: "data"
top: "fc7_mbox_priorbox"
prior_box_param {
min_size: 60.0
max_size: 111.0
aspect_ratio: 2
aspect_ratio: 3
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 16
offset: 0.5
}
}
layer {
name: "conv6_2_mbox_loc"
type: "Convolution"
bottom: "conv6_2_h"
top: "conv6_2_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_2_mbox_loc_perm"
type: "Permute"
bottom: "conv6_2_mbox_loc"
top: "conv6_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv6_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv6_2_mbox_loc_perm"
top: "conv6_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv6_2_mbox_conf"
type: "Convolution"
bottom: "conv6_2_h"
top: "conv6_2_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12 # 126
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_2_mbox_conf_perm"
type: "Permute"
bottom: "conv6_2_mbox_conf"
top: "conv6_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv6_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv6_2_mbox_conf_perm"
top: "conv6_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv6_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv6_2_h"
bottom: "data"
top: "conv6_2_mbox_priorbox"
prior_box_param {
min_size: 111.0
max_size: 162.0
aspect_ratio: 2
aspect_ratio: 3
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 32
offset: 0.5
}
}
layer {
name: "conv7_2_mbox_loc"
type: "Convolution"
bottom: "conv7_2_h"
top: "conv7_2_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_2_mbox_loc_perm"
type: "Permute"
bottom: "conv7_2_mbox_loc"
top: "conv7_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv7_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv7_2_mbox_loc_perm"
top: "conv7_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv7_2_mbox_conf"
type: "Convolution"
bottom: "conv7_2_h"
top: "conv7_2_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12 # 126
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_2_mbox_conf_perm"
type: "Permute"
bottom: "conv7_2_mbox_conf"
top: "conv7_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv7_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv7_2_mbox_conf_perm"
top: "conv7_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv7_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv7_2_h"
bottom: "data"
top: "conv7_2_mbox_priorbox"
prior_box_param {
min_size: 162.0
max_size: 213.0
aspect_ratio: 2
aspect_ratio: 3
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 64
offset: 0.5
}
}
layer {
name: "conv8_2_mbox_loc"
type: "Convolution"
bottom: "conv8_2_h"
top: "conv8_2_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_2_mbox_loc_perm"
type: "Permute"
bottom: "conv8_2_mbox_loc"
top: "conv8_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv8_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv8_2_mbox_loc_perm"
top: "conv8_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv8_2_mbox_conf"
type: "Convolution"
bottom: "conv8_2_h"
top: "conv8_2_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 8 # 84
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_2_mbox_conf_perm"
type: "Permute"
bottom: "conv8_2_mbox_conf"
top: "conv8_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv8_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv8_2_mbox_conf_perm"
top: "conv8_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv8_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv8_2_h"
bottom: "data"
top: "conv8_2_mbox_priorbox"
prior_box_param {
min_size: 213.0
max_size: 264.0
aspect_ratio: 2
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 100
offset: 0.5
}
}
layer {
name: "conv9_2_mbox_loc"
type: "Convolution"
bottom: "conv9_2_h"
top: "conv9_2_mbox_loc"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_2_mbox_loc_perm"
type: "Permute"
bottom: "conv9_2_mbox_loc"
top: "conv9_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv9_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv9_2_mbox_loc_perm"
top: "conv9_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv9_2_mbox_conf"
type: "Convolution"
bottom: "conv9_2_h"
top: "conv9_2_mbox_conf"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 8 # 84
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_2_mbox_conf_perm"
type: "Permute"
bottom: "conv9_2_mbox_conf"
top: "conv9_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv9_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv9_2_mbox_conf_perm"
top: "conv9_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv9_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv9_2_h"
bottom: "data"
top: "conv9_2_mbox_priorbox"
prior_box_param {
min_size: 264.0
max_size: 315.0
aspect_ratio: 2
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 300
offset: 0.5
}
}
layer {
name: "mbox_loc"
type: "Concat"
bottom: "conv4_3_norm_mbox_loc_flat"
bottom: "fc7_mbox_loc_flat"
bottom: "conv6_2_mbox_loc_flat"
bottom: "conv7_2_mbox_loc_flat"
bottom: "conv8_2_mbox_loc_flat"
bottom: "conv9_2_mbox_loc_flat"
top: "mbox_loc"
concat_param {
axis: 1
}
}
layer {
name: "mbox_conf"
type: "Concat"
bottom: "conv4_3_norm_mbox_conf_flat"
bottom: "fc7_mbox_conf_flat"
bottom: "conv6_2_mbox_conf_flat"
bottom: "conv7_2_mbox_conf_flat"
bottom: "conv8_2_mbox_conf_flat"
bottom: "conv9_2_mbox_conf_flat"
top: "mbox_conf"
concat_param {
axis: 1
}
}
layer {
name: "mbox_priorbox"
type: "Concat"
bottom: "conv4_3_norm_mbox_priorbox"
bottom: "fc7_mbox_priorbox"
bottom: "conv6_2_mbox_priorbox"
bottom: "conv7_2_mbox_priorbox"
bottom: "conv8_2_mbox_priorbox"
bottom: "conv9_2_mbox_priorbox"
top: "mbox_priorbox"
concat_param {
axis: 2
}
}
layer {
name: "mbox_loss"
type: "MultiBoxLoss"
bottom: "mbox_loc"
bottom: "mbox_conf"
bottom: "mbox_priorbox"
bottom: "label"
top: "mbox_loss"
include {
phase: TRAIN
}
propagate_down: true
propagate_down: true
propagate_down: false
propagate_down: false
loss_param {
normalization: VALID
}
multibox_loss_param {
loc_loss_type: SMOOTH_L1
conf_loss_type: SOFTMAX
loc_weight: 1.0
num_classes: 2 # 21
share_location: true
match_type: PER_PREDICTION
overlap_threshold: 0.5
use_prior_for_matching: true
background_label_id: 0
use_difficult_gt: true
neg_pos_ratio: 3.0
neg_overlap: 0.5
code_type: CENTER_SIZE
ignore_cross_boundary_bbox: false
mining_type: MAX_NEGATIVE
}
}