mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 03:57:58 +08:00
fc5d412ba7
G-API: Integration branch for ONNX & Python-related changes #23597 # Changes overview ## 1. Expose ONNX backend's Normalization and Mean-value parameters in Python * Since Python G-API bindings rely on `Generic` infer to express Inference, the `Generic` specialization of `onnx::Params` was extended with new methods to control normalization (`/255`) and mean-value; these methods were exposed in the Python bindings * Found some questionable parts in the existing API which I'd like to review/discuss (see comments) UPD: 1. Thanks to @TolyaTalamanov normalization inconsistencies have been identified with `squeezenet1.0-9` ONNX model itself; tests using these model were updated to DISABLE normalization and NOT using mean/value. 2. Questionable parts were removed and tests still pass. ### Details (taken from @TolyaTalamanov's comment): `squeezenet1.0.*onnx` - doesn't require scaling to [0,1] and mean/std because the weights of the first convolution already scaled. ONNX documentation is broken. So the correct approach to use this models is: 1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 but without normalization step: ``` # DON'T DO IT: # mean_vec = np.array([0.485, 0.456, 0.406]) # stddev_vec = np.array([0.229, 0.224, 0.225]) # norm_img_data = np.zeros(img_data.shape).astype('float32') # for i in range(img_data.shape[0]): # norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i] # # add batch channel # norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') # return norm_img_data # INSTEAD return img_data.reshape(1, 3, 224, 224) ``` 2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters: ``` net = cv.gapi.onnx.params('squeezenet', model_filename) net.cfgNormalize('data_0', False) ``` **Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution. --- `squeezenet1.1.*onnx` - requires scaling to [0,1] and mean/std - onnx documentation is correct. 1. ONNX: apply preprocessing from the documentation: https://github.com/onnx/models/blob/main/vision/classification/imagenet_preprocess.py#L8-L44 2. G-API: Convert image from BGR to RGB and then pass to `apply` as-is with configuring parameters: ``` net = cv.gapi.onnx.params('squeezenet', model_filename) net.cfgNormalize('data_0', True) // default net.cfgMeanStd('data_0', [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ``` **Note**: Results might be difference because `G-API` doesn't apply central crop but just do resize to model resolution. ## 2. Expose Fluid & kernel package-related functionality in Python * `cv::gapi::combine()` * `cv::GKernelPackage::size()` (mainly for testing purposes) * `cv::gapi::imgproc::fluid::kernels()` Added a test for the above. ## 3. Fixed issues with Python stateful kernel handling Fixed error message when `outMeta()` of custom python operation fails. ## 4. Fixed various issues in Python tests 1. `test_gapi_streaming.py` - fixed behavior of Desync test to avoid sporadic issues 2. `test_gapi_infer_onnx.py` - fixed model lookup (it was still using the ONNX Zoo layout but was NOT using the proper env var we use to point to one). ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
1130 lines
42 KiB
C++
1130 lines
42 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2020 Intel Corporation
|
|
|
|
#include "../test_precomp.hpp"
|
|
|
|
#ifdef HAVE_ONNX
|
|
|
|
#include <stdexcept>
|
|
#include <codecvt> // wstring_convert
|
|
|
|
#include <onnxruntime_cxx_api.h>
|
|
#include <ade/util/iota_range.hpp>
|
|
#include <ade/util/algorithm.hpp>
|
|
#include <opencv2/gapi/own/convert.hpp>
|
|
#include <opencv2/gapi/infer/onnx.hpp>
|
|
|
|
namespace {
|
|
class TestMediaBGR final: public cv::MediaFrame::IAdapter {
|
|
cv::Mat m_mat;
|
|
using Cb = cv::MediaFrame::View::Callback;
|
|
Cb m_cb;
|
|
|
|
public:
|
|
explicit TestMediaBGR(cv::Mat m, Cb cb = [](){})
|
|
: m_mat(m), m_cb(cb) {
|
|
}
|
|
cv::GFrameDesc meta() const override {
|
|
return cv::GFrameDesc{cv::MediaFormat::BGR, cv::Size(m_mat.cols, m_mat.rows)};
|
|
}
|
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
|
|
cv::MediaFrame::View::Ptrs pp = { m_mat.ptr(), nullptr, nullptr, nullptr };
|
|
cv::MediaFrame::View::Strides ss = { m_mat.step, 0u, 0u, 0u };
|
|
return cv::MediaFrame::View(std::move(pp), std::move(ss), Cb{m_cb});
|
|
}
|
|
};
|
|
|
|
class TestMediaNV12 final: public cv::MediaFrame::IAdapter {
|
|
cv::Mat m_y;
|
|
cv::Mat m_uv;
|
|
public:
|
|
TestMediaNV12(cv::Mat y, cv::Mat uv) : m_y(y), m_uv(uv) {
|
|
}
|
|
cv::GFrameDesc meta() const override {
|
|
return cv::GFrameDesc{cv::MediaFormat::NV12, cv::Size(m_y.cols, m_y.rows)};
|
|
}
|
|
cv::MediaFrame::View access(cv::MediaFrame::Access) override {
|
|
cv::MediaFrame::View::Ptrs pp = {
|
|
m_y.ptr(), m_uv.ptr(), nullptr, nullptr
|
|
};
|
|
cv::MediaFrame::View::Strides ss = {
|
|
m_y.step, m_uv.step, 0u, 0u
|
|
};
|
|
return cv::MediaFrame::View(std::move(pp), std::move(ss));
|
|
}
|
|
};
|
|
struct ONNXInitPath {
|
|
ONNXInitPath() {
|
|
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
|
|
if (env_path) {
|
|
cvtest::addDataSearchPath(env_path);
|
|
}
|
|
}
|
|
};
|
|
static ONNXInitPath g_init_path;
|
|
|
|
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
|
|
const cv::Mat in_mat = cv::Mat(sz_in, type);
|
|
|
|
if (CV_MAT_DEPTH(type) < CV_32F) {
|
|
cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255));
|
|
} else {
|
|
const int fscale = 256; // avoid bits near ULP, generate stable test input
|
|
cv::Mat in_mat32s(in_mat.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
|
|
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
|
|
in_mat32s.convertTo(in_mat, type, 1.0f / fscale, 0);
|
|
}
|
|
return in_mat;
|
|
}
|
|
} // anonymous namespace
|
|
namespace opencv_test
|
|
{
|
|
namespace {
|
|
|
|
// FIXME: taken from the DNN module
|
|
void normAssert(cv::InputArray& ref, cv::InputArray& test,
|
|
const char *comment /*= ""*/,
|
|
const double l1 = 0.00001, const double lInf = 0.0001) {
|
|
const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
|
EXPECT_LE(normL1, l1) << comment;
|
|
|
|
const double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
|
EXPECT_LE(normInf, lInf) << comment;
|
|
}
|
|
|
|
inline std::string findModel(const std::string &model_name) {
|
|
return findDataFile("vision/" + model_name + ".onnx", false);
|
|
}
|
|
|
|
inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
|
|
dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F);
|
|
std::vector<cv::Mat> planes;
|
|
for (int i = 0; i < src.channels(); ++i) {
|
|
planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows));
|
|
}
|
|
cv::split(src, planes);
|
|
}
|
|
|
|
inline int toCV(ONNXTensorElementDataType prec) {
|
|
switch (prec) {
|
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
|
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
|
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32: return CV_32S;
|
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: return CV_32S;
|
|
default: GAPI_Error("Unsupported data type");
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void copyFromONNX(Ort::Value &v, cv::Mat& mat) {
|
|
const auto info = v.GetTensorTypeAndShapeInfo();
|
|
const auto prec = info.GetElementType();
|
|
const auto shape = info.GetShape();
|
|
const std::vector<int> dims(shape.begin(), shape.end());
|
|
mat.create(dims, toCV(prec));
|
|
switch (prec) {
|
|
#define HANDLE(E,T) \
|
|
case E: std::copy_n(v.GetTensorMutableData<T>(), \
|
|
mat.total(), \
|
|
reinterpret_cast<T*>(mat.data)); \
|
|
break;
|
|
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, uint8_t);
|
|
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, float);
|
|
HANDLE(ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, int);
|
|
#undef HANDLE
|
|
case ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64: {
|
|
const auto o_ptr = v.GetTensorMutableData<int64_t>();
|
|
const auto g_ptr = reinterpret_cast<int*>(mat.data);
|
|
std::transform(o_ptr, o_ptr + mat.total(), g_ptr,
|
|
[](int64_t el) { return static_cast<int>(el); });
|
|
break;
|
|
}
|
|
default: GAPI_Error("ONNX. Unsupported data type");
|
|
}
|
|
}
|
|
|
|
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
|
|
return cv::to_own<int64_t>(sz);
|
|
}
|
|
|
|
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
|
|
std::vector<const char*> out_ptrs;
|
|
out_ptrs.reserve(names.size());
|
|
ade::util::transform(names, std::back_inserter(out_ptrs),
|
|
[](const std::string& name) { return name.c_str(); });
|
|
return out_ptrs;
|
|
}
|
|
|
|
template<typename T>
|
|
void copyToOut(const cv::Mat& onnx_out, const T end_mark, cv::Mat& gapi_out) {
|
|
// This function is part of some remap__ function.
|
|
// You can set graph output size (gapi_out) larger than real out from ONNX
|
|
// so you have to add something for separate correct data and garbage.
|
|
// For example, end of data can be marked with -1 (for positive values)
|
|
// or you can put size of correct data at first/last element of output matrix.
|
|
const size_t size = std::min(onnx_out.total(), gapi_out.total());
|
|
std::copy(onnx_out.begin<T>(),
|
|
onnx_out.begin<T>() + size,
|
|
gapi_out.begin<T>());
|
|
if (gapi_out.total() > onnx_out.total()) {
|
|
T* gptr = gapi_out.ptr<T>();
|
|
gptr[size] = end_mark;
|
|
}
|
|
}
|
|
|
|
void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
GAPI_Assert(onnx.size() == 1u);
|
|
GAPI_Assert(gapi.size() == 1u);
|
|
// Result from Run method
|
|
const cv::Mat& in = onnx.begin()->second;
|
|
GAPI_Assert(in.depth() == CV_32F);
|
|
// Configured output
|
|
cv::Mat& out = gapi.begin()->second;
|
|
// Simple copy
|
|
copyToOut<float>(in, -1.f, out);
|
|
}
|
|
|
|
void remapYoloV3(const std::unordered_map<std::string, cv::Mat> &onnx,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
// Simple copy for outputs
|
|
const cv::Mat& in_boxes = onnx.at("yolonms_layer_1/ExpandDims_1:0");
|
|
const cv::Mat& in_scores = onnx.at("yolonms_layer_1/ExpandDims_3:0");
|
|
const cv::Mat& in_indices = onnx.at("yolonms_layer_1/concat_2:0");
|
|
GAPI_Assert(in_boxes.depth() == CV_32F);
|
|
GAPI_Assert(in_scores.depth() == CV_32F);
|
|
GAPI_Assert(in_indices.depth() == CV_32S);
|
|
|
|
cv::Mat& out_boxes = gapi.at("out1");
|
|
cv::Mat& out_scores = gapi.at("out2");
|
|
cv::Mat& out_indices = gapi.at("out3");
|
|
|
|
copyToOut<float>(in_boxes, -1.f, out_boxes);
|
|
copyToOut<float>(in_scores, -1.f, out_scores);
|
|
copyToOut<int>(in_indices, -1, out_indices);
|
|
}
|
|
|
|
void remapToIESSDOut(const std::vector<cv::Mat> &detections,
|
|
cv::Mat &ssd_output) {
|
|
GAPI_Assert(detections.size() == 4u);
|
|
for (const auto &det_el : detections) {
|
|
GAPI_Assert(det_el.depth() == CV_32F);
|
|
GAPI_Assert(!det_el.empty());
|
|
}
|
|
|
|
// SSD-MobilenetV1 structure check
|
|
ASSERT_EQ(1u, detections[0].total());
|
|
ASSERT_EQ(detections[2].total(), detections[0].total() * 100);
|
|
ASSERT_EQ(detections[2].total(), detections[3].total());
|
|
ASSERT_EQ((detections[2].total() * 4), detections[1].total());
|
|
|
|
const int num_objects = static_cast<int>(detections[0].ptr<float>()[0]);
|
|
GAPI_Assert(num_objects <= (ssd_output.size[2] - 1));
|
|
const float *in_boxes = detections[1].ptr<float>();
|
|
const float *in_scores = detections[2].ptr<float>();
|
|
const float *in_classes = detections[3].ptr<float>();
|
|
float *ptr = ssd_output.ptr<float>();
|
|
|
|
for (int i = 0; i < num_objects; ++i) {
|
|
ptr[0] = 0.f; // "image_id"
|
|
ptr[1] = in_classes[i]; // "label"
|
|
ptr[2] = in_scores[i]; // "confidence"
|
|
ptr[3] = in_boxes[4 * i + 1]; // left
|
|
ptr[4] = in_boxes[4 * i + 0]; // top
|
|
ptr[5] = in_boxes[4 * i + 3]; // right
|
|
ptr[6] = in_boxes[4 * i + 2]; // bottom
|
|
|
|
ptr += 7;
|
|
in_boxes += 4;
|
|
}
|
|
|
|
if (num_objects < ssd_output.size[2] - 1) {
|
|
// put a -1 mark at the end of output blob if there is space left
|
|
ptr[0] = -1.f;
|
|
}
|
|
}
|
|
|
|
void remapSSDPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
// Assemble ONNX-processed outputs back to a single 1x1x200x7 blob
|
|
// to preserve compatibility with OpenVINO-based SSD pipeline
|
|
const cv::Mat &num_detections = onnx.at("num_detections:0");
|
|
const cv::Mat &detection_boxes = onnx.at("detection_boxes:0");
|
|
const cv::Mat &detection_scores = onnx.at("detection_scores:0");
|
|
const cv::Mat &detection_classes = onnx.at("detection_classes:0");
|
|
cv::Mat &ssd_output = gapi.at("detection_output");
|
|
remapToIESSDOut({num_detections, detection_boxes, detection_scores, detection_classes}, ssd_output);
|
|
}
|
|
|
|
void reallocSSDPort(const std::unordered_map<std::string, cv::Mat> &/*onnx*/,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
gapi["detection_boxes"].create(1000, 3000, CV_32FC3);
|
|
}
|
|
|
|
void remapRCNNPortsC(const std::unordered_map<std::string, cv::Mat> &onnx,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
// Simple copy for outputs
|
|
const cv::Mat& in_boxes = onnx.at("6379");
|
|
const cv::Mat& in_labels = onnx.at("6381");
|
|
const cv::Mat& in_scores = onnx.at("6383");
|
|
|
|
GAPI_Assert(in_boxes.depth() == CV_32F);
|
|
GAPI_Assert(in_labels.depth() == CV_32S);
|
|
GAPI_Assert(in_scores.depth() == CV_32F);
|
|
|
|
cv::Mat& out_boxes = gapi.at("out1");
|
|
cv::Mat& out_labels = gapi.at("out2");
|
|
cv::Mat& out_scores = gapi.at("out3");
|
|
|
|
copyToOut<float>(in_boxes, -1.f, out_boxes);
|
|
copyToOut<int>(in_labels, -1, out_labels);
|
|
copyToOut<float>(in_scores, -1.f, out_scores);
|
|
}
|
|
|
|
void remapRCNNPortsDO(const std::unordered_map<std::string, cv::Mat> &onnx,
|
|
std::unordered_map<std::string, cv::Mat> &gapi) {
|
|
// Simple copy for outputs
|
|
const cv::Mat& in_boxes = onnx.at("6379");
|
|
const cv::Mat& in_scores = onnx.at("6383");
|
|
GAPI_Assert(in_boxes.depth() == CV_32F);
|
|
GAPI_Assert(in_scores.depth() == CV_32F);
|
|
cv::Mat& out_boxes = gapi.at("out1");
|
|
cv::Mat& out_scores = gapi.at("out2");
|
|
|
|
copyToOut<float>(in_boxes, -1.f, out_boxes);
|
|
copyToOut<float>(in_scores, -1.f, out_scores);
|
|
}
|
|
|
|
class ONNXtest : public ::testing::Test {
|
|
public:
|
|
std::string model_path;
|
|
size_t num_in, num_out;
|
|
std::vector<cv::Mat> out_gapi;
|
|
std::vector<cv::Mat> out_onnx;
|
|
cv::Mat in_mat;
|
|
|
|
ONNXtest() {
|
|
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
|
|
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
|
|
out_gapi.resize(1);
|
|
}
|
|
|
|
template<typename T>
|
|
void infer(const std::vector<cv::Mat>& ins,
|
|
std::vector<cv::Mat>& outs,
|
|
std::vector<std::string>&& custom_out_names = {}) {
|
|
// Prepare session
|
|
#ifndef _WIN32
|
|
session = Ort::Session(env, model_path.c_str(), session_options);
|
|
#else
|
|
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
|
|
std::wstring w_model_path = converter.from_bytes(model_path.c_str());
|
|
session = Ort::Session(env, w_model_path.c_str(), session_options);
|
|
#endif
|
|
num_in = session.GetInputCount();
|
|
num_out = session.GetOutputCount();
|
|
GAPI_Assert(num_in == ins.size());
|
|
in_node_names.clear();
|
|
out_node_names.clear();
|
|
// Inputs Run params
|
|
std::vector<Ort::Value> in_tensors;
|
|
for(size_t i = 0; i < num_in; ++i) {
|
|
auto in_node_name_p = session.GetInputNameAllocated(i, allocator);
|
|
in_node_names.emplace_back(in_node_name_p.get());
|
|
in_node_dims = toORT(ins[i].size);
|
|
in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info,
|
|
const_cast<T*>(ins[i].ptr<T>()),
|
|
ins[i].total(),
|
|
in_node_dims.data(),
|
|
in_node_dims.size()));
|
|
}
|
|
// Outputs Run params
|
|
if (custom_out_names.empty()) {
|
|
for(size_t i = 0; i < num_out; ++i) {
|
|
auto out_node_name_p = session.GetOutputNameAllocated(i, allocator);
|
|
out_node_names.emplace_back(out_node_name_p.get());
|
|
}
|
|
} else {
|
|
out_node_names = std::move(custom_out_names);
|
|
}
|
|
// Input/output order by names
|
|
const auto in_run_names = getCharNames(in_node_names);
|
|
const auto out_run_names = getCharNames(out_node_names);
|
|
num_out = out_run_names.size();
|
|
// Run
|
|
auto result = session.Run(Ort::RunOptions{nullptr},
|
|
in_run_names.data(),
|
|
&in_tensors.front(),
|
|
num_in,
|
|
out_run_names.data(),
|
|
num_out);
|
|
// Copy outputs
|
|
GAPI_Assert(result.size() == num_out);
|
|
for (size_t i = 0; i < num_out; ++i) {
|
|
const auto info = result[i].GetTensorTypeAndShapeInfo();
|
|
const auto shape = info.GetShape();
|
|
const auto type = toCV(info.GetElementType());
|
|
const std::vector<int> dims(shape.begin(), shape.end());
|
|
outs.emplace_back(dims, type);
|
|
copyFromONNX(result[i], outs.back());
|
|
}
|
|
}
|
|
// One input/output overload
|
|
template<typename T>
|
|
void infer(const cv::Mat& in, cv::Mat& out) {
|
|
std::vector<cv::Mat> result;
|
|
infer<T>(std::vector<cv::Mat>{in}, result);
|
|
GAPI_Assert(result.size() == 1u);
|
|
out = result.front();
|
|
}
|
|
// One input overload
|
|
template<typename T>
|
|
void infer(const cv::Mat& in,
|
|
std::vector<cv::Mat>& outs,
|
|
std::vector<std::string>&& custom_out_names = {}) {
|
|
infer<T>(std::vector<cv::Mat>{in}, outs, std::move(custom_out_names));
|
|
}
|
|
|
|
void validate() {
|
|
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
|
|
ASSERT_EQ(out_gapi.size(), out_onnx.size());
|
|
const auto size = out_gapi.size();
|
|
for (size_t i = 0; i < size; ++i) {
|
|
normAssert(out_onnx[i], out_gapi[i], "Test outputs");
|
|
}
|
|
}
|
|
|
|
void useModel(const std::string& model_name) {
|
|
model_path = findModel(model_name);
|
|
}
|
|
private:
|
|
Ort::Env env{nullptr};
|
|
Ort::MemoryInfo memory_info{nullptr};
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
Ort::SessionOptions session_options;
|
|
Ort::Session session{nullptr};
|
|
|
|
std::vector<int64_t> in_node_dims;
|
|
std::vector<std::string> in_node_names;
|
|
std::vector<std::string> out_node_names;
|
|
};
|
|
|
|
class ONNXClassification : public ONNXtest {
|
|
public:
|
|
const cv::Scalar mean = { 0.485, 0.456, 0.406 };
|
|
const cv::Scalar std = { 0.229, 0.224, 0.225 };
|
|
|
|
// Rois for InferList, InferList2
|
|
const std::vector<cv::Rect> rois = {
|
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360})
|
|
};
|
|
|
|
// FIXME(dm): There's too much "preprocess" routines in this file
|
|
// Only one must stay but better design it wisely (and later)
|
|
void preprocess(const cv::Mat& src, cv::Mat& dst, bool norm = true) {
|
|
const int new_h = 224;
|
|
const int new_w = 224;
|
|
cv::Mat tmp, cvt, rsz;
|
|
cv::resize(src, rsz, cv::Size(new_w, new_h));
|
|
rsz.convertTo(cvt, CV_32F, norm ? 1.f / 255 : 1.f);
|
|
tmp = norm
|
|
? (cvt - mean) / std
|
|
: cvt;
|
|
toCHW(tmp, dst);
|
|
dst = dst.reshape(1, {1, 3, new_h, new_w});
|
|
}
|
|
};
|
|
|
|
class ONNXMediaFrame : public ONNXClassification {
|
|
public:
|
|
const std::vector<cv::Rect> rois = {
|
|
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
|
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
|
cv::Rect(cv::Point{70, 10}, cv::Size{20, 260}),
|
|
cv::Rect(cv::Point{5, 15}, cv::Size{200, 160}),
|
|
};
|
|
const cv::Size sz{640, 480};
|
|
const cv::Mat m_in_y = initMatrixRandU(CV_8UC1, sz);
|
|
const cv::Mat m_in_uv = initMatrixRandU(CV_8UC2, sz / 2);
|
|
};
|
|
|
|
class ONNXGRayScale : public ONNXtest {
|
|
public:
|
|
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
|
const int new_h = 64;
|
|
const int new_w = 64;
|
|
cv::Mat cvc, rsz, cvt;
|
|
cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY);
|
|
cv::resize(cvc, rsz, cv::Size(new_w, new_h));
|
|
rsz.convertTo(cvt, CV_32F);
|
|
toCHW(cvt, dst);
|
|
dst = dst.reshape(1, {1, 1, new_h, new_w});
|
|
}
|
|
};
|
|
|
|
class ONNXWithRemap : public ONNXtest {
|
|
private:
|
|
size_t step_by_outs = 0;
|
|
public:
|
|
// This function checks each next cv::Mat in out_gapi vector for next call.
|
|
// end_mark is edge of correct data
|
|
template <typename T>
|
|
void validate(const T end_mark) {
|
|
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
|
|
ASSERT_EQ(out_gapi.size(), out_onnx.size());
|
|
GAPI_Assert(step_by_outs < out_gapi.size());
|
|
const T* op = out_onnx.at(step_by_outs).ptr<T>();
|
|
const T* gp = out_gapi.at(step_by_outs).ptr<T>();
|
|
// Checking that graph output larger than onnx output
|
|
const auto out_size = std::min(out_onnx.at(step_by_outs).total(), out_gapi.at(step_by_outs).total());
|
|
GAPI_Assert(out_size != 0u);
|
|
for (size_t d_idx = 0; d_idx < out_size; ++d_idx) {
|
|
if (gp[d_idx] == end_mark) break;
|
|
ASSERT_EQ(op[d_idx], gp[d_idx]);
|
|
}
|
|
++step_by_outs;
|
|
}
|
|
};
|
|
|
|
class ONNXRCNN : public ONNXWithRemap {
|
|
private:
|
|
const cv::Scalar rcnn_mean = { 102.9801, 115.9465, 122.7717 };
|
|
const float range_max = 1333;
|
|
const float range_min = 800;
|
|
public:
|
|
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
|
cv::Mat rsz, cvt, chw, mn;
|
|
const auto get_ratio = [&](const int dim) -> float {
|
|
return ((dim > range_max) || (dim < range_min))
|
|
? dim > range_max
|
|
? range_max / dim
|
|
: range_min / dim
|
|
: 1.f;
|
|
};
|
|
const auto ratio_h = get_ratio(src.rows);
|
|
const auto ratio_w = get_ratio(src.cols);
|
|
const auto new_h = static_cast<int>(ratio_h * src.rows);
|
|
const auto new_w = static_cast<int>(ratio_w * src.cols);
|
|
cv::resize(src, rsz, cv::Size(new_w, new_h));
|
|
rsz.convertTo(cvt, CV_32F, 1.f);
|
|
toCHW(cvt, chw);
|
|
mn = chw - rcnn_mean;
|
|
const int padded_h = std::ceil(new_h / 32.f) * 32;
|
|
const int padded_w = std::ceil(new_w / 32.f) * 32;
|
|
cv::Mat pad_im(cv::Size(padded_w, 3 * padded_h), CV_32F, 0.f);
|
|
pad_im(cv::Rect(0, 0, mn.cols, mn.rows)) += mn;
|
|
dst = pad_im.reshape(1, {3, padded_h, padded_w});
|
|
}
|
|
};
|
|
|
|
class ONNXYoloV3 : public ONNXWithRemap {
|
|
public:
|
|
std::vector<cv::Mat> ins;
|
|
|
|
void constructYoloInputs(const cv::Mat& src) {
|
|
const int yolo_in_h = 416;
|
|
const int yolo_in_w = 416;
|
|
cv::Mat yolov3_input, shape, prep_mat;
|
|
cv::resize(src, yolov3_input, cv::Size(yolo_in_w, yolo_in_h));
|
|
shape.create(cv::Size(2, 1), CV_32F);
|
|
float* ptr = shape.ptr<float>();
|
|
ptr[0] = src.cols;
|
|
ptr[1] = src.rows;
|
|
preprocess(yolov3_input, prep_mat);
|
|
ins = {prep_mat, shape};
|
|
}
|
|
|
|
private:
|
|
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
|
cv::Mat cvt;
|
|
src.convertTo(cvt, CV_32F, 1.f / 255.f);
|
|
toCHW(cvt, dst);
|
|
dst = dst.reshape(1, {1, 3, 416, 416});
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
TEST_F(ONNXClassification, Infer)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// ONNX_API code
|
|
cv::Mat processed_mat;
|
|
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(processed_mat, out_onnx);
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(in_mat),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXClassification, InferTensor)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// Create tensor
|
|
cv::Mat tensor;
|
|
preprocess(in_mat, tensor, false); // NO normalization for 1.0-9, see #23597
|
|
// ONNX_API code
|
|
infer<float>(tensor, out_onnx);
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(tensor),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXClassification, InferROI)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
const auto ROI = rois.at(0);
|
|
// ONNX_API code
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat(ROI), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GOpaque<cv::Rect> rect;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(in_mat, ROI),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXClassification, InferROIList)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// ONNX_API code
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(in_mat, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXClassification, Infer2ROIList)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// ONNX_API code
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GMat in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(in_mat, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXWithRemap, InferDynamicInputTensor)
|
|
{
|
|
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// Create tensor
|
|
cv::Mat cvt, rsz, tensor;
|
|
cv::resize(in_mat, rsz, cv::Size{416, 416});
|
|
rsz.convertTo(cvt, CV_32F, 1.f / 255.f);
|
|
toCHW(cvt, tensor);
|
|
tensor = tensor.reshape(1, {1, 3, 416, 416});
|
|
// ONNX_API code
|
|
infer<float>(tensor, out_onnx);
|
|
// G_API code
|
|
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<YoloNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<YoloNet>{ model_path }
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo)
|
|
.cfgOutputLayers({"out"});
|
|
comp.apply(cv::gin(tensor),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate<float>(-1.f);
|
|
}
|
|
|
|
TEST_F(ONNXGRayScale, InferImage)
|
|
{
|
|
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// ONNX_API code
|
|
cv::Mat prep_mat;
|
|
preprocess(in_mat, prep_mat);
|
|
infer<float>(prep_mat, out_onnx);
|
|
// G_API code
|
|
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<EmotionNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
|
|
.cfgNormalize({ false }); // model accepts 0..255 range in FP32;
|
|
comp.apply(cv::gin(in_mat),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXWithRemap, InferMultiOutput)
|
|
{
|
|
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// ONNX_API code
|
|
const auto prep_mat = in_mat.reshape(1, {1, in_mat.rows, in_mat.cols, in_mat.channels()});
|
|
infer<uint8_t>(prep_mat, out_onnx);
|
|
cv::Mat onnx_conv_out({1, 1, 200, 7}, CV_32F);
|
|
remapToIESSDOut({out_onnx[3], out_onnx[0], out_onnx[2], out_onnx[1]}, onnx_conv_out);
|
|
out_onnx.clear();
|
|
out_onnx.push_back(onnx_conv_out);
|
|
// G_API code
|
|
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::infer<MobileNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
auto net = cv::gapi::onnx::Params<MobileNet>{ model_path }
|
|
.cfgOutputLayers({"detection_output"})
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 1, 200, 7}}}, remapSSDPorts);
|
|
comp.apply(cv::gin(in_mat),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate<float>(-1.f);
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferBGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// ONNX_API code
|
|
cv::Mat processed_mat;
|
|
preprocess(in_mat, processed_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(processed_mat, out_onnx);
|
|
// G_API code
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(frame),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferYUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
cv::Mat processed_mat;
|
|
preprocess(pp, processed_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(processed_mat, out_onnx);
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(frame),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferROIBGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
|
// ONNX_API code
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GOpaque<cv::Rect> rect;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(frame, rois.front()),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferROIYUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
cv::Mat roi_mat;
|
|
preprocess(pp(rois.front()), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GOpaque<cv::Rect> rect;
|
|
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
|
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(frame, rois.front()),
|
|
cv::gout(out_gapi.front()),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferListBGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
|
// ONNX_API code
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferListYUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(pp(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
TEST_F(ONNXRCNN, InferWithDisabledOut)
|
|
{
|
|
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
cv::Mat pp;
|
|
preprocess(in_mat, pp);
|
|
// ONNX_API code
|
|
infer<float>(pp, out_onnx, {"6379", "6383"});
|
|
// G_API code
|
|
using FRCNNOUT = std::tuple<cv::GMat, cv::GMat>;
|
|
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
|
|
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
|
|
.cfgOutputLayers({"out1", "out2"})
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
|
|
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsDO, {"6383", "6379"});
|
|
cv::GMat in, out1, out2;
|
|
std::tie(out1, out2) = cv::gapi::infer<FasterRCNN>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2));
|
|
out_gapi.resize(num_out);
|
|
comp.apply(cv::gin(pp),
|
|
cv::gout(out_gapi[0], out_gapi[1]),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate<float>(-1.f);
|
|
validate<float>(-1.f);
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferList2BGR)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
const auto frame = MediaFrame::Create<TestMediaBGR>(in_mat);
|
|
// ONNX_API code
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(in_mat(rois[i]), roi_mat, false); // NO normalization for 1.0-9, see #23597
|
|
infer<float>(roi_mat, out_onnx);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> {
|
|
model_path
|
|
}.cfgNormalize({false});
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXMediaFrame, InferList2YUV)
|
|
{
|
|
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
const auto frame = MediaFrame::Create<TestMediaNV12>(m_in_y, m_in_uv);
|
|
// ONNX_API code
|
|
cv::Mat pp;
|
|
cvtColorTwoPlane(m_in_y, m_in_uv, pp, cv::COLOR_YUV2BGR_NV12);
|
|
for (size_t i = 0; i < rois.size(); ++i) {
|
|
cv::Mat roi_mat;
|
|
preprocess(pp(rois[i]), roi_mat);
|
|
infer<float>(roi_mat, out_onnx);
|
|
}
|
|
// G_API code
|
|
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
|
cv::GFrame in;
|
|
cv::GArray<cv::Rect> rr;
|
|
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
|
|
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
|
// NOTE: We have to normalize U8 tensor
|
|
// so cfgMeanStd() is here
|
|
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
|
comp.apply(cv::gin(frame, rois),
|
|
cv::gout(out_gapi),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate();
|
|
}
|
|
|
|
TEST_F(ONNXYoloV3, InferConstInput)
|
|
{
|
|
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
constructYoloInputs(in_mat);
|
|
// ONNX_API code
|
|
infer<float>(ins, out_onnx);
|
|
// G_API code
|
|
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
|
|
G_API_NET(YoloNet, <OUT(cv::GMat)>, "yolov3");
|
|
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
|
|
.constInput("image_shape", ins[1])
|
|
.cfgInputLayers({"input_1"})
|
|
.cfgOutputLayers({"out1", "out2", "out3"})
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
|
|
cv::GMatDesc{CV_32F, {1, 80, 10000}},
|
|
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
|
|
cv::GMat in, out1, out2, out3;
|
|
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
|
|
out_gapi.resize(num_out);
|
|
comp.apply(cv::gin(ins[0]),
|
|
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate<float>(-1.f);
|
|
validate<float>(-1.f);
|
|
validate<int>(-1);
|
|
}
|
|
|
|
TEST_F(ONNXYoloV3, InferBSConstInput)
|
|
{
|
|
// This test checks the case when a const input is used
|
|
// and all input layer names are specified.
|
|
// Const input has the advantage. It is expected behavior.
|
|
useModel("object_detection_segmentation/yolov3/model/yolov3-10");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
constructYoloInputs(in_mat);
|
|
// Tensor with incorrect image size
|
|
// is used for check case when InputLayers and constInput have same names
|
|
cv::Mat bad_shape;
|
|
bad_shape.create(cv::Size(2, 1), CV_32F);
|
|
float* ptr = bad_shape.ptr<float>();
|
|
ptr[0] = 590;
|
|
ptr[1] = 12;
|
|
// ONNX_API code
|
|
infer<float>(ins, out_onnx);
|
|
// G_API code
|
|
using OUT = std::tuple<cv::GMat, cv::GMat, cv::GMat>;
|
|
G_API_NET(YoloNet, <OUT(cv::GMat, cv::GMat)>, "yolov3");
|
|
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
|
|
// Data from const input will be used to infer
|
|
.constInput("image_shape", ins[1])
|
|
// image_shape - const_input has same name
|
|
.cfgInputLayers({"input_1", "image_shape"})
|
|
.cfgOutputLayers({"out1", "out2", "out3"})
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 10000, 4}},
|
|
cv::GMatDesc{CV_32F, {1, 80, 10000}},
|
|
cv::GMatDesc{CV_32S, {5, 3}}}, remapYoloV3);
|
|
cv::GMat in1, in2, out1, out2, out3;
|
|
std::tie(out1, out2, out3) = cv::gapi::infer<YoloNet>(in1, in2);
|
|
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out1, out2, out3));
|
|
out_gapi.resize(num_out);
|
|
comp.apply(cv::gin(ins[0], bad_shape),
|
|
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate<float>(-1.f);
|
|
validate<float>(-1.f);
|
|
validate<int>(-1);
|
|
}
|
|
|
|
TEST_F(ONNXRCNN, ConversionInt64to32)
|
|
{
|
|
useModel("object_detection_segmentation/faster-rcnn/model/FasterRCNN-10");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
cv::Mat dst;
|
|
preprocess(in_mat, dst);
|
|
// ONNX_API code
|
|
infer<float>(dst, out_onnx);
|
|
// G_API code
|
|
using FRCNNOUT = std::tuple<cv::GMat,cv::GMat,cv::GMat>;
|
|
G_API_NET(FasterRCNN, <FRCNNOUT(cv::GMat)>, "FasterRCNN");
|
|
auto net = cv::gapi::onnx::Params<FasterRCNN>{model_path}
|
|
.cfgOutputLayers({"out1", "out2", "out3"})
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {7,4}},
|
|
cv::GMatDesc{CV_32S, {7}},
|
|
cv::GMatDesc{CV_32F, {7}}}, remapRCNNPortsC);
|
|
cv::GMat in, out1, out2, out3;
|
|
std::tie(out1, out2, out3) = cv::gapi::infer<FasterRCNN>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3));
|
|
out_gapi.resize(num_out);
|
|
comp.apply(cv::gin(dst),
|
|
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2]),
|
|
cv::compile_args(cv::gapi::networks(net)));
|
|
// Validate
|
|
validate<float>(-1.f);
|
|
validate<int>(-1);
|
|
validate<float>(-1.f);
|
|
}
|
|
|
|
TEST_F(ONNXWithRemap, InferOutReallocation)
|
|
{
|
|
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
|
|
in_mat = cv::imread(findDataFile("cv/dpm/cat.png", false));
|
|
// G_API code
|
|
G_API_NET(MobileNet, <cv::GMat(cv::GMat)>, "ssd_mobilenet");
|
|
auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
|
|
.cfgOutputLayers({"detection_boxes"})
|
|
.cfgPostProc({cv::GMatDesc{CV_32F, {1,100,4}}}, reallocSSDPort);
|
|
cv::GMat in;
|
|
cv::GMat out1;
|
|
out1 = cv::gapi::infer<MobileNet>(in);
|
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out1));
|
|
EXPECT_THROW(comp.apply(cv::gin(in_mat),
|
|
cv::gout(out_gapi[0]),
|
|
cv::compile_args(cv::gapi::networks(net))), std::exception);
|
|
}
|
|
|
|
} // namespace opencv_test
|
|
|
|
#endif // HAVE_ONNX
|