mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 02:08:12 +08:00
8681686d8f
Switch to new OpenVINO API after 2022.1 release * Pass Layer_Test_Convolution_DLDT.Accuracy/0 test * Pass test Test_Caffe_layers.Softmax * Failed 136 tests * Fix Concat. Failed 120 tests * Custom nGraph ops. 19 failed tests * Set and get properties from Core * Read model from buffer * Change MaxPooling layer output names. Restore reshape * Cosmetic changes * Cosmetic changes * Override getOutputsInfo * Fixes for OpenVINO < 2022.1 * Async inference for 2021.4 and less * Compile model with config * Fix serialize for 2022.1 * Asynchronous inference with 2022.1 * Handle 1d outputs * Work with model with dynamic output shape * Fixes with 1d output for old API * Control outputs by nGraph function for all OpenVINO versions * Refer inputs in PrePostProcessor by indices * Fix cycled dependency between InfEngineNgraphNode and InfEngineNgraphNet. Add InferRequest callback only for async inference. Do not capture InferRequest object. * Fix tests thresholds * Fix HETERO:GPU,CPU plugin issues with unsupported layer
165 lines
4.9 KiB
C++
165 lines
4.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#ifndef __OPENCV_DNN_IE_NGRAPH_HPP__
|
|
#define __OPENCV_DNN_IE_NGRAPH_HPP__
|
|
|
|
#include "op_inf_engine.hpp"
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4245)
|
|
#pragma warning(disable : 4268)
|
|
#endif
|
|
#include <ngraph/ngraph.hpp>
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
|
|
class InfEngineNgraphNode;
|
|
|
|
|
|
class InfEngineNgraphNet
|
|
{
|
|
public:
|
|
InfEngineNgraphNet(detail::NetImplBase& netImpl);
|
|
InfEngineNgraphNet(detail::NetImplBase& netImpl, InferenceEngine::CNNNetwork& net);
|
|
|
|
void addOutput(const Ptr<InfEngineNgraphNode>& node);
|
|
|
|
bool isInitialized();
|
|
void init(Target targetId);
|
|
|
|
void forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync);
|
|
|
|
void initPlugin(InferenceEngine::CNNNetwork& net);
|
|
ngraph::ParameterVector setInputs(const std::vector<cv::Mat>& inputs, const std::vector<std::string>& names);
|
|
|
|
void addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs);
|
|
|
|
void createNet(Target targetId);
|
|
void setNodePtr(std::shared_ptr<ngraph::Node>* ptr);
|
|
|
|
void reset();
|
|
|
|
//private:
|
|
detail::NetImplBase& netImpl_;
|
|
|
|
void release();
|
|
int getNumComponents();
|
|
void dfs(std::shared_ptr<ngraph::Node>& node, std::vector<std::shared_ptr<ngraph::Node>>& comp,
|
|
std::unordered_map<std::string, bool>& used);
|
|
|
|
ngraph::ParameterVector inputs_vec;
|
|
std::shared_ptr<ngraph::Function> ngraph_function;
|
|
std::vector<std::vector<std::shared_ptr<ngraph::Node>>> components;
|
|
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>* > all_nodes;
|
|
|
|
InferenceEngine::ExecutableNetwork netExec;
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
std::map<std::string, ov::Tensor> allBlobs;
|
|
#else
|
|
InferenceEngine::BlobMap allBlobs;
|
|
#endif
|
|
std::string device_name;
|
|
bool isInit = false;
|
|
|
|
struct NgraphReqWrapper
|
|
{
|
|
NgraphReqWrapper() : isReady(true) {}
|
|
|
|
void makePromises(const std::vector<Ptr<BackendWrapper> >& outs);
|
|
|
|
InferenceEngine::InferRequest req;
|
|
std::vector<cv::AsyncPromise> outProms;
|
|
std::vector<std::string> outsNames;
|
|
bool isReady;
|
|
};
|
|
std::vector<Ptr<NgraphReqWrapper> > infRequests;
|
|
|
|
InferenceEngine::CNNNetwork cnn;
|
|
bool hasNetOwner;
|
|
std::unordered_map<std::string, InfEngineNgraphNode*> requestedOutputs;
|
|
};
|
|
|
|
class InfEngineNgraphNode : public BackendNode
|
|
{
|
|
public:
|
|
InfEngineNgraphNode(const std::vector<Ptr<BackendNode> >& nodes, Ptr<Layer>& layer,
|
|
std::vector<Mat*>& inputs, std::vector<Mat>& outputs,
|
|
std::vector<Mat>& internals);
|
|
|
|
InfEngineNgraphNode(std::shared_ptr<ngraph::Node>&& _node);
|
|
InfEngineNgraphNode(const std::shared_ptr<ngraph::Node>& _node);
|
|
|
|
void setName(const std::string& name);
|
|
|
|
// Inference Engine network object that allows to obtain the outputs of this layer.
|
|
std::shared_ptr<ngraph::Node> node;
|
|
Ptr<InfEngineNgraphNet> net;
|
|
Ptr<dnn::Layer> cvLayer;
|
|
};
|
|
|
|
class NgraphBackendWrapper : public BackendWrapper
|
|
{
|
|
public:
|
|
NgraphBackendWrapper(int targetId, const Mat& m);
|
|
NgraphBackendWrapper(Ptr<BackendWrapper> wrapper);
|
|
~NgraphBackendWrapper();
|
|
|
|
static Ptr<BackendWrapper> create(Ptr<BackendWrapper> wrapper);
|
|
|
|
virtual void copyToHost() CV_OVERRIDE;
|
|
virtual void setHostDirty() CV_OVERRIDE;
|
|
|
|
Mat* host;
|
|
std::string name;
|
|
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2022_1)
|
|
ov::Tensor blob;
|
|
#else
|
|
InferenceEngine::Blob::Ptr blob;
|
|
#endif
|
|
AsyncArray futureMat;
|
|
};
|
|
|
|
// This is a fake class to run networks from Model Optimizer. Objects of that
|
|
// class simulate responses of layers are imported by OpenCV and supported by
|
|
// Inference Engine. The main difference is that they do not perform forward pass.
|
|
class NgraphBackendLayer : public Layer
|
|
{
|
|
public:
|
|
NgraphBackendLayer(const InferenceEngine::CNNNetwork &t_net_) : t_net(t_net_) {};
|
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE;
|
|
|
|
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
|
|
OutputArrayOfArrays internals) CV_OVERRIDE;
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE;
|
|
|
|
private:
|
|
InferenceEngine::CNNNetwork t_net;
|
|
};
|
|
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
}} // namespace cv::dnn
|
|
|
|
|
|
#endif // __OPENCV_DNN_IE_NGRAPH_HPP__
|