opencv/modules/core/test/test_eigen.cpp
2012-01-25 13:41:48 +00:00

365 lines
12 KiB
C++

#include "test_precomp.hpp"
#include <time.h>
using namespace cv;
using namespace std;
#define sign(a) a > 0 ? 1 : a == 0 ? 0 : -1
#define CORE_EIGEN_ERROR_COUNT 1
#define CORE_EIGEN_ERROR_SIZE 2
#define CORE_EIGEN_ERROR_DIFF 3
#define CORE_EIGEN_ERROR_ORTHO 4
#define CORE_EIGEN_ERROR_ORDER 5
#define MESSAGE_ERROR_COUNT "Matrix of eigen values must have the same rows as source matrix and 1 column."
#define MESSAGE_ERROR_SIZE "Source matrix and matrix of eigen vectors must have the same sizes."
#define MESSAGE_ERROR_DIFF_1 "Accurasy of eigen values computing less than required."
#define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required."
#define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal."
#define MESSAGE_ERROR_ORDER "Eigen values are not sorted in ascending order."
const size_t COUNT_NORM_TYPES = 3;
const size_t NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};
enum TASK_TYPE_EIGEN {VALUES, VECTORS};
class Core_EigenTest: public cvtest::BaseTest
{
public:
Core_EigenTest();
~Core_EigenTest();
protected:
bool test_values(const cv::Mat& src); // complex test for eigen without vectors
bool check_full(int type); // compex test for symmetric matrix
virtual void run (int) = 0; // main testing method
private:
float eps_val_32, eps_vec_32;
float eps_val_64, eps_vec_64;
bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index = -1, int high_index = -1);
bool check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index = -1, int high_index = -1);
bool check_pairs_order(const cv::Mat& eigen_values); // checking order of eigen values & vectors (it should be none up)
bool check_orthogonality(const cv::Mat& U); // checking is matrix of eigen vectors orthogonal
bool test_pairs(const cv::Mat& src); // complex test for eigen with vectors
void print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff);
};
class Core_EigenTest_Scalar : public Core_EigenTest
{
public:
Core_EigenTest_Scalar() : Core_EigenTest() {}
~Core_EigenTest_Scalar();
virtual void run(int) = 0;
};
class Core_EigenTest_Scalar_32 : public Core_EigenTest_Scalar
{
public:
Core_EigenTest_Scalar_32() : Core_EigenTest_Scalar() {}
~Core_EigenTest_Scalar_32();
void run(int);
};
class Core_EigenTest_Scalar_64 : public Core_EigenTest_Scalar
{
public:
Core_EigenTest_Scalar_64() : Core_EigenTest_Scalar() {}
~Core_EigenTest_Scalar_64();
void run(int);
};
class Core_EigenTest_32 : public Core_EigenTest
{
public:
Core_EigenTest_32(): Core_EigenTest() {}
~Core_EigenTest_32() {}
void run(int);
};
class Core_EigenTest_64 : public Core_EigenTest
{
public:
Core_EigenTest_64(): Core_EigenTest() {}
~Core_EigenTest_64() {}
void run(int);
};
Core_EigenTest_Scalar::~Core_EigenTest_Scalar() {}
Core_EigenTest_Scalar_32::~Core_EigenTest_Scalar_32() {}
Core_EigenTest_Scalar_64::~Core_EigenTest_Scalar_64() {}
void Core_EigenTest_Scalar_32::run(int)
{
float value = cv::randu<float>();
cv::Mat src(1, 1, CV_32FC1, Scalar::all((float)value));
test_values(src);
src.~Mat();
}
void Core_EigenTest_Scalar_64::run(int)
{
float value = cv::randu<float>();
cv::Mat src(1, 1, CV_64FC1, Scalar::all((double)value));
test_values(src);
src.~Mat();
}
void Core_EigenTest_32::run(int) { check_full(CV_32FC1); }
void Core_EigenTest_64::run(int) { check_full(CV_64FC1); }
Core_EigenTest::Core_EigenTest() : eps_val_32(1e-3), eps_vec_32(1e-2), eps_val_64(1e-4), eps_vec_64(1e-3) {}
Core_EigenTest::~Core_EigenTest() {}
bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, int low_index, int high_index)
{
int n = src.rows, s = sign(high_index);
if (!( (evalues.rows == n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)))) && (evalues.cols == 1)))
{
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
return false;
}
return true;
}
bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues, const cv::Mat& evectors, int low_index, int high_index)
{
int n = src.rows, s = sign(high_index);
int right_eigen_pair_count = n - max<int>(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1)));
if (!((evectors.rows == right_eigen_pair_count) && (evectors.cols == right_eigen_pair_count)))
{
std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl;
std::cout << "Number of rows: " << evectors.rows << " Number of cols: " << evectors.cols << endl;
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
CV_Error (CORE_EIGEN_ERROR_SIZE, MESSAGE_ERROR_SIZE);
return false;
}
if (!((evalues.rows == right_eigen_pair_count) && (evalues.cols == 1)))
{
std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl;
std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl;
std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl;
CV_Error (CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT);
return false;
}
return true;
}
void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src, double diff, double max_diff)
{
switch (NORM_TYPE[norm_idx])
{
case cv::NORM_L1: {std::cout << "L1"; break;}
case cv::NORM_L2: {std::cout << "L2"; break;}
case cv::NORM_INF: {std::cout << "INF"; break;}
default: break;
}
cout << "-criteria... " << endl;
cout << "Source size: " << src.rows << " * " << src.cols << endl;
cout << "Difference between original eigen vectors matrix and result: " << diff << endl;
cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
}
bool Core_EigenTest::check_orthogonality(const cv::Mat& U)
{
int type = U.type();
double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;
cv::Mat UUt; cv::mulTransposed(U, UUt, false);
cv::Mat E = Mat::eye(U.rows, U.cols, type);
for (size_t i = 0; i < COUNT_NORM_TYPES; ++i)
{
double diff = cv::norm(UUt, E, NORM_TYPE[i]);
if (diff > eps_vec)
{
std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": ";
print_information(i, U, diff, eps_vec);
CV_Error(CORE_EIGEN_ERROR_ORTHO, MESSAGE_ERROR_ORTHO);
return false;
}
}
return true;
}
bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
{
switch (eigen_values.type())
{
case CV_32FC1:
{
for (size_t i = 0; i < eigen_values.total() - 1; ++i)
if (!(eigen_values.at<float>(i, 0) > eigen_values.at<float>(i+1, 0)))
{
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl;
std::cout << endl;
CV_Error(CORE_EIGEN_ERROR_ORDER, MESSAGE_ERROR_ORDER);
return false;
}
break;
}
case CV_64FC1:
{
for (size_t i = 0; i < eigen_values.total() - 1; ++i)
if (!(eigen_values.at<double>(i, 0) > eigen_values.at<double>(i+1, 0)))
{
std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl;
std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl;
std::cout << endl;
CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in ascending order.");
return false;
}
break;
}
default:;
}
return true;
}
bool Core_EigenTest::test_pairs(const cv::Mat& src)
{
int type = src.type();
double eps_vec = type == CV_32FC1 ? eps_vec_32 : eps_vec_64;
cv::Mat eigen_values, eigen_vectors;
cv::eigen(src, true, eigen_values, eigen_vectors);
if (!check_pair_count(src, eigen_values, eigen_vectors)) return false;
if (!check_orthogonality (eigen_vectors)) return false;
if (!check_pairs_order(eigen_values)) return false;
cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t);
cv::Mat src_evec(src.rows, src.cols, type);
src_evec = src*eigen_vectors_t;
cv::Mat eval_evec(src.rows, src.cols, type);
switch (type)
{
case CV_32FC1:
{
for (int i = 0; i < src.cols; ++i)
{
cv::Mat tmp = eigen_values.at<float>(i, 0) * eigen_vectors_t.col(i);
for (int j = 0; j < src.rows; ++j) eval_evec.at<float>(j, i) = tmp.at<float>(j, 0);
}
break;
}
case CV_64FC1:
{
for (int i = 0; i < src.cols; ++i)
{
cv::Mat tmp = eigen_values.at<double>(i, 0) * eigen_vectors_t.col(i);
for (int j = 0; j < src.rows; ++j) eval_evec.at<double>(j, i) = tmp.at<double>(j, 0);
}
break;
}
default:;
}
cv::Mat disparity = src_evec - eval_evec;
for (size_t i = 0; i < COUNT_NORM_TYPES; ++i)
{
double diff = cv::norm(disparity, NORM_TYPE[i]);
if (diff > eps_vec)
{
std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": ";
print_information(i, src, diff, eps_vec);
CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_2);
return false;
}
}
return true;
}
bool Core_EigenTest::test_values(const cv::Mat& src)
{
int type = src.type();
double eps_val = type == CV_32FC1 ? eps_val_32 : eps_val_64;
cv::Mat eigen_values_1, eigen_values_2, eigen_vectors;
if (!test_pairs(src)) return false;
cv::eigen(src, true, eigen_values_1, eigen_vectors);
cv::eigen(src, false, eigen_values_2, eigen_vectors);
if (!check_pair_count(src, eigen_values_2)) return false;
for (size_t i = 0; i < COUNT_NORM_TYPES; ++i)
{
double diff = cv::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i]);
if (diff > eps_val)
{
std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": ";
print_information(i, src, diff, eps_val);
CV_Error(CORE_EIGEN_ERROR_DIFF, MESSAGE_ERROR_DIFF_1);
return false;
}
}
return true;
}
bool Core_EigenTest::check_full(int type)
{
const int MATRIX_COUNT = 500;
const int MAX_DEGREE = 7;
srand(time(0));
for (int i = 1; i <= MATRIX_COUNT; ++i)
{
size_t src_size = (int)(std::pow(2.0, (rand()%MAX_DEGREE+1)*1.0));
cv::Mat src(src_size, src_size, type);
for (int j = 0; j < src.rows; ++j)
for (int k = j; k < src.cols; ++k)
if (type == CV_32FC1) src.at<float>(k, j) = src.at<float>(j, k) = cv::randu<float>();
else src.at<double>(k, j) = src.at<double>(j, k) = cv::randu<double>();
if (!test_values(src)) return false;
src.~Mat();
}
return true;
}
// TEST(Core_Eigen_Scalar_32, accuracy) {Core_EigenTest_Scalar_32 test; test.safe_run(); }
// TEST(Core_Eigen_Scalar_64, accuracy) {Core_EigenTest_Scalar_64 test; test.safe_run(); }
TEST(Core_Eigen_32, accuracy) { Core_EigenTest_32 test; test.safe_run(); }
TEST(Core_Eigen_64, accuracy) { Core_EigenTest_64 test; test.safe_run(); }