mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 12:13:32 +08:00
29b13ec1de
This should allow many algorithms to take advantage of more parallelization technologies.
243 lines
9.1 KiB
C++
243 lines
9.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective icvers.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/photo/photo.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include "fast_nlmeans_denoising_invoker.hpp"
|
|
#include "fast_nlmeans_multi_denoising_invoker.hpp"
|
|
|
|
void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
Mat src = _src.getMat();
|
|
_dst.create(src.size(), src.type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
|
|
return;
|
|
#endif
|
|
|
|
switch (src.type()) {
|
|
case CV_8U:
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<uchar>(
|
|
src, dst, templateWindowSize, searchWindowSize, h));
|
|
break;
|
|
case CV_8UC2:
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<cv::Vec2b>(
|
|
src, dst, templateWindowSize, searchWindowSize, h));
|
|
break;
|
|
case CV_8UC3:
|
|
parallel_for_(cv::Range(0, src.rows),
|
|
FastNlMeansDenoisingInvoker<cv::Vec3b>(
|
|
src, dst, templateWindowSize, searchWindowSize, h));
|
|
break;
|
|
default:
|
|
CV_Error(CV_StsBadArg,
|
|
"Unsupported image format! Only CV_8UC1, CV_8UC2 and CV_8UC3 are supported");
|
|
}
|
|
}
|
|
|
|
void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
|
|
float h, float hForColorComponents,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
Mat src = _src.getMat();
|
|
_dst.create(src.size(), src.type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
if (src.type() != CV_8UC3) {
|
|
CV_Error(CV_StsBadArg, "Type of input image should be CV_8UC3!");
|
|
return;
|
|
}
|
|
|
|
Mat src_lab;
|
|
cvtColor(src, src_lab, CV_LBGR2Lab);
|
|
|
|
Mat l(src.size(), CV_8U);
|
|
Mat ab(src.size(), CV_8UC2);
|
|
Mat l_ab[] = { l, ab };
|
|
int from_to[] = { 0,0, 1,1, 2,2 };
|
|
mixChannels(&src_lab, 1, l_ab, 2, from_to, 3);
|
|
|
|
fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize);
|
|
fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize);
|
|
|
|
Mat l_ab_denoised[] = { l, ab };
|
|
Mat dst_lab(src.size(), src.type());
|
|
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
|
|
|
|
cvtColor(dst_lab, dst, CV_Lab2LBGR);
|
|
}
|
|
|
|
static void fastNlMeansDenoisingMultiCheckPreconditions(
|
|
const std::vector<Mat>& srcImgs,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
int src_imgs_size = (int)srcImgs.size();
|
|
if (src_imgs_size == 0) {
|
|
CV_Error(CV_StsBadArg, "Input images vector should not be empty!");
|
|
}
|
|
|
|
if (temporalWindowSize % 2 == 0 ||
|
|
searchWindowSize % 2 == 0 ||
|
|
templateWindowSize % 2 == 0) {
|
|
CV_Error(CV_StsBadArg, "All windows sizes should be odd!");
|
|
}
|
|
|
|
int temporalWindowHalfSize = temporalWindowSize / 2;
|
|
if (imgToDenoiseIndex - temporalWindowHalfSize < 0 ||
|
|
imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size)
|
|
{
|
|
CV_Error(CV_StsBadArg,
|
|
"imgToDenoiseIndex and temporalWindowSize "
|
|
"should be choosen corresponding srcImgs size!");
|
|
}
|
|
|
|
for (int i = 1; i < src_imgs_size; i++) {
|
|
if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type()) {
|
|
CV_Error(CV_StsBadArg, "Input images should have the same size and type!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
float h, int templateWindowSize, int searchWindowSize)
|
|
{
|
|
vector<Mat> srcImgs;
|
|
_srcImgs.getMatVector(srcImgs);
|
|
|
|
fastNlMeansDenoisingMultiCheckPreconditions(
|
|
srcImgs, imgToDenoiseIndex,
|
|
temporalWindowSize, templateWindowSize, searchWindowSize
|
|
);
|
|
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
switch (srcImgs[0].type()) {
|
|
case CV_8U:
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<uchar>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, h));
|
|
break;
|
|
case CV_8UC2:
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<cv::Vec2b>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, h));
|
|
break;
|
|
case CV_8UC3:
|
|
parallel_for_(cv::Range(0, srcImgs[0].rows),
|
|
FastNlMeansMultiDenoisingInvoker<cv::Vec3b>(
|
|
srcImgs, imgToDenoiseIndex, temporalWindowSize,
|
|
dst, templateWindowSize, searchWindowSize, h));
|
|
break;
|
|
default:
|
|
CV_Error(CV_StsBadArg,
|
|
"Unsupported matrix format! Only uchar, Vec2b, Vec3b are supported");
|
|
}
|
|
}
|
|
|
|
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
|
|
int imgToDenoiseIndex, int temporalWindowSize,
|
|
float h, float hForColorComponents,
|
|
int templateWindowSize, int searchWindowSize)
|
|
{
|
|
vector<Mat> srcImgs;
|
|
_srcImgs.getMatVector(srcImgs);
|
|
|
|
fastNlMeansDenoisingMultiCheckPreconditions(
|
|
srcImgs, imgToDenoiseIndex,
|
|
temporalWindowSize, templateWindowSize, searchWindowSize
|
|
);
|
|
|
|
_dst.create(srcImgs[0].size(), srcImgs[0].type());
|
|
Mat dst = _dst.getMat();
|
|
|
|
int src_imgs_size = (int)srcImgs.size();
|
|
|
|
if (srcImgs[0].type() != CV_8UC3) {
|
|
CV_Error(CV_StsBadArg, "Type of input images should be CV_8UC3!");
|
|
return;
|
|
}
|
|
|
|
int from_to[] = { 0,0, 1,1, 2,2 };
|
|
|
|
// TODO convert only required images
|
|
vector<Mat> src_lab(src_imgs_size);
|
|
vector<Mat> l(src_imgs_size);
|
|
vector<Mat> ab(src_imgs_size);
|
|
for (int i = 0; i < src_imgs_size; i++) {
|
|
src_lab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC3);
|
|
l[i] = Mat::zeros(srcImgs[0].size(), CV_8UC1);
|
|
ab[i] = Mat::zeros(srcImgs[0].size(), CV_8UC2);
|
|
cvtColor(srcImgs[i], src_lab[i], CV_LBGR2Lab);
|
|
|
|
Mat l_ab[] = { l[i], ab[i] };
|
|
mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3);
|
|
}
|
|
|
|
Mat dst_l;
|
|
Mat dst_ab;
|
|
|
|
fastNlMeansDenoisingMulti(
|
|
l, dst_l, imgToDenoiseIndex, temporalWindowSize,
|
|
h, templateWindowSize, searchWindowSize);
|
|
|
|
fastNlMeansDenoisingMulti(
|
|
ab, dst_ab, imgToDenoiseIndex, temporalWindowSize,
|
|
hForColorComponents, templateWindowSize, searchWindowSize);
|
|
|
|
Mat l_ab_denoised[] = { dst_l, dst_ab };
|
|
Mat dst_lab(srcImgs[0].size(), srcImgs[0].type());
|
|
mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);
|
|
|
|
cvtColor(dst_lab, dst, CV_Lab2LBGR);
|
|
}
|
|
|
|
|