mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
322 lines
12 KiB
C++
322 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
#ifndef DEBUG_IMAGES
|
|
#define DEBUG_IMAGES 0
|
|
#endif
|
|
|
|
//#define GENERATE_DATA // generate data in debug mode via CPU code path (without IPP / OpenCL and other accelerators)
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
static string getTestCaseName(const string& picture_name, double minDist, double edgeThreshold, double accumThreshold, int minRadius, int maxRadius)
|
|
{
|
|
string results_name = cv::format("circles_%s_%.0f_%.0f_%.0f_%d_%d",
|
|
picture_name.c_str(), minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
|
string temp(results_name);
|
|
size_t pos = temp.find_first_of("\\/.");
|
|
while (pos != string::npos) {
|
|
temp.replace(pos, 1, "_");
|
|
pos = temp.find_first_of("\\/.");
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
#if DEBUG_IMAGES
|
|
static void highlightCircles(const string& imagePath, const vector<Vec3f>& circles, const string& outputImagePath)
|
|
{
|
|
Mat imgDebug = imread(imagePath, IMREAD_COLOR);
|
|
const Scalar yellow(0, 255, 255);
|
|
|
|
for (vector<Vec3f>::const_iterator iter = circles.begin(); iter != circles.end(); ++iter)
|
|
{
|
|
const Vec3f& circle = *iter;
|
|
float x = circle[0];
|
|
float y = circle[1];
|
|
float r = max(circle[2], 2.0f);
|
|
cv::circle(imgDebug, Point(int(x), int(y)), int(r), yellow);
|
|
}
|
|
imwrite(outputImagePath, imgDebug);
|
|
}
|
|
#endif
|
|
|
|
typedef tuple<string, double, double, double, int, int> Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t;
|
|
class HoughCirclesTestFixture : public testing::TestWithParam<Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t>
|
|
{
|
|
string picture_name;
|
|
double minDist;
|
|
double edgeThreshold;
|
|
double accumThreshold;
|
|
int minRadius;
|
|
int maxRadius;
|
|
|
|
public:
|
|
HoughCirclesTestFixture()
|
|
{
|
|
picture_name = get<0>(GetParam());
|
|
minDist = get<1>(GetParam());
|
|
edgeThreshold = get<2>(GetParam());
|
|
accumThreshold = get<3>(GetParam());
|
|
minRadius = get<4>(GetParam());
|
|
maxRadius = get<5>(GetParam());
|
|
}
|
|
|
|
HoughCirclesTestFixture(const string& picture, double minD, double edge, double accum, int minR, int maxR) :
|
|
picture_name(picture), minDist(minD), edgeThreshold(edge), accumThreshold(accum), minRadius(minR), maxRadius(maxR)
|
|
{
|
|
}
|
|
|
|
template <typename CircleType>
|
|
void run_test(const char* xml_name)
|
|
{
|
|
string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
|
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
|
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
|
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
|
|
|
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
|
|
|
vector<CircleType> circles;
|
|
const double dp = 1.0;
|
|
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
|
|
|
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
|
#if DEBUG_IMAGES
|
|
highlightCircles(filename, circles, imgProc + test_case_name + ".png");
|
|
#endif
|
|
|
|
string xml = imgProc + xml_name;
|
|
#ifdef GENERATE_DATA
|
|
{
|
|
FileStorage fs(xml, FileStorage::READ);
|
|
ASSERT_TRUE(!fs.isOpened() || fs[test_case_name].empty());
|
|
}
|
|
{
|
|
FileStorage fs(xml, FileStorage::APPEND);
|
|
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
|
fs << test_case_name << circles;
|
|
}
|
|
#else
|
|
FileStorage fs(xml, FileStorage::READ);
|
|
FileNode node = fs[test_case_name];
|
|
ASSERT_FALSE(node.empty()) << "Missing test data: " << test_case_name << std::endl << "XML: " << xml;
|
|
vector<CircleType> exp_circles;
|
|
read(fs[test_case_name], exp_circles, vector<CircleType>());
|
|
fs.release();
|
|
EXPECT_EQ(exp_circles.size(), circles.size());
|
|
#endif
|
|
}
|
|
};
|
|
|
|
TEST_P(HoughCirclesTestFixture, regression)
|
|
{
|
|
run_test<Vec3f>("HoughCircles.xml");
|
|
}
|
|
|
|
TEST_P(HoughCirclesTestFixture, regression4f)
|
|
{
|
|
run_test<Vec4f>("HoughCircles4f.xml");
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgProc, HoughCirclesTestFixture, testing::Combine(
|
|
// picture_name:
|
|
testing::Values("imgproc/stuff.jpg"),
|
|
// minDist:
|
|
testing::Values(20),
|
|
// edgeThreshold:
|
|
testing::Values(20),
|
|
// accumThreshold:
|
|
testing::Values(30),
|
|
// minRadius:
|
|
testing::Values(20),
|
|
// maxRadius:
|
|
testing::Values(200)
|
|
));
|
|
|
|
|
|
class HoughCirclesTest : public testing::TestWithParam<HoughModes>
|
|
{
|
|
protected:
|
|
HoughModes method;
|
|
public:
|
|
HoughCirclesTest() { method = GetParam(); }
|
|
};
|
|
|
|
TEST_P(HoughCirclesTest, DefaultMaxRadius)
|
|
{
|
|
string picture_name = "imgproc/stuff.jpg";
|
|
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
|
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
|
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
|
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
|
|
|
double dp = 1.0;
|
|
double minDist = 20.0;
|
|
double edgeThreshold = 20.0;
|
|
double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.;
|
|
int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20;
|
|
int maxRadius = 0;
|
|
|
|
vector<Vec3f> circles;
|
|
vector<Vec4f> circles4f;
|
|
HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
|
|
HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
|
|
|
|
#if DEBUG_IMAGES
|
|
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
|
highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png");
|
|
#endif
|
|
|
|
int maxDimension = std::max(src.rows, src.cols);
|
|
|
|
if(method == HOUGH_GRADIENT_ALT)
|
|
{
|
|
EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles";
|
|
}
|
|
else
|
|
{
|
|
EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
|
|
}
|
|
|
|
for (size_t i = 0; i < circles.size(); ++i)
|
|
{
|
|
EXPECT_GE(circles[i][2], minRadius) << "Radius should be >= minRadius";
|
|
EXPECT_LE(circles[i][2], maxDimension) << "Radius should be <= max image dimension";
|
|
}
|
|
}
|
|
|
|
TEST_P(HoughCirclesTest, CentersOnly)
|
|
{
|
|
string picture_name = "imgproc/stuff.jpg";
|
|
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
|
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
|
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
|
|
|
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
|
double dp = 1.0;
|
|
double minDist = 20.0;
|
|
double edgeThreshold = 20.0;
|
|
double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.;
|
|
int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20;
|
|
int maxRadius = -1;
|
|
|
|
vector<Vec3f> circles;
|
|
vector<Vec4f> circles4f;
|
|
|
|
HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
|
|
HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
|
|
|
|
#if DEBUG_IMAGES
|
|
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
|
highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png");
|
|
#endif
|
|
|
|
if(method == HOUGH_GRADIENT_ALT)
|
|
{
|
|
EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles";
|
|
}
|
|
else
|
|
{
|
|
EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
|
|
}
|
|
|
|
for (size_t i = 0; i < circles.size(); ++i)
|
|
{
|
|
if( method == HOUGH_GRADIENT )
|
|
{
|
|
EXPECT_EQ(circles[i][2], 0.0f) << "Did not ask for radius";
|
|
}
|
|
EXPECT_EQ(circles[i][0], circles4f[i][0]);
|
|
EXPECT_EQ(circles[i][1], circles4f[i][1]);
|
|
EXPECT_EQ(circles[i][2], circles4f[i][2]);
|
|
}
|
|
}
|
|
|
|
TEST_P(HoughCirclesTest, ManySmallCircles)
|
|
{
|
|
string picture_name = "imgproc/beads.jpg";
|
|
|
|
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
|
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
|
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
|
|
|
const double dp = method == HOUGH_GRADIENT_ALT ? 1.5 : 1.0;
|
|
double minDist = 10;
|
|
double edgeThreshold = 90;
|
|
double accumThreshold = 11;
|
|
double minCos2 = 0.85;
|
|
double param2 = method == HOUGH_GRADIENT_ALT ? minCos2 : accumThreshold;
|
|
int minRadius = 7;
|
|
int maxRadius = 18;
|
|
int ncircles_min = method == HOUGH_GRADIENT_ALT ? 2000 : 3000;
|
|
|
|
Mat src_smooth;
|
|
if( method == HOUGH_GRADIENT_ALT )
|
|
GaussianBlur(src, src_smooth, Size(7, 7), 1.5, 1.5);
|
|
else
|
|
src.copyTo(src_smooth);
|
|
vector<Vec3f> circles;
|
|
vector<Vec4f> circles4f;
|
|
HoughCircles(src_smooth, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
|
|
HoughCircles(src_smooth, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius);
|
|
|
|
#if DEBUG_IMAGES
|
|
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
|
string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
|
highlightCircles(filename, circles, imgProc + test_case_name + ".png");
|
|
#endif
|
|
|
|
EXPECT_GT(circles.size(), size_t(ncircles_min)) << "Should find a lot of circles";
|
|
EXPECT_EQ(circles.size(), circles4f.size());
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(HoughGradient, HoughCirclesTest, testing::Values(HOUGH_GRADIENT));
|
|
INSTANTIATE_TEST_CASE_P(HoughGradientAlt, HoughCirclesTest, testing::Values(HOUGH_GRADIENT_ALT));
|
|
|
|
}} // namespace
|