opencv/samples/dnn/person_reid.cpp
rogday 61359a5bd0
Merge pull request #20175 from rogday:dnn_samples_cuda
add cuda and vulkan backends to dnn samples
2021-06-01 14:00:51 +00:00

243 lines
8.5 KiB
C++

//
// You can download a baseline ReID model and sample input from:
// https://github.com/ReID-Team/ReID_extra_testdata
//
// Authors of samples and Youtu ReID baseline:
// Xing Sun <winfredsun@tencent.com>
// Feng Zheng <zhengf@sustech.edu.cn>
// Xinyang Jiang <sevjiang@tencent.com>
// Fufu Yu <fufuyu@tencent.com>
// Enwei Zhang <miyozhang@tencent.com>
//
// Copyright (C) 2020-2021, Tencent.
// Copyright (C) 2020-2021, SUSTech.
//
#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
using namespace cv;
using namespace cv::dnn;
const char* keys =
"{help h | | show help message}"
"{model m | | network model}"
"{query_list q | | list of query images}"
"{gallery_list g | | list of gallery images}"
"{batch_size | 32 | batch size of each inference}"
"{resize_h | 256 | resize input to specific height.}"
"{resize_w | 128 | resize input to specific width.}"
"{topk k | 5 | number of gallery images showed in visualization}"
"{output_dir | | path for visualization(it should be existed)}"
"{backend b | 0 | choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation, "
"4: VKCOM, "
"5: CUDA }"
"{target t | 0 | choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"4: Vulkan, "
"6: CUDA, "
"7: CUDA fp16 (half-float preprocess) }";
namespace cv{
namespace reid{
static Mat preprocess(const Mat& img)
{
const double mean[3] = {0.485, 0.456, 0.406};
const double std[3] = {0.229, 0.224, 0.225};
Mat ret = Mat(img.rows, img.cols, CV_32FC3);
for (int y = 0; y < ret.rows; y ++)
{
for (int x = 0; x < ret.cols; x++)
{
for (int c = 0; c < 3; c++)
{
ret.at<Vec3f>(y,x)[c] = (float)((img.at<Vec3b>(y,x)[c] / 255.0 - mean[2 - c]) / std[2 - c]);
}
}
}
return ret;
}
static std::vector<float> normalization(const std::vector<float>& feature)
{
std::vector<float> ret;
float sum = 0.0;
for(int i = 0; i < (int)feature.size(); i++)
{
sum += feature[i] * feature[i];
}
sum = sqrt(sum);
for(int i = 0; i < (int)feature.size(); i++)
{
ret.push_back(feature[i] / sum);
}
return ret;
}
static void extractFeatures(const std::vector<std::string>& imglist, Net* net, const int& batch_size, const int& resize_h, const int& resize_w, std::vector<std::vector<float>>& features)
{
for(int st = 0; st < (int)imglist.size(); st += batch_size)
{
std::vector<Mat> batch;
for(int delta = 0; delta < batch_size && st + delta < (int)imglist.size(); delta++)
{
Mat img = imread(imglist[st + delta]);
batch.push_back(preprocess(img));
}
Mat blob = dnn::blobFromImages(batch, 1.0, Size(resize_w, resize_h), Scalar(0.0,0.0,0.0), true, false, CV_32F);
net->setInput(blob);
Mat out = net->forward();
for(int i = 0; i < (int)out.size().height; i++)
{
std::vector<float> temp_feature;
for(int j = 0; j < (int)out.size().width; j++)
{
temp_feature.push_back(out.at<float>(i,j));
}
features.push_back(normalization(temp_feature));
}
}
return ;
}
static void getNames(const std::string& ImageList, std::vector<std::string>& result)
{
std::ifstream img_in(ImageList);
std::string img_name;
while(img_in >> img_name)
{
result.push_back(img_name);
}
return ;
}
static float similarity(const std::vector<float>& feature1, const std::vector<float>& feature2)
{
float result = 0.0;
for(int i = 0; i < (int)feature1.size(); i++)
{
result += feature1[i] * feature2[i];
}
return result;
}
static void getTopK(const std::vector<std::vector<float>>& queryFeatures, const std::vector<std::vector<float>>& galleryFeatures, const int& topk, std::vector<std::vector<int>>& result)
{
for(int i = 0; i < (int)queryFeatures.size(); i++)
{
std::vector<float> similarityList;
std::vector<int> index;
for(int j = 0; j < (int)galleryFeatures.size(); j++)
{
similarityList.push_back(similarity(queryFeatures[i], galleryFeatures[j]));
index.push_back(j);
}
sort(index.begin(), index.end(), [&](int x,int y){return similarityList[x] > similarityList[y];});
std::vector<int> topk_result;
for(int j = 0; j < min(topk, (int)index.size()); j++)
{
topk_result.push_back(index[j]);
}
result.push_back(topk_result);
}
return ;
}
static void addBorder(const Mat& img, const Scalar& color, Mat& result)
{
const int bordersize = 5;
copyMakeBorder(img, result, bordersize, bordersize, bordersize, bordersize, cv::BORDER_CONSTANT, color);
return ;
}
static void drawRankList(const std::string& queryName, const std::vector<std::string>& galleryImageNames, const std::vector<int>& topk_index, const int& resize_h, const int& resize_w, Mat& result)
{
const Size outputSize = Size(resize_w, resize_h);
Mat q_img = imread(queryName), temp_img;
resize(q_img, temp_img, outputSize);
addBorder(temp_img, Scalar(0,0,0), q_img);
putText(q_img, "Query", Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
std::vector<Mat> Images;
Images.push_back(q_img);
for(int i = 0; i < (int)topk_index.size(); i++)
{
Mat g_img = imread(galleryImageNames[topk_index[i]]);
resize(g_img, temp_img, outputSize);
addBorder(temp_img, Scalar(255,255,255), g_img);
putText(g_img, "G" + std::to_string(i), Point(10, 30), FONT_HERSHEY_COMPLEX, 1.0, Scalar(0,255,0), 2);
Images.push_back(g_img);
}
hconcat(Images, result);
return ;
}
static void visualization(const std::vector<std::vector<int>>& topk, const std::vector<std::string>& queryImageNames, const std::vector<std::string>& galleryImageNames, const std::string& output_dir, const int& resize_h, const int& resize_w)
{
for(int i = 0; i < (int)queryImageNames.size(); i++)
{
Mat img;
drawRankList(queryImageNames[i], galleryImageNames, topk[i], resize_h, resize_w, img);
std::string output_path = output_dir + "/" + queryImageNames[i].substr(queryImageNames[i].rfind("/")+1);
imwrite(output_path, img);
}
return ;
}
};
};
int main(int argc, char** argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
parser = CommandLineParser(argc, argv, keys);
parser.about("Use this script to run ReID networks using OpenCV.");
const std::string modelPath = parser.get<String>("model");
const std::string queryImageList = parser.get<String>("query_list");
const std::string galleryImageList = parser.get<String>("gallery_list");
const int backend = parser.get<int>("backend");
const int target = parser.get<int>("target");
const int batch_size = parser.get<int>("batch_size");
const int resize_h = parser.get<int>("resize_h");
const int resize_w = parser.get<int>("resize_w");
const int topk = parser.get<int>("topk");
const std::string output_dir= parser.get<String>("output_dir");
std::vector<std::string> queryImageNames;
reid::getNames(queryImageList, queryImageNames);
std::vector<std::string> galleryImageNames;
reid::getNames(galleryImageList, galleryImageNames);
dnn::Net net = dnn::readNet(modelPath);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
std::vector<std::vector<float>> queryFeatures;
reid::extractFeatures(queryImageNames, &net, batch_size, resize_h, resize_w, queryFeatures);
std::vector<std::vector<float>> galleryFeatures;
reid::extractFeatures(galleryImageNames, &net, batch_size, resize_h, resize_w, galleryFeatures);
std::vector<std::vector<int>> topkResult;
reid::getTopK(queryFeatures, galleryFeatures, topk, topkResult);
reid::visualization(topkResult, queryImageNames, galleryImageNames, output_dir, resize_h, resize_w);
return 0;
}