opencv/samples/c/mushroom.cpp

315 lines
10 KiB
C++

#include "ml.h"
#include <stdio.h>
/*
The sample demonstrates how to build a decision tree for classifying mushrooms.
It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and Computer Science.
*/
// loads the mushroom database, which is a text file, containing
// one training sample per row, all the input variables and the output variable are categorical,
// the values are encoded by characters.
int mushroom_read_database( const char* filename, CvMat** data, CvMat** missing, CvMat** responses )
{
const int M = 1024;
FILE* f = fopen( filename, "rt" );
CvMemStorage* storage;
CvSeq* seq;
char buf[M+2], *ptr;
float* el_ptr;
CvSeqReader reader;
int i, j, var_count = 0;
if( !f )
return 0;
// read the first line and determine the number of variables
if( !fgets( buf, M, f ))
{
fclose(f);
return 0;
}
for( ptr = buf; *ptr != '\0'; ptr++ )
var_count += *ptr == ',';
assert( ptr - buf == (var_count+1)*2 );
// create temporary memory storage to store the whole database
el_ptr = new float[var_count+1];
storage = cvCreateMemStorage();
seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage );
for(;;)
{
for( i = 0; i <= var_count; i++ )
{
int c = buf[i*2];
el_ptr[i] = c == '?' ? -1.f : (float)c;
}
if( i != var_count+1 )
break;
cvSeqPush( seq, el_ptr );
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
break;
}
fclose(f);
// allocate the output matrices and copy the base there
*data = cvCreateMat( seq->total, var_count, CV_32F );
*missing = cvCreateMat( seq->total, var_count, CV_8U );
*responses = cvCreateMat( seq->total, 1, CV_32F );
cvStartReadSeq( seq, &reader );
for( i = 0; i < seq->total; i++ )
{
const float* sdata = (float*)reader.ptr + 1;
float* ddata = data[0]->data.fl + var_count*i;
float* dr = responses[0]->data.fl + i;
uchar* dm = missing[0]->data.ptr + var_count*i;
for( j = 0; j < var_count; j++ )
{
ddata[j] = sdata[j];
dm[j] = sdata[j] < 0;
}
*dr = sdata[-1];
CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
}
cvReleaseMemStorage( &storage );
delete el_ptr;
return 1;
}
CvDTree* mushroom_create_dtree( const CvMat* data, const CvMat* missing,
const CvMat* responses, float p_weight )
{
CvDTree* dtree;
CvMat* var_type;
int i, hr1 = 0, hr2 = 0, p_total = 0;
float priors[] = { 1, p_weight };
var_type = cvCreateMat( data->cols + 1, 1, CV_8U );
cvSet( var_type, cvScalarAll(CV_VAR_CATEGORICAL) ); // all the variables are categorical
dtree = new CvDTree;
dtree->train( data, CV_ROW_SAMPLE, responses, 0, 0, var_type, missing,
CvDTreeParams( 8, // max depth
10, // min sample count
0, // regression accuracy: N/A here
true, // compute surrogate split, as we have missing data
15, // max number of categories (use sub-optimal algorithm for larger numbers)
10, // the number of cross-validation folds
true, // use 1SE rule => smaller tree
true, // throw away the pruned tree branches
priors // the array of priors, the bigger p_weight, the more attention
// to the poisonous mushrooms
// (a mushroom will be judjed to be poisonous with bigger chance)
));
// compute hit-rate on the training database, demonstrates predict usage.
for( i = 0; i < data->rows; i++ )
{
CvMat sample, mask;
cvGetRow( data, &sample, i );
cvGetRow( missing, &mask, i );
double r = dtree->predict( &sample, &mask )->value;
int d = fabs(r - responses->data.fl[i]) >= FLT_EPSILON;
if( d )
{
if( r != 'p' )
hr1++;
else
hr2++;
}
p_total += responses->data.fl[i] == 'p';
}
printf( "Results on the training database:\n"
"\tPoisonous mushrooms mis-predicted: %d (%g%%)\n"
"\tFalse-alarms: %d (%g%%)\n", hr1, (double)hr1*100/p_total,
hr2, (double)hr2*100/(data->rows - p_total) );
cvReleaseMat( &var_type );
return dtree;
}
static const char* var_desc[] =
{
"cap shape (bell=b,conical=c,convex=x,flat=f)",
"cap surface (fibrous=f,grooves=g,scaly=y,smooth=s)",
"cap color (brown=n,buff=b,cinnamon=c,gray=g,green=r,\n\tpink=p,purple=u,red=e,white=w,yellow=y)",
"bruises? (bruises=t,no=f)",
"odor (almond=a,anise=l,creosote=c,fishy=y,foul=f,\n\tmusty=m,none=n,pungent=p,spicy=s)",
"gill attachment (attached=a,descending=d,free=f,notched=n)",
"gill spacing (close=c,crowded=w,distant=d)",
"gill size (broad=b,narrow=n)",
"gill color (black=k,brown=n,buff=b,chocolate=h,gray=g,\n\tgreen=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y)",
"stalk shape (enlarging=e,tapering=t)",
"stalk root (bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r)",
"stalk surface above ring (ibrous=f,scaly=y,silky=k,smooth=s)",
"stalk surface below ring (ibrous=f,scaly=y,silky=k,smooth=s)",
"stalk color above ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
"stalk color below ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
"veil type (partial=p,universal=u)",
"veil color (brown=n,orange=o,white=w,yellow=y)",
"ring number (none=n,one=o,two=t)",
"ring type (cobwebby=c,evanescent=e,flaring=f,large=l,\n\tnone=n,pendant=p,sheathing=s,zone=z)",
"spore print color (black=k,brown=n,buff=b,chocolate=h,green=r,\n\torange=o,purple=u,white=w,yellow=y)",
"population (abundant=a,clustered=c,numerous=n,\n\tscattered=s,several=v,solitary=y)",
"habitat (grasses=g,leaves=l,meadows=m,paths=p\n\turban=u,waste=w,woods=d)",
0
};
void print_variable_importance( CvDTree* dtree, const char** var_desc )
{
const CvMat* var_importance = dtree->get_var_importance();
int i;
char input[1000];
if( !var_importance )
{
printf( "Error: Variable importance can not be retrieved\n" );
return;
}
printf( "Print variable importance information? (y/n) " );
scanf( "%1s", input );
if( input[0] != 'y' && input[0] != 'Y' )
return;
for( i = 0; i < var_importance->cols*var_importance->rows; i++ )
{
double val = var_importance->data.db[i];
if( var_desc )
{
char buf[100];
int len = strchr( var_desc[i], '(' ) - var_desc[i] - 1;
strncpy( buf, var_desc[i], len );
buf[len] = '\0';
printf( "%s", buf );
}
else
printf( "var #%d", i );
printf( ": %g%%\n", val*100. );
}
}
void interactive_classification( CvDTree* dtree, const char** var_desc )
{
char input[1000];
const CvDTreeNode* root;
CvDTreeTrainData* data;
if( !dtree )
return;
root = dtree->get_root();
data = dtree->get_data();
for(;;)
{
const CvDTreeNode* node;
printf( "Start/Proceed with interactive mushroom classification (y/n): " );
scanf( "%1s", input );
if( input[0] != 'y' && input[0] != 'Y' )
break;
printf( "Enter 1-letter answers, '?' for missing/unknown value...\n" );
// custom version of predict
node = root;
for(;;)
{
CvDTreeSplit* split = node->split;
int dir = 0;
if( !node->left || node->Tn <= dtree->get_pruned_tree_idx() || !node->split )
break;
for( ; split != 0; )
{
int vi = split->var_idx, j;
int count = data->cat_count->data.i[vi];
const int* map = data->cat_map->data.i + data->cat_ofs->data.i[vi];
printf( "%s: ", var_desc[vi] );
scanf( "%1s", input );
if( input[0] == '?' )
{
split = split->next;
continue;
}
// convert the input character to the normalized value of the variable
for( j = 0; j < count; j++ )
if( map[j] == input[0] )
break;
if( j < count )
{
dir = (split->subset[j>>5] & (1 << (j&31))) ? -1 : 1;
if( split->inversed )
dir = -dir;
break;
}
else
printf( "Error: unrecognized value\n" );
}
if( !dir )
{
printf( "Impossible to classify the sample\n");
node = 0;
break;
}
node = dir < 0 ? node->left : node->right;
}
if( node )
printf( "Prediction result: the mushroom is %s\n",
node->class_idx == 0 ? "EDIBLE" : "POISONOUS" );
printf( "\n-----------------------------\n" );
}
}
int main( int argc, char** argv )
{
CvMat *data = 0, *missing = 0, *responses = 0;
CvDTree* dtree;
const char* base_path = argc >= 2 ? argv[1] : "agaricus-lepiota.data";
if( !mushroom_read_database( base_path, &data, &missing, &responses ) )
{
printf( "Unable to load the training database\n"
"Pass it as a parameter: dtree <path to agaricus-lepiota.data>\n" );
return 0;
return -1;
}
dtree = mushroom_create_dtree( data, missing, responses,
10 // poisonous mushrooms will have 10x higher weight in the decision tree
);
cvReleaseMat( &data );
cvReleaseMat( &missing );
cvReleaseMat( &responses );
print_variable_importance( dtree, var_desc );
interactive_classification( dtree, var_desc );
delete dtree;
return 0;
}