opencv/modules/features2d/src/affine_feature.cpp
Yosshi999 922108060d
Merge pull request #17907 from Yosshi999:gsoc_asift-py2cpp
* Implement ASIFT in C++

* '>>' should be '> >' within a nested template

* add a sample for asift usage

* bugfix empty keypoints cause crash

* simpler initialization for mask

* suppress the number of lines

* correct tex document

* type casting

* add descriptorsize for asift

* smaller testdata for asift

* more smaller test data

* add OpenCV short license header
2020-08-03 14:11:55 +00:00

359 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// This file is based on code issued with the following license.
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
* Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
* Copyright (C) 2013, Evgeny Toropov, all rights reserved.
* Third party copyrights are property of their respective owners.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * The name of the copyright holders may not be used to endorse
* or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/*
Guoshen Yu, Jean-Michel Morel, ASIFT: An Algorithm for Fully Affine
Invariant Comparison, Image Processing On Line, 1 (2011), pp. 1138.
https://doi.org/10.5201/ipol.2011.my-asift
*/
#include "precomp.hpp"
#include <iostream>
namespace cv {
class AffineFeature_Impl CV_FINAL : public AffineFeature
{
public:
explicit AffineFeature_Impl(const Ptr<Feature2D>& backend,
int maxTilt, int minTilt, float tiltStep, float rotateStepBase);
int descriptorSize() const CV_OVERRIDE
{
return backend_->descriptorSize();
}
int descriptorType() const CV_OVERRIDE
{
return backend_->descriptorType();
}
int defaultNorm() const CV_OVERRIDE
{
return backend_->defaultNorm();
}
void detectAndCompute(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints,
OutputArray descriptors, bool useProvidedKeypoints=false) CV_OVERRIDE;
void setViewParams(const std::vector<float>& tilts, const std::vector<float>& rolls) CV_OVERRIDE;
void getViewParams(std::vector<float>& tilts, std::vector<float>& rolls) const CV_OVERRIDE;
protected:
void splitKeypointsByView(const std::vector<KeyPoint>& keypoints_,
std::vector< std::vector<KeyPoint> >& keypointsByView) const;
const Ptr<Feature2D> backend_;
int maxTilt_;
int minTilt_;
float tiltStep_;
float rotateStepBase_;
// Tilt factors.
std::vector<float> tilts_;
// Roll factors.
std::vector<float> rolls_;
private:
AffineFeature_Impl(const AffineFeature_Impl &); // copy disabled
AffineFeature_Impl& operator=(const AffineFeature_Impl &); // assign disabled
};
AffineFeature_Impl::AffineFeature_Impl(const Ptr<FeatureDetector>& backend,
int maxTilt, int minTilt, float tiltStep, float rotateStepBase)
: backend_(backend), maxTilt_(maxTilt), minTilt_(minTilt), tiltStep_(tiltStep), rotateStepBase_(rotateStepBase)
{
int i = minTilt_;
if( i == 0 )
{
tilts_.push_back(1);
rolls_.push_back(0);
i++;
}
float tilt = 1;
for( ; i <= maxTilt_; i++ )
{
tilt *= tiltStep_;
float rotateStep = rotateStepBase_ / tilt;
int rollN = cvFloor(180.0f / rotateStep);
if( rollN * rotateStep == 180.0f )
rollN--;
for( int j = 0; j <= rollN; j++ )
{
tilts_.push_back(tilt);
rolls_.push_back(rotateStep * j);
}
}
}
void AffineFeature_Impl::setViewParams(const std::vector<float>& tilts,
const std::vector<float>& rolls)
{
CV_Assert(tilts.size() == rolls.size());
tilts_ = tilts;
rolls_ = rolls;
}
void AffineFeature_Impl::getViewParams(std::vector<float>& tilts,
std::vector<float>& rolls) const
{
tilts = tilts_;
rolls = rolls_;
}
void AffineFeature_Impl::splitKeypointsByView(const std::vector<KeyPoint>& keypoints_,
std::vector< std::vector<KeyPoint> >& keypointsByView) const
{
for( size_t i = 0; i < keypoints_.size(); i++ )
{
const KeyPoint& kp = keypoints_[i];
CV_Assert( kp.class_id >= 0 && kp.class_id < (int)tilts_.size() );
keypointsByView[kp.class_id].push_back(kp);
}
}
class skewedDetectAndCompute : public ParallelLoopBody
{
public:
skewedDetectAndCompute(
const std::vector<float>& _tilts,
const std::vector<float>& _rolls,
std::vector< std::vector<KeyPoint> >& _keypointsCollection,
std::vector<Mat>& _descriptorCollection,
const Mat& _image,
const Mat& _mask,
const bool _do_keypoints,
const bool _do_descriptors,
const Ptr<Feature2D>& _backend)
: tilts(_tilts),
rolls(_rolls),
keypointsCollection(_keypointsCollection),
descriptorCollection(_descriptorCollection),
image(_image),
mask(_mask),
do_keypoints(_do_keypoints),
do_descriptors(_do_descriptors),
backend(_backend) {}
void operator()( const cv::Range& range ) const CV_OVERRIDE
{
CV_TRACE_FUNCTION();
const int begin = range.start;
const int end = range.end;
for( int a = begin; a < end; a++ )
{
Mat warpedImage, warpedMask;
Matx23f pose, invPose;
affineSkew(tilts[a], rolls[a], warpedImage, warpedMask, pose);
invertAffineTransform(pose, invPose);
std::vector<KeyPoint> wKeypoints;
Mat wDescriptors;
if( !do_keypoints )
{
const std::vector<KeyPoint>& keypointsInView = keypointsCollection[a];
if( keypointsInView.size() == 0 ) // when there are no keypoints in this affine view
continue;
std::vector<Point2f> pts_, pts;
KeyPoint::convert(keypointsInView, pts_);
transform(pts_, pts, pose);
wKeypoints.resize(keypointsInView.size());
for( size_t wi = 0; wi < wKeypoints.size(); wi++ )
{
wKeypoints[wi] = keypointsInView[wi];
wKeypoints[wi].pt = pts[wi];
}
}
backend->detectAndCompute(warpedImage, warpedMask, wKeypoints, wDescriptors, !do_keypoints);
if( do_keypoints )
{
// KeyPointsFilter::runByPixelsMask( wKeypoints, warpedMask );
if( wKeypoints.size() == 0 )
{
keypointsCollection[a].clear();
continue;
}
std::vector<Point2f> pts_, pts;
KeyPoint::convert(wKeypoints, pts_);
transform(pts_, pts, invPose);
keypointsCollection[a].resize(wKeypoints.size());
for( size_t wi = 0; wi < wKeypoints.size(); wi++ )
{
keypointsCollection[a][wi] = wKeypoints[wi];
keypointsCollection[a][wi].pt = pts[wi];
keypointsCollection[a][wi].class_id = a;
}
}
if( do_descriptors )
wDescriptors.copyTo(descriptorCollection[a]);
}
}
private:
void affineSkew(float tilt, float phi,
Mat& warpedImage, Mat& warpedMask, Matx23f& pose) const
{
int h = image.size().height;
int w = image.size().width;
Mat rotImage;
Mat mask0;
if( mask.empty() )
mask0 = Mat(h, w, CV_8UC1, 255);
else
mask0 = mask;
pose = Matx23f(1,0,0,
0,1,0);
if( phi == 0 )
image.copyTo(rotImage);
else
{
phi = phi * (float)CV_PI / 180;
float s = std::sin(phi);
float c = std::cos(phi);
Matx22f A(c, -s, s, c);
Matx<float, 4, 2> corners(0, 0, (float)w, 0, (float)w,(float)h, 0, (float)h);
Mat tf(corners * A.t());
Mat tcorners;
tf.convertTo(tcorners, CV_32S);
Rect rect = boundingRect(tcorners);
h = rect.height; w = rect.width;
pose = Matx23f(c, -s, -(float)rect.x,
s, c, -(float)rect.y);
warpAffine(image, rotImage, pose, Size(w, h), INTER_LINEAR, BORDER_REPLICATE);
}
if( tilt == 1 )
warpedImage = rotImage;
else
{
float s = 0.8f * sqrt(tilt * tilt - 1);
GaussianBlur(rotImage, rotImage, Size(0, 0), s, 0.01);
resize(rotImage, warpedImage, Size(0, 0), 1.0/tilt, 1.0, INTER_NEAREST);
pose(0, 0) /= tilt;
pose(0, 1) /= tilt;
pose(0, 2) /= tilt;
}
if( phi != 0 || tilt != 1 )
warpAffine(mask0, warpedMask, pose, warpedImage.size(), INTER_NEAREST);
}
const std::vector<float>& tilts;
const std::vector<float>& rolls;
std::vector< std::vector<KeyPoint> >& keypointsCollection;
std::vector<Mat>& descriptorCollection;
const Mat& image;
const Mat& mask;
const bool do_keypoints;
const bool do_descriptors;
const Ptr<Feature2D>& backend;
};
void AffineFeature_Impl::detectAndCompute(InputArray _image, InputArray _mask,
std::vector<KeyPoint>& keypoints,
OutputArray _descriptors,
bool useProvidedKeypoints)
{
CV_TRACE_FUNCTION();
bool do_keypoints = !useProvidedKeypoints;
bool do_descriptors = _descriptors.needed();
Mat image = _image.getMat(), mask = _mask.getMat();
Mat descriptors;
if( (!do_keypoints && !do_descriptors) || _image.empty() )
return;
std::vector< std::vector<KeyPoint> > keypointsCollection(tilts_.size());
std::vector< Mat > descriptorCollection(tilts_.size());
if( do_keypoints )
keypoints.clear();
else
splitKeypointsByView(keypoints, keypointsCollection);
parallel_for_(Range(0, (int)tilts_.size()), skewedDetectAndCompute(tilts_, rolls_, keypointsCollection, descriptorCollection,
image, mask, do_keypoints, do_descriptors, backend_));
if( do_keypoints )
for( size_t i = 0; i < keypointsCollection.size(); i++ )
{
const std::vector<KeyPoint>& keys = keypointsCollection[i];
keypoints.insert(keypoints.end(), keys.begin(), keys.end());
}
if( do_descriptors )
{
_descriptors.create((int)keypoints.size(), backend_->descriptorSize(), backend_->descriptorType());
descriptors = _descriptors.getMat();
int iter = 0;
for( size_t i = 0; i < descriptorCollection.size(); i++ )
{
const Mat& descs = descriptorCollection[i];
if( descs.empty() )
continue;
Mat roi(descriptors, Rect(0, iter, descriptors.cols, descs.rows));
descs.copyTo(roi);
iter += descs.rows;
}
}
}
Ptr<AffineFeature> AffineFeature::create(const Ptr<Feature2D>& backend,
int maxTilt, int minTilt, float tiltStep, float rotateStepBase)
{
CV_Assert(minTilt < maxTilt);
CV_Assert(tiltStep > 0);
CV_Assert(rotateStepBase > 0);
return makePtr<AffineFeature_Impl>(backend, maxTilt, minTilt, tiltStep, rotateStepBase);
}
String AffineFeature::getDefaultName() const
{
return (Feature2D::getDefaultName() + ".AffineFeature");
}
} // namespace