mirror of
https://github.com/opencv/opencv.git
synced 2025-01-06 02:08:12 +08:00
801 lines
22 KiB
C++
801 lines
22 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels.hpp"
|
|
|
|
///////////////////////////////// UMat implementation ///////////////////////////////
|
|
|
|
namespace cv {
|
|
|
|
// it should be a prime number for the best hash function
|
|
enum { UMAT_NLOCKS = 31 };
|
|
static Mutex umatLocks[UMAT_NLOCKS];
|
|
|
|
UMatData::UMatData(const MatAllocator* allocator)
|
|
{
|
|
prevAllocator = currAllocator = allocator;
|
|
urefcount = refcount = 0;
|
|
data = origdata = 0;
|
|
size = 0;
|
|
flags = 0;
|
|
handle = 0;
|
|
userdata = 0;
|
|
}
|
|
|
|
UMatData::~UMatData()
|
|
{
|
|
prevAllocator = currAllocator = 0;
|
|
urefcount = refcount = 0;
|
|
data = origdata = 0;
|
|
size = 0;
|
|
flags = 0;
|
|
handle = 0;
|
|
userdata = 0;
|
|
}
|
|
|
|
void UMatData::lock()
|
|
{
|
|
umatLocks[(size_t)(void*)this % UMAT_NLOCKS].lock();
|
|
}
|
|
|
|
void UMatData::unlock()
|
|
{
|
|
umatLocks[(size_t)(void*)this % UMAT_NLOCKS].unlock();
|
|
}
|
|
|
|
|
|
MatAllocator* UMat::getStdAllocator()
|
|
{
|
|
if( ocl::haveOpenCL() )
|
|
return ocl::getOpenCLAllocator();
|
|
return Mat::getStdAllocator();
|
|
}
|
|
|
|
void swap( UMat& a, UMat& b )
|
|
{
|
|
std::swap(a.flags, b.flags);
|
|
std::swap(a.dims, b.dims);
|
|
std::swap(a.rows, b.rows);
|
|
std::swap(a.cols, b.cols);
|
|
std::swap(a.allocator, b.allocator);
|
|
std::swap(a.u, b.u);
|
|
std::swap(a.offset, b.offset);
|
|
|
|
std::swap(a.size.p, b.size.p);
|
|
std::swap(a.step.p, b.step.p);
|
|
std::swap(a.step.buf[0], b.step.buf[0]);
|
|
std::swap(a.step.buf[1], b.step.buf[1]);
|
|
|
|
if( a.step.p == b.step.buf )
|
|
{
|
|
a.step.p = a.step.buf;
|
|
a.size.p = &a.rows;
|
|
}
|
|
|
|
if( b.step.p == a.step.buf )
|
|
{
|
|
b.step.p = b.step.buf;
|
|
b.size.p = &b.rows;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void setSize( UMat& m, int _dims, const int* _sz,
|
|
const size_t* _steps, bool autoSteps=false )
|
|
{
|
|
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM );
|
|
if( m.dims != _dims )
|
|
{
|
|
if( m.step.p != m.step.buf )
|
|
{
|
|
fastFree(m.step.p);
|
|
m.step.p = m.step.buf;
|
|
m.size.p = &m.rows;
|
|
}
|
|
if( _dims > 2 )
|
|
{
|
|
m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0]));
|
|
m.size.p = (int*)(m.step.p + _dims) + 1;
|
|
m.size.p[-1] = _dims;
|
|
m.rows = m.cols = -1;
|
|
}
|
|
}
|
|
|
|
m.dims = _dims;
|
|
if( !_sz )
|
|
return;
|
|
|
|
size_t esz = CV_ELEM_SIZE(m.flags), total = esz;
|
|
int i;
|
|
for( i = _dims-1; i >= 0; i-- )
|
|
{
|
|
int s = _sz[i];
|
|
CV_Assert( s >= 0 );
|
|
m.size.p[i] = s;
|
|
|
|
if( _steps )
|
|
m.step.p[i] = i < _dims-1 ? _steps[i] : esz;
|
|
else if( autoSteps )
|
|
{
|
|
m.step.p[i] = total;
|
|
int64 total1 = (int64)total*s;
|
|
if( (uint64)total1 != (size_t)total1 )
|
|
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
|
total = (size_t)total1;
|
|
}
|
|
}
|
|
|
|
if( _dims == 1 )
|
|
{
|
|
m.dims = 2;
|
|
m.cols = 1;
|
|
m.step[1] = esz;
|
|
}
|
|
}
|
|
|
|
static void updateContinuityFlag(UMat& m)
|
|
{
|
|
int i, j;
|
|
for( i = 0; i < m.dims; i++ )
|
|
{
|
|
if( m.size[i] > 1 )
|
|
break;
|
|
}
|
|
|
|
for( j = m.dims-1; j > i; j-- )
|
|
{
|
|
if( m.step[j]*m.size[j] < m.step[j-1] )
|
|
break;
|
|
}
|
|
|
|
uint64 total = (uint64)m.step[0]*m.size[0];
|
|
if( j <= i && total == (size_t)total )
|
|
m.flags |= UMat::CONTINUOUS_FLAG;
|
|
else
|
|
m.flags &= ~UMat::CONTINUOUS_FLAG;
|
|
}
|
|
|
|
|
|
static void finalizeHdr(UMat& m)
|
|
{
|
|
updateContinuityFlag(m);
|
|
int d = m.dims;
|
|
if( d > 2 )
|
|
m.rows = m.cols = -1;
|
|
}
|
|
|
|
|
|
UMat Mat::getUMat(int accessFlags) const
|
|
{
|
|
UMat hdr;
|
|
if(!data)
|
|
return hdr;
|
|
UMatData* temp_u = u;
|
|
if(!temp_u)
|
|
{
|
|
MatAllocator *a = allocator, *a0 = getStdAllocator();
|
|
if(!a)
|
|
a = a0;
|
|
temp_u = a->allocate(dims, size.p, type(), data, step.p, accessFlags);
|
|
temp_u->refcount = 1;
|
|
}
|
|
UMat::getStdAllocator()->allocate(temp_u, accessFlags);
|
|
hdr.flags = flags;
|
|
setSize(hdr, dims, size.p, step.p);
|
|
finalizeHdr(hdr);
|
|
hdr.u = temp_u;
|
|
hdr.offset = data - datastart;
|
|
hdr.addref();
|
|
return hdr;
|
|
}
|
|
|
|
void UMat::create(int d, const int* _sizes, int _type)
|
|
{
|
|
int i;
|
|
CV_Assert(0 <= d && d <= CV_MAX_DIM && _sizes);
|
|
_type = CV_MAT_TYPE(_type);
|
|
|
|
if( u && (d == dims || (d == 1 && dims <= 2)) && _type == type() )
|
|
{
|
|
if( d == 2 && rows == _sizes[0] && cols == _sizes[1] )
|
|
return;
|
|
for( i = 0; i < d; i++ )
|
|
if( size[i] != _sizes[i] )
|
|
break;
|
|
if( i == d && (d > 1 || size[1] == 1))
|
|
return;
|
|
}
|
|
|
|
release();
|
|
if( d == 0 )
|
|
return;
|
|
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
|
|
setSize(*this, d, _sizes, 0, true);
|
|
offset = 0;
|
|
|
|
if( total() > 0 )
|
|
{
|
|
MatAllocator *a = allocator, *a0 = getStdAllocator();
|
|
if(!a)
|
|
a = a0;
|
|
try
|
|
{
|
|
u = a->allocate(dims, size, _type, 0, step.p, 0);
|
|
CV_Assert(u != 0);
|
|
}
|
|
catch(...)
|
|
{
|
|
if(a != a0)
|
|
u = a0->allocate(dims, size, _type, 0, step.p, 0);
|
|
CV_Assert(u != 0);
|
|
}
|
|
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );
|
|
}
|
|
|
|
finalizeHdr(*this);
|
|
addref();
|
|
}
|
|
|
|
void UMat::copySize(const UMat& m)
|
|
{
|
|
setSize(*this, m.dims, 0, 0);
|
|
for( int i = 0; i < dims; i++ )
|
|
{
|
|
size[i] = m.size[i];
|
|
step[i] = m.step[i];
|
|
}
|
|
}
|
|
|
|
|
|
UMat::~UMat()
|
|
{
|
|
release();
|
|
if( step.p != step.buf )
|
|
fastFree(step.p);
|
|
}
|
|
|
|
void UMat::deallocate()
|
|
{
|
|
u->currAllocator->deallocate(u);
|
|
u = NULL;
|
|
}
|
|
|
|
|
|
UMat::UMat(const UMat& m, const Range& _rowRange, const Range& _colRange)
|
|
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), u(0), offset(0), size(&rows)
|
|
{
|
|
CV_Assert( m.dims >= 2 );
|
|
if( m.dims > 2 )
|
|
{
|
|
AutoBuffer<Range> rs(m.dims);
|
|
rs[0] = _rowRange;
|
|
rs[1] = _colRange;
|
|
for( int i = 2; i < m.dims; i++ )
|
|
rs[i] = Range::all();
|
|
*this = m(rs);
|
|
return;
|
|
}
|
|
|
|
*this = m;
|
|
if( _rowRange != Range::all() && _rowRange != Range(0,rows) )
|
|
{
|
|
CV_Assert( 0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows );
|
|
rows = _rowRange.size();
|
|
offset += step*_rowRange.start;
|
|
flags |= SUBMATRIX_FLAG;
|
|
}
|
|
|
|
if( _colRange != Range::all() && _colRange != Range(0,cols) )
|
|
{
|
|
CV_Assert( 0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols );
|
|
cols = _colRange.size();
|
|
offset += _colRange.start*elemSize();
|
|
flags &= cols < m.cols ? ~CONTINUOUS_FLAG : -1;
|
|
flags |= SUBMATRIX_FLAG;
|
|
}
|
|
|
|
if( rows == 1 )
|
|
flags |= CONTINUOUS_FLAG;
|
|
|
|
if( rows <= 0 || cols <= 0 )
|
|
{
|
|
release();
|
|
rows = cols = 0;
|
|
}
|
|
}
|
|
|
|
|
|
UMat::UMat(const UMat& m, const Rect& roi)
|
|
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width),
|
|
allocator(m.allocator), u(m.u), offset(m.offset + roi.y*m.step[0]), size(&rows)
|
|
{
|
|
CV_Assert( m.dims <= 2 );
|
|
flags &= roi.width < m.cols ? ~CONTINUOUS_FLAG : -1;
|
|
flags |= roi.height == 1 ? CONTINUOUS_FLAG : 0;
|
|
|
|
size_t esz = CV_ELEM_SIZE(flags);
|
|
offset += roi.x*esz;
|
|
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
|
|
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
|
|
if( u )
|
|
CV_XADD(&(u->urefcount), 1);
|
|
if( roi.width < m.cols || roi.height < m.rows )
|
|
flags |= SUBMATRIX_FLAG;
|
|
|
|
step[0] = m.step[0]; step[1] = esz;
|
|
|
|
if( rows <= 0 || cols <= 0 )
|
|
{
|
|
release();
|
|
rows = cols = 0;
|
|
}
|
|
}
|
|
|
|
|
|
UMat::UMat(const UMat& m, const Range* ranges)
|
|
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), u(0), offset(0), size(&rows)
|
|
{
|
|
int i, d = m.dims;
|
|
|
|
CV_Assert(ranges);
|
|
for( i = 0; i < d; i++ )
|
|
{
|
|
Range r = ranges[i];
|
|
CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) );
|
|
}
|
|
*this = m;
|
|
for( i = 0; i < d; i++ )
|
|
{
|
|
Range r = ranges[i];
|
|
if( r != Range::all() && r != Range(0, size.p[i]))
|
|
{
|
|
size.p[i] = r.end - r.start;
|
|
offset += r.start*step.p[i];
|
|
flags |= SUBMATRIX_FLAG;
|
|
}
|
|
}
|
|
updateContinuityFlag(*this);
|
|
}
|
|
|
|
UMat UMat::diag(int d) const
|
|
{
|
|
CV_Assert( dims <= 2 );
|
|
UMat m = *this;
|
|
size_t esz = elemSize();
|
|
int len;
|
|
|
|
if( d >= 0 )
|
|
{
|
|
len = std::min(cols - d, rows);
|
|
m.offset += esz*d;
|
|
}
|
|
else
|
|
{
|
|
len = std::min(rows + d, cols);
|
|
m.offset -= step[0]*d;
|
|
}
|
|
CV_DbgAssert( len > 0 );
|
|
|
|
m.size[0] = m.rows = len;
|
|
m.size[1] = m.cols = 1;
|
|
m.step[0] += (len > 1 ? esz : 0);
|
|
|
|
if( m.rows > 1 )
|
|
m.flags &= ~CONTINUOUS_FLAG;
|
|
else
|
|
m.flags |= CONTINUOUS_FLAG;
|
|
|
|
if( size() != Size(1,1) )
|
|
m.flags |= SUBMATRIX_FLAG;
|
|
|
|
return m;
|
|
}
|
|
|
|
void UMat::locateROI( Size& wholeSize, Point& ofs ) const
|
|
{
|
|
CV_Assert( dims <= 2 && step[0] > 0 );
|
|
size_t esz = elemSize(), minstep;
|
|
ptrdiff_t delta1 = (ptrdiff_t)offset, delta2 = (ptrdiff_t)u->size;
|
|
|
|
if( delta1 == 0 )
|
|
ofs.x = ofs.y = 0;
|
|
else
|
|
{
|
|
ofs.y = (int)(delta1/step[0]);
|
|
ofs.x = (int)((delta1 - step[0]*ofs.y)/esz);
|
|
CV_DbgAssert( offset == (size_t)(ofs.y*step[0] + ofs.x*esz) );
|
|
}
|
|
minstep = (ofs.x + cols)*esz;
|
|
wholeSize.height = (int)((delta2 - minstep)/step[0] + 1);
|
|
wholeSize.height = std::max(wholeSize.height, ofs.y + rows);
|
|
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz);
|
|
wholeSize.width = std::max(wholeSize.width, ofs.x + cols);
|
|
}
|
|
|
|
|
|
UMat& UMat::adjustROI( int dtop, int dbottom, int dleft, int dright )
|
|
{
|
|
CV_Assert( dims <= 2 && step[0] > 0 );
|
|
Size wholeSize; Point ofs;
|
|
size_t esz = elemSize();
|
|
locateROI( wholeSize, ofs );
|
|
int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
|
|
int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width);
|
|
offset += (row1 - ofs.y)*step + (col1 - ofs.x)*esz;
|
|
rows = row2 - row1; cols = col2 - col1;
|
|
size.p[0] = rows; size.p[1] = cols;
|
|
if( esz*cols == step[0] || rows == 1 )
|
|
flags |= CONTINUOUS_FLAG;
|
|
else
|
|
flags &= ~CONTINUOUS_FLAG;
|
|
return *this;
|
|
}
|
|
|
|
|
|
UMat UMat::reshape(int new_cn, int new_rows) const
|
|
{
|
|
int cn = channels();
|
|
UMat hdr = *this;
|
|
|
|
if( dims > 2 && new_rows == 0 && new_cn != 0 && size[dims-1]*cn % new_cn == 0 )
|
|
{
|
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
|
|
hdr.step[dims-1] = CV_ELEM_SIZE(hdr.flags);
|
|
hdr.size[dims-1] = hdr.size[dims-1]*cn / new_cn;
|
|
return hdr;
|
|
}
|
|
|
|
CV_Assert( dims <= 2 );
|
|
|
|
if( new_cn == 0 )
|
|
new_cn = cn;
|
|
|
|
int total_width = cols * cn;
|
|
|
|
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
|
|
new_rows = rows * total_width / new_cn;
|
|
|
|
if( new_rows != 0 && new_rows != rows )
|
|
{
|
|
int total_size = total_width * rows;
|
|
if( !isContinuous() )
|
|
CV_Error( CV_BadStep,
|
|
"The matrix is not continuous, thus its number of rows can not be changed" );
|
|
|
|
if( (unsigned)new_rows > (unsigned)total_size )
|
|
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
|
|
|
|
total_width = total_size / new_rows;
|
|
|
|
if( total_width * new_rows != total_size )
|
|
CV_Error( CV_StsBadArg, "The total number of matrix elements "
|
|
"is not divisible by the new number of rows" );
|
|
|
|
hdr.rows = new_rows;
|
|
hdr.step[0] = total_width * elemSize1();
|
|
}
|
|
|
|
int new_width = total_width / new_cn;
|
|
|
|
if( new_width * new_cn != total_width )
|
|
CV_Error( CV_BadNumChannels,
|
|
"The total width is not divisible by the new number of channels" );
|
|
|
|
hdr.cols = new_width;
|
|
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
|
|
hdr.step[1] = CV_ELEM_SIZE(hdr.flags);
|
|
return hdr;
|
|
}
|
|
|
|
UMat UMat::diag(const UMat& d)
|
|
{
|
|
CV_Assert( d.cols == 1 || d.rows == 1 );
|
|
int len = d.rows + d.cols - 1;
|
|
UMat m(len, len, d.type(), Scalar(0));
|
|
UMat md = m.diag();
|
|
if( d.cols == 1 )
|
|
d.copyTo(md);
|
|
else
|
|
transpose(d, md);
|
|
return m;
|
|
}
|
|
|
|
int UMat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const
|
|
{
|
|
return (depth() == _depth || _depth <= 0) &&
|
|
(isContinuous() || !_requireContinuous) &&
|
|
((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) ||
|
|
(cols == _elemChannels && channels() == 1))) ||
|
|
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&
|
|
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
|
|
? (int)(total()*channels()/_elemChannels) : -1;
|
|
}
|
|
|
|
|
|
UMat UMat::cross(InputArray) const
|
|
{
|
|
CV_Error(CV_StsNotImplemented, "");
|
|
return UMat();
|
|
}
|
|
|
|
|
|
UMat UMat::reshape(int _cn, int _newndims, const int* _newsz) const
|
|
{
|
|
if(_newndims == dims)
|
|
{
|
|
if(_newsz == 0)
|
|
return reshape(_cn);
|
|
if(_newndims == 2)
|
|
return reshape(_cn, _newsz[0]);
|
|
}
|
|
|
|
CV_Error(CV_StsNotImplemented, "");
|
|
// TBD
|
|
return UMat();
|
|
}
|
|
|
|
|
|
Mat UMat::getMat(int accessFlags) const
|
|
{
|
|
if(!u)
|
|
return Mat();
|
|
u->currAllocator->map(u, accessFlags | ACCESS_READ);
|
|
CV_Assert(u->data != 0);
|
|
Mat hdr(dims, size.p, type(), u->data + offset, step.p);
|
|
hdr.flags = flags;
|
|
hdr.u = u;
|
|
hdr.datastart = u->data;
|
|
hdr.data = hdr.datastart + offset;
|
|
hdr.datalimit = hdr.dataend = u->data + u->size;
|
|
CV_XADD(&hdr.u->refcount, 1);
|
|
return hdr;
|
|
}
|
|
|
|
void* UMat::handle(int accessFlags) const
|
|
{
|
|
if( !u )
|
|
return 0;
|
|
|
|
if ((accessFlags & ACCESS_WRITE) != 0)
|
|
u->markHostCopyObsolete(true);
|
|
|
|
// check flags: if CPU copy is newer, copy it back to GPU.
|
|
if( u->deviceCopyObsolete() )
|
|
{
|
|
CV_Assert(u->refcount == 0);
|
|
u->currAllocator->unmap(u);
|
|
}
|
|
return u->handle;
|
|
}
|
|
|
|
void UMat::ndoffset(size_t* ofs) const
|
|
{
|
|
// offset = step[0]*ofs[0] + step[1]*ofs[1] + step[2]*ofs[2] + ...;
|
|
size_t val = offset;
|
|
for( int i = 0; i < dims; i++ )
|
|
{
|
|
size_t s = step.p[i];
|
|
ofs[i] = val / s;
|
|
val -= ofs[i]*s;
|
|
}
|
|
}
|
|
|
|
void UMat::copyTo(OutputArray _dst) const
|
|
{
|
|
int dtype = _dst.type();
|
|
if( _dst.fixedType() && dtype != type() )
|
|
{
|
|
CV_Assert( channels() == CV_MAT_CN(dtype) );
|
|
convertTo( _dst, dtype );
|
|
return;
|
|
}
|
|
|
|
if( empty() )
|
|
{
|
|
_dst.release();
|
|
return;
|
|
}
|
|
|
|
size_t i, sz[CV_MAX_DIM], srcofs[CV_MAX_DIM], dstofs[CV_MAX_DIM], esz = elemSize();
|
|
for( i = 0; i < (size_t)dims; i++ )
|
|
sz[i] = size.p[i];
|
|
sz[dims-1] *= esz;
|
|
ndoffset(srcofs);
|
|
srcofs[dims-1] *= esz;
|
|
|
|
_dst.create( dims, size.p, type() );
|
|
if( _dst.kind() == _InputArray::UMAT )
|
|
{
|
|
UMat dst = _dst.getUMat();
|
|
if( u == dst.u && dst.offset == offset )
|
|
return;
|
|
dst.ndoffset(dstofs);
|
|
dstofs[dims-1] *= esz;
|
|
CV_Assert(u->currAllocator == dst.u->currAllocator);
|
|
u->currAllocator->copy(u, dst.u, dims, sz, srcofs, step.p, dstofs, dst.step.p, false);
|
|
}
|
|
else
|
|
{
|
|
Mat dst = _dst.getMat();
|
|
u->currAllocator->download(u, dst.data, dims, sz, srcofs, step.p, dst.step.p);
|
|
}
|
|
}
|
|
|
|
void UMat::copyTo(OutputArray _dst, InputArray _mask) const
|
|
{
|
|
if( _mask.empty() )
|
|
{
|
|
copyTo(_dst);
|
|
return;
|
|
}
|
|
|
|
int cn = channels(), mtype = _mask.type(), mdepth = CV_MAT_DEPTH(mtype), mcn = CV_MAT_CN(mtype);
|
|
CV_Assert( mdepth == CV_8U && (mcn == 1 || mcn == cn) );
|
|
|
|
if (ocl::useOpenCL() && _dst.isUMat() && dims <= 2)
|
|
{
|
|
UMatData * prevu = _dst.getUMat().u;
|
|
_dst.create( dims, size, type() );
|
|
|
|
UMat dst = _dst.getUMat();
|
|
|
|
if( prevu != dst.u ) // do not leave dst uninitialized
|
|
dst = Scalar(0);
|
|
|
|
ocl::Kernel k("copyToMask", ocl::core::copyset_oclsrc,
|
|
format("-D COPY_TO_MASK -D T=%s -D scn=%d -D mcn=%d",
|
|
ocl::memopTypeToStr(depth()), cn, mcn));
|
|
if (!k.empty())
|
|
{
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(*this), ocl::KernelArg::ReadOnlyNoSize(_mask.getUMat()),
|
|
ocl::KernelArg::WriteOnly(dst));
|
|
|
|
size_t globalsize[2] = { cols, rows };
|
|
if (k.run(2, globalsize, NULL, false))
|
|
return;
|
|
}
|
|
}
|
|
|
|
Mat src = getMat(ACCESS_READ);
|
|
src.copyTo(_dst, _mask);
|
|
}
|
|
|
|
void UMat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const
|
|
{
|
|
bool noScale = std::fabs(alpha - 1) < DBL_EPSILON && std::fabs(beta) < DBL_EPSILON;
|
|
int stype = type(), cn = CV_MAT_CN(stype);
|
|
|
|
if( _type < 0 )
|
|
_type = _dst.fixedType() ? _dst.type() : stype;
|
|
else
|
|
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), cn);
|
|
|
|
int sdepth = CV_MAT_DEPTH(stype), ddepth = CV_MAT_DEPTH(_type);
|
|
if( sdepth == ddepth && noScale )
|
|
{
|
|
copyTo(_dst);
|
|
return;
|
|
}
|
|
|
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
|
bool needDouble = sdepth == CV_64F || ddepth == CV_64F;
|
|
if( dims <= 2 && cn && _dst.isUMat() && ocl::useOpenCL() &&
|
|
((needDouble && doubleSupport) || !needDouble) )
|
|
{
|
|
char cvt[40];
|
|
ocl::Kernel k("convertTo", ocl::core::convert_oclsrc,
|
|
format("-D srcT=%s -D dstT=%s -D convertToDT=%s%s", ocl::typeToStr(sdepth),
|
|
ocl::typeToStr(ddepth), ocl::convertTypeStr(CV_32F, ddepth, 1, cvt),
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
|
if (!k.empty())
|
|
{
|
|
_dst.create( size(), _type );
|
|
UMat dst = _dst.getUMat();
|
|
|
|
float alphaf = (float)alpha, betaf = (float)beta;
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(*this), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf);
|
|
|
|
size_t globalsize[2] = { dst.cols * cn, dst.rows };
|
|
if (k.run(2, globalsize, NULL, false))
|
|
return;
|
|
}
|
|
}
|
|
|
|
Mat m = getMat(ACCESS_READ);
|
|
m.convertTo(_dst, _type, alpha, beta);
|
|
}
|
|
|
|
UMat& UMat::setTo(InputArray _value, InputArray _mask)
|
|
{
|
|
bool haveMask = !_mask.empty();
|
|
int tp = type(), cn = CV_MAT_CN(tp);
|
|
if( dims <= 2 && cn <= 4 && cn != 3 && ocl::useOpenCL() )
|
|
{
|
|
Mat value = _value.getMat();
|
|
CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::UMAT) );
|
|
double buf[4];
|
|
convertAndUnrollScalar(value, tp, (uchar*)buf, 1);
|
|
|
|
char opts[1024];
|
|
sprintf(opts, "-D dstT=%s", ocl::memopTypeToStr(tp));
|
|
|
|
ocl::Kernel setK(haveMask ? "setMask" : "set", ocl::core::copyset_oclsrc, opts);
|
|
if( !setK.empty() )
|
|
{
|
|
ocl::KernelArg scalararg(0, 0, 0, buf, CV_ELEM_SIZE(tp));
|
|
UMat mask;
|
|
|
|
if( haveMask )
|
|
{
|
|
mask = _mask.getUMat();
|
|
CV_Assert( mask.size() == size() && mask.type() == CV_8U );
|
|
ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);
|
|
ocl::KernelArg dstarg = ocl::KernelArg::ReadWrite(*this);
|
|
setK.args(maskarg, dstarg, scalararg);
|
|
}
|
|
else
|
|
{
|
|
ocl::KernelArg dstarg = ocl::KernelArg::WriteOnly(*this);
|
|
setK.args(dstarg, scalararg);
|
|
}
|
|
|
|
size_t globalsize[] = { cols, rows };
|
|
if( setK.run(2, globalsize, 0, false) )
|
|
return *this;
|
|
}
|
|
}
|
|
Mat m = getMat(haveMask ? ACCESS_RW : ACCESS_WRITE);
|
|
m.setTo(_value, _mask);
|
|
return *this;
|
|
}
|
|
|
|
UMat& UMat::operator = (const Scalar& s)
|
|
{
|
|
setTo(s);
|
|
return *this;
|
|
}
|
|
|
|
}
|
|
|
|
/* End of file. */
|