opencv/modules/dnn/src/opencl/pooling.cl
Lubov Batanina 43f889ae1f Merge pull request #12519 from l-bat:l-bat/onnx_parser
Support asymmetric padding in pooling layer (#12519)

* Add Inception_V1 support in ONNX

* Add asymmetric padding in OpenCL and Inference engine

* Refactoring
2018-09-17 20:26:17 +03:00

107 lines
4.3 KiB
Common Lisp

/*************************************************************************************
* Copyright (c) 2015, Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
**************************************************************************************/
__kernel void MaxPoolForward(const int nthreads,
__global T* bottom_data, const int num, const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r,
__global T* top_data
#ifdef MASK
, __global float* mask
#endif
)
{
int index = get_global_id(0);
int tmp = get_global_size(0);
for(index; index < nthreads; index += tmp) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
int hstart = ph * stride_h - pad_t;
int wstart = pw * stride_w - pad_l;
const int hend = min(hstart + kernel_h, height);
const int wend = min(wstart + kernel_w, width);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
T maxval = -FLT_MAX;
int maxidx = -1;
bottom_data =
bottom_data + (n * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (bottom_data[h * width + w] > maxval) {
maxidx = h * width + w;
maxval = bottom_data[maxidx];
}
}
}
top_data[index] = maxval;
#ifdef MASK
mask[index] = maxidx;
#endif
}
}
__kernel void AvePoolForward(const int nthreads,
__global T* bottom_data, const int num, const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w, const int pad_t, const int pad_l, const int pad_b, const int pad_r,
__global T* top_data
#ifdef MASK
, __global float* mask // NOT USED
#endif
)
{
int index = get_global_id(0);
int tmp = get_global_size(0);
for(index; index < nthreads; index+=tmp) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels; int hstart = ph * stride_h - pad_t; int wstart = pw * stride_w - pad_l;
int hend = min(hstart + kernel_h, height + pad_b);
int wend = min(wstart + kernel_w, width + pad_r);
const int pool_size = (hend - hstart) * (wend - wstart);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
hend = min(hend, height);
wend = min(wend, width);
T aveval = 0;
bottom_data =
bottom_data + (n * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
aveval += bottom_data[h * width + w];
}
}
top_data[index] = aveval / pool_size;
}
}