mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 17:43:12 +08:00
1321 lines
49 KiB
C++
1321 lines
49 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
/////////////////////////////////////// MOG model //////////////////////////////////////////
|
|
|
|
static void CV_CDECL
|
|
icvReleaseGaussianBGModel( CvGaussBGModel** bg_model )
|
|
{
|
|
if( !bg_model )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( *bg_model )
|
|
{
|
|
delete (cv::Ptr<cv::BackgroundSubtractor>*)((*bg_model)->mog);
|
|
cvReleaseImage( &(*bg_model)->background );
|
|
cvReleaseImage( &(*bg_model)->foreground );
|
|
memset( *bg_model, 0, sizeof(**bg_model) );
|
|
delete *bg_model;
|
|
*bg_model = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static int CV_CDECL
|
|
icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel* bg_model, double learningRate )
|
|
{
|
|
cv::Mat image = cv::cvarrToMat(curr_frame), mask = cv::cvarrToMat(bg_model->foreground);
|
|
|
|
cv::Ptr<cv::BackgroundSubtractor>* mog = (cv::Ptr<cv::BackgroundSubtractor>*)(bg_model->mog);
|
|
CV_Assert(mog != 0);
|
|
|
|
(*mog)->apply(image, mask, learningRate);
|
|
bg_model->countFrames++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
CV_IMPL CvBGStatModel*
|
|
cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
|
|
{
|
|
CvGaussBGStatModelParams params;
|
|
|
|
CV_Assert( CV_IS_IMAGE(first_frame) );
|
|
|
|
//init parameters
|
|
if( parameters == NULL )
|
|
{ // These constants are defined in cvaux/include/cvaux.h
|
|
params.win_size = CV_BGFG_MOG_WINDOW_SIZE;
|
|
params.bg_threshold = CV_BGFG_MOG_BACKGROUND_THRESHOLD;
|
|
|
|
params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;
|
|
params.weight_init = CV_BGFG_MOG_WEIGHT_INIT;
|
|
|
|
params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;
|
|
params.minArea = CV_BGFG_MOG_MINAREA;
|
|
params.n_gauss = CV_BGFG_MOG_NGAUSSIANS;
|
|
}
|
|
else
|
|
params = *parameters;
|
|
|
|
CvGaussBGModel* bg_model = new CvGaussBGModel;
|
|
memset( bg_model, 0, sizeof(*bg_model) );
|
|
bg_model->type = CV_BG_MODEL_MOG;
|
|
bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
|
|
bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;
|
|
|
|
bg_model->params = params;
|
|
|
|
cv::Ptr<cv::BackgroundSubtractor> mog = cv::createBackgroundSubtractorMOG(params.win_size, params.n_gauss,
|
|
params.bg_threshold);
|
|
cv::Ptr<cv::BackgroundSubtractor>* pmog = new cv::Ptr<cv::BackgroundSubtractor>;
|
|
*pmog = mog;
|
|
bg_model->mog = pmog;
|
|
|
|
CvSize sz = cvGetSize(first_frame);
|
|
bg_model->background = cvCreateImage(sz, IPL_DEPTH_8U, first_frame->nChannels);
|
|
bg_model->foreground = cvCreateImage(sz, IPL_DEPTH_8U, 1);
|
|
|
|
bg_model->countFrames = 0;
|
|
|
|
icvUpdateGaussianBGModel( first_frame, bg_model, 1 );
|
|
|
|
return (CvBGStatModel*)bg_model;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////// MOG2 //////////////////////////////////////////////
|
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*//Implementation of the Gaussian mixture model background subtraction from:
|
|
//
|
|
//"Improved adaptive Gausian mixture model for background subtraction"
|
|
//Z.Zivkovic
|
|
//International Conference Pattern Recognition, UK, August, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
|
//The code is very fast and performs also shadow detection.
|
|
//Number of Gausssian components is adapted per pixel.
|
|
//
|
|
// and
|
|
//
|
|
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
|
|
//Z.Zivkovic, F. van der Heijden
|
|
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
|
|
//
|
|
//The algorithm similar to the standard Stauffer&Grimson algorithm with
|
|
//additional selection of the number of the Gaussian components based on:
|
|
//
|
|
//"Recursive unsupervised learning of finite mixture models "
|
|
//Z.Zivkovic, F.van der Heijden
|
|
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
|
|
//
|
|
//
|
|
//Example usage with as cpp class
|
|
// BackgroundSubtractorMOG2 bg_model;
|
|
//For each new image the model is updates using:
|
|
// bg_model(img, fgmask);
|
|
//
|
|
//Example usage as part of the CvBGStatModel:
|
|
// CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
|
|
//
|
|
// //update for each frame
|
|
// cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
|
|
//
|
|
// //release at the program termination
|
|
// cvReleaseBGStatModel( &bg_model );
|
|
//
|
|
//Author: Z.Zivkovic, www.zoranz.net
|
|
//Date: 7-April-2011, Version:1.0
|
|
///////////*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
/*
|
|
Interface of Gaussian mixture algorithm from:
|
|
|
|
"Improved adaptive Gausian mixture model for background subtraction"
|
|
Z.Zivkovic
|
|
International Conference Pattern Recognition, UK, August, 2004
|
|
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
|
|
|
Advantages:
|
|
-fast - number of Gausssian components is constantly adapted per pixel.
|
|
-performs also shadow detection (see bgfg_segm_test.cpp example)
|
|
|
|
*/
|
|
|
|
|
|
#define CV_BG_MODEL_MOG2 3 /* "Mixture of Gaussians 2". */
|
|
|
|
|
|
/* default parameters of gaussian background detection algorithm */
|
|
#define CV_BGFG_MOG2_STD_THRESHOLD 4.0f /* lambda=2.5 is 99% */
|
|
#define CV_BGFG_MOG2_WINDOW_SIZE 500 /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
|
|
#define CV_BGFG_MOG2_BACKGROUND_THRESHOLD 0.9f /* threshold sum of weights for background test */
|
|
#define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE 3.0f /* lambda=2.5 is 99% */
|
|
#define CV_BGFG_MOG2_NGAUSSIANS 5 /* = K = number of Gaussians in mixture */
|
|
#define CV_BGFG_MOG2_VAR_INIT 15.0f /* initial variance for new components*/
|
|
#define CV_BGFG_MOG2_VAR_MIN 4.0f
|
|
#define CV_BGFG_MOG2_VAR_MAX 5*CV_BGFG_MOG2_VAR_INIT
|
|
#define CV_BGFG_MOG2_MINAREA 15.0f /* for postfiltering */
|
|
|
|
/* additional parameters */
|
|
#define CV_BGFG_MOG2_CT 0.05f /* complexity reduction prior constant 0 - no reduction of number of components*/
|
|
#define CV_BGFG_MOG2_SHADOW_VALUE 127 /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/
|
|
#define CV_BGFG_MOG2_SHADOW_TAU 0.5f /* Tau - shadow threshold, see the paper for explanation*/
|
|
|
|
typedef struct CvGaussBGStatModel2Params
|
|
{
|
|
//image info
|
|
int nWidth;
|
|
int nHeight;
|
|
int nND;//number of data dimensions (image channels)
|
|
|
|
bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255
|
|
double minArea; // for postfiltering
|
|
|
|
bool bInit;//default 1, faster updates at start
|
|
|
|
/////////////////////////
|
|
//very important parameters - things you will change
|
|
////////////////////////
|
|
float fAlphaT;
|
|
//alpha - speed of update - if the time interval you want to average over is T
|
|
//set alpha=1/T. It is also usefull at start to make T slowly increase
|
|
//from 1 until the desired T
|
|
float fTb;
|
|
//Tb - threshold on the squared Mahalan. dist. to decide if it is well described
|
|
//by the background model or not. Related to Cthr from the paper.
|
|
//This does not influence the update of the background. A typical value could be 4 sigma
|
|
//and that is Tb=4*4=16;
|
|
|
|
/////////////////////////
|
|
//less important parameters - things you might change but be carefull
|
|
////////////////////////
|
|
float fTg;
|
|
//Tg - threshold on the squared Mahalan. dist. to decide
|
|
//when a sample is close to the existing components. If it is not close
|
|
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
|
|
//Smaller Tg leads to more generated components and higher Tg might make
|
|
//lead to small number of components but they can grow too large
|
|
float fTB;//1-cf from the paper
|
|
//TB - threshold when the component becomes significant enough to be included into
|
|
//the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
|
//For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
|
//it is considered foreground
|
|
float fVarInit;
|
|
float fVarMax;
|
|
float fVarMin;
|
|
//initial standard deviation for the newly generated components.
|
|
//It will will influence the speed of adaptation. A good guess should be made.
|
|
//A simple way is to estimate the typical standard deviation from the images.
|
|
//I used here 10 as a reasonable value
|
|
float fCT;//CT - complexity reduction prior
|
|
//this is related to the number of samples needed to accept that a component
|
|
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
|
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
|
|
|
//even less important parameters
|
|
int nM;//max number of modes - const - 4 is usually enough
|
|
|
|
//shadow detection parameters
|
|
bool bShadowDetection;//default 1 - do shadow detection
|
|
unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
|
|
float fTau;
|
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
|
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
|
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
} CvGaussBGStatModel2Params;
|
|
|
|
#define CV_BGFG_MOG2_NDMAX 3
|
|
|
|
typedef struct CvPBGMMGaussian
|
|
{
|
|
float weight;
|
|
float mean[CV_BGFG_MOG2_NDMAX];
|
|
float variance;
|
|
}CvPBGMMGaussian;
|
|
|
|
typedef struct CvGaussBGStatModel2Data
|
|
{
|
|
CvPBGMMGaussian* rGMM; //array for the mixture of Gaussians
|
|
unsigned char* rnUsedModes;//number of Gaussian components per pixel (maximum 255)
|
|
} CvGaussBGStatModel2Data;
|
|
|
|
|
|
/*
|
|
//only foreground image is updated
|
|
//no filtering included
|
|
typedef struct CvGaussBGModel2
|
|
{
|
|
CV_BG_STAT_MODEL_FIELDS();
|
|
CvGaussBGStatModel2Params params;
|
|
CvGaussBGStatModel2Data data;
|
|
int countFrames;
|
|
} CvGaussBGModel2;
|
|
|
|
CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
|
|
CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );
|
|
*/
|
|
|
|
//shadow detection performed per pixel
|
|
// should work for rgb data, could be usefull for gray scale and depth data as well
|
|
// See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
|
CV_INLINE int _icvRemoveShadowGMM(float* data, int nD,
|
|
unsigned char nModes,
|
|
CvPBGMMGaussian* pGMM,
|
|
float m_fTb,
|
|
float m_fTB,
|
|
float m_fTau)
|
|
{
|
|
float tWeight = 0;
|
|
float numerator, denominator;
|
|
// check all the components marked as background:
|
|
for (int iModes=0;iModes<nModes;iModes++)
|
|
{
|
|
|
|
CvPBGMMGaussian g=pGMM[iModes];
|
|
|
|
numerator = 0.0f;
|
|
denominator = 0.0f;
|
|
for (int iD=0;iD<nD;iD++)
|
|
{
|
|
numerator += data[iD] * g.mean[iD];
|
|
denominator += g.mean[iD]* g.mean[iD];
|
|
}
|
|
|
|
// no division by zero allowed
|
|
if (denominator == 0)
|
|
{
|
|
return 0;
|
|
};
|
|
float a = numerator / denominator;
|
|
|
|
// if tau < a < 1 then also check the color distortion
|
|
if ((a <= 1) && (a >= m_fTau))
|
|
{
|
|
|
|
float dist2a=0.0f;
|
|
|
|
for (int iD=0;iD<nD;iD++)
|
|
{
|
|
float dD= a*g.mean[iD] - data[iD];
|
|
dist2a += (dD*dD);
|
|
}
|
|
|
|
if (dist2a<m_fTb*g.variance*a*a)
|
|
{
|
|
return 2;
|
|
}
|
|
};
|
|
|
|
tWeight += g.weight;
|
|
if (tWeight > m_fTB)
|
|
{
|
|
return 0;
|
|
};
|
|
};
|
|
return 0;
|
|
}
|
|
|
|
//update GMM - the base update function performed per pixel
|
|
//
|
|
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
|
|
//Z.Zivkovic, F. van der Heijden
|
|
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
|
|
//
|
|
//The algorithm similar to the standard Stauffer&Grimson algorithm with
|
|
//additional selection of the number of the Gaussian components based on:
|
|
//
|
|
//"Recursive unsupervised learning of finite mixture models "
|
|
//Z.Zivkovic, F.van der Heijden
|
|
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
|
|
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
|
|
|
|
CV_INLINE int _icvUpdateGMM(float* data, int nD,
|
|
unsigned char* pModesUsed,
|
|
CvPBGMMGaussian* pGMM,
|
|
int m_nM,
|
|
float m_fAlphaT,
|
|
float m_fTb,
|
|
float m_fTB,
|
|
float m_fTg,
|
|
float m_fVarInit,
|
|
float m_fVarMax,
|
|
float m_fVarMin,
|
|
float m_fPrune)
|
|
{
|
|
//calculate distances to the modes (+ sort)
|
|
//here we need to go in descending order!!!
|
|
bool bBackground=0;//return value -> true - the pixel classified as background
|
|
|
|
//internal:
|
|
bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
|
|
float m_fOneMinAlpha=1-m_fAlphaT;
|
|
unsigned char nModes=*pModesUsed;//current number of modes in GMM
|
|
float totalWeight=0.0f;
|
|
|
|
//////
|
|
//go through all modes
|
|
int iMode=0;
|
|
CvPBGMMGaussian* pGauss=pGMM;
|
|
for (;iMode<nModes;iMode++,pGauss++)
|
|
{
|
|
float weight = pGauss->weight;//need only weight if fit is found
|
|
weight=m_fOneMinAlpha*weight+m_fPrune;
|
|
|
|
////
|
|
//fit not found yet
|
|
if (!bFitsPDF)
|
|
{
|
|
//check if it belongs to some of the remaining modes
|
|
float var=pGauss->variance;
|
|
|
|
//calculate difference and distance
|
|
float dist2=0.0f;
|
|
#if (CV_BGFG_MOG2_NDMAX==1)
|
|
float dData=pGauss->mean[0]-data[0];
|
|
dist2=dData*dData;
|
|
#else
|
|
float dData[CV_BGFG_MOG2_NDMAX];
|
|
|
|
for (int iD=0;iD<nD;iD++)
|
|
{
|
|
dData[iD]=pGauss->mean[iD]-data[iD];
|
|
dist2+=dData[iD]*dData[iD];
|
|
}
|
|
#endif
|
|
//background? - m_fTb - usually larger than m_fTg
|
|
if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
|
|
bBackground=1;
|
|
|
|
//check fit
|
|
if (dist2<m_fTg*var)
|
|
{
|
|
/////
|
|
//belongs to the mode - bFitsPDF becomes 1
|
|
bFitsPDF=1;
|
|
|
|
//update distribution
|
|
|
|
//update weight
|
|
weight+=m_fAlphaT;
|
|
|
|
float k = m_fAlphaT/weight;
|
|
|
|
//update mean
|
|
#if (CV_BGFG_MOG2_NDMAX==1)
|
|
pGauss->mean[0]-=k*dData;
|
|
#else
|
|
for (int iD=0;iD<nD;iD++)
|
|
{
|
|
pGauss->mean[iD]-=k*dData[iD];
|
|
}
|
|
#endif
|
|
|
|
//update variance
|
|
float varnew = var + k*(dist2-var);
|
|
//limit the variance
|
|
pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));
|
|
|
|
//sort
|
|
//all other weights are at the same place and
|
|
//only the matched (iModes) is higher -> just find the new place for it
|
|
for (int iLocal = iMode;iLocal>0;iLocal--)
|
|
{
|
|
//check one up
|
|
if (weight < (pGMM[iLocal-1].weight))
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//swap one up
|
|
CvPBGMMGaussian temp = pGMM[iLocal];
|
|
pGMM[iLocal] = pGMM[iLocal-1];
|
|
pGMM[iLocal-1] = temp;
|
|
pGauss--;
|
|
}
|
|
}
|
|
//belongs to the mode - bFitsPDF becomes 1
|
|
/////
|
|
}
|
|
}//!bFitsPDF)
|
|
|
|
//check prune
|
|
if (weight<-m_fPrune)
|
|
{
|
|
weight=0.0;
|
|
nModes--;
|
|
}
|
|
|
|
pGauss->weight=weight;//update weight by the calculated value
|
|
totalWeight+=weight;
|
|
}
|
|
//go through all modes
|
|
//////
|
|
|
|
//renormalize weights
|
|
for (iMode = 0; iMode < nModes; iMode++)
|
|
{
|
|
pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
|
|
}
|
|
|
|
//make new mode if needed and exit
|
|
if (!bFitsPDF)
|
|
{
|
|
if (nModes==m_nM)
|
|
{
|
|
//replace the weakest
|
|
pGauss=pGMM+m_nM-1;
|
|
}
|
|
else
|
|
{
|
|
//add a new one
|
|
pGauss=pGMM+nModes;
|
|
nModes++;
|
|
}
|
|
|
|
if (nModes==1)
|
|
{
|
|
pGauss->weight=1;
|
|
}
|
|
else
|
|
{
|
|
pGauss->weight=m_fAlphaT;
|
|
|
|
//renormalize all weights
|
|
for (iMode = 0; iMode < nModes-1; iMode++)
|
|
{
|
|
pGMM[iMode].weight *=m_fOneMinAlpha;
|
|
}
|
|
}
|
|
|
|
//init
|
|
memcpy(pGauss->mean,data,nD*sizeof(float));
|
|
pGauss->variance=m_fVarInit;
|
|
|
|
//sort
|
|
//find the new place for it
|
|
for (int iLocal = nModes-1;iLocal>0;iLocal--)
|
|
{
|
|
//check one up
|
|
if (m_fAlphaT < (pGMM[iLocal-1].weight))
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//swap one up
|
|
CvPBGMMGaussian temp = pGMM[iLocal];
|
|
pGMM[iLocal] = pGMM[iLocal-1];
|
|
pGMM[iLocal-1] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
//set the number of modes
|
|
*pModesUsed=nModes;
|
|
|
|
return bBackground;
|
|
}
|
|
|
|
// a bit more efficient implementation for common case of 3 channel (rgb) images
|
|
CV_INLINE int _icvUpdateGMM_C3(float r,float g, float b,
|
|
unsigned char* pModesUsed,
|
|
CvPBGMMGaussian* pGMM,
|
|
int m_nM,
|
|
float m_fAlphaT,
|
|
float m_fTb,
|
|
float m_fTB,
|
|
float m_fTg,
|
|
float m_fVarInit,
|
|
float m_fVarMax,
|
|
float m_fVarMin,
|
|
float m_fPrune)
|
|
{
|
|
//calculate distances to the modes (+ sort)
|
|
//here we need to go in descending order!!!
|
|
bool bBackground=0;//return value -> true - the pixel classified as background
|
|
|
|
//internal:
|
|
bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
|
|
float m_fOneMinAlpha=1-m_fAlphaT;
|
|
unsigned char nModes=*pModesUsed;//current number of modes in GMM
|
|
float totalWeight=0.0f;
|
|
|
|
//////
|
|
//go through all modes
|
|
int iMode=0;
|
|
CvPBGMMGaussian* pGauss=pGMM;
|
|
for (;iMode<nModes;iMode++,pGauss++)
|
|
{
|
|
float weight = pGauss->weight;//need only weight if fit is found
|
|
weight=m_fOneMinAlpha*weight+m_fPrune;
|
|
|
|
////
|
|
//fit not found yet
|
|
if (!bFitsPDF)
|
|
{
|
|
//check if it belongs to some of the remaining modes
|
|
float var=pGauss->variance;
|
|
|
|
//calculate difference and distance
|
|
float muR = pGauss->mean[0];
|
|
float muG = pGauss->mean[1];
|
|
float muB = pGauss->mean[2];
|
|
|
|
float dR=muR - r;
|
|
float dG=muG - g;
|
|
float dB=muB - b;
|
|
|
|
float dist2=(dR*dR+dG*dG+dB*dB);
|
|
|
|
//background? - m_fTb - usually larger than m_fTg
|
|
if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
|
|
bBackground=1;
|
|
|
|
//check fit
|
|
if (dist2<m_fTg*var)
|
|
{
|
|
/////
|
|
//belongs to the mode - bFitsPDF becomes 1
|
|
bFitsPDF=1;
|
|
|
|
//update distribution
|
|
|
|
//update weight
|
|
weight+=m_fAlphaT;
|
|
|
|
float k = m_fAlphaT/weight;
|
|
|
|
//update mean
|
|
pGauss->mean[0] = muR - k*(dR);
|
|
pGauss->mean[1] = muG - k*(dG);
|
|
pGauss->mean[2] = muB - k*(dB);
|
|
|
|
//update variance
|
|
float varnew = var + k*(dist2-var);
|
|
//limit the variance
|
|
pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));
|
|
|
|
//sort
|
|
//all other weights are at the same place and
|
|
//only the matched (iModes) is higher -> just find the new place for it
|
|
for (int iLocal = iMode;iLocal>0;iLocal--)
|
|
{
|
|
//check one up
|
|
if (weight < (pGMM[iLocal-1].weight))
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//swap one up
|
|
CvPBGMMGaussian temp = pGMM[iLocal];
|
|
pGMM[iLocal] = pGMM[iLocal-1];
|
|
pGMM[iLocal-1] = temp;
|
|
pGauss--;
|
|
}
|
|
}
|
|
//belongs to the mode - bFitsPDF becomes 1
|
|
/////
|
|
}
|
|
|
|
}//!bFitsPDF)
|
|
|
|
//check prunning
|
|
if (weight<-m_fPrune)
|
|
{
|
|
weight=0.0;
|
|
nModes--;
|
|
}
|
|
|
|
pGauss->weight=weight;
|
|
totalWeight+=weight;
|
|
}
|
|
//go through all modes
|
|
//////
|
|
|
|
//renormalize weights
|
|
for (iMode = 0; iMode < nModes; iMode++)
|
|
{
|
|
pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
|
|
}
|
|
|
|
//make new mode if needed and exit
|
|
if (!bFitsPDF)
|
|
{
|
|
if (nModes==m_nM)
|
|
{
|
|
//replace the weakest
|
|
pGauss=pGMM+m_nM-1;
|
|
}
|
|
else
|
|
{
|
|
//add a new one
|
|
pGauss=pGMM+nModes;
|
|
nModes++;
|
|
}
|
|
|
|
if (nModes==1)
|
|
{
|
|
pGauss->weight=1;
|
|
}
|
|
else
|
|
{
|
|
pGauss->weight=m_fAlphaT;
|
|
|
|
//renormalize all weights
|
|
for (iMode = 0; iMode < nModes-1; iMode++)
|
|
{
|
|
pGMM[iMode].weight *=m_fOneMinAlpha;
|
|
}
|
|
}
|
|
|
|
//init
|
|
pGauss->mean[0]=r;
|
|
pGauss->mean[1]=g;
|
|
pGauss->mean[2]=b;
|
|
|
|
pGauss->variance=m_fVarInit;
|
|
|
|
//sort
|
|
//find the new place for it
|
|
for (int iLocal = nModes-1;iLocal>0;iLocal--)
|
|
{
|
|
//check one up
|
|
if (m_fAlphaT < (pGMM[iLocal-1].weight))
|
|
{
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
//swap one up
|
|
CvPBGMMGaussian temp = pGMM[iLocal];
|
|
pGMM[iLocal] = pGMM[iLocal-1];
|
|
pGMM[iLocal-1] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
//set the number of modes
|
|
*pModesUsed=nModes;
|
|
|
|
return bBackground;
|
|
}
|
|
|
|
//the main function to update the background model
|
|
static void icvUpdatePixelBackgroundGMM2( const CvArr* srcarr, CvArr* dstarr ,
|
|
CvPBGMMGaussian *pGMM,
|
|
unsigned char *pUsedModes,
|
|
//CvGaussBGStatModel2Params* pGMMPar,
|
|
int nM,
|
|
float fTb,
|
|
float fTB,
|
|
float fTg,
|
|
float fVarInit,
|
|
float fVarMax,
|
|
float fVarMin,
|
|
float fCT,
|
|
float fTau,
|
|
bool bShadowDetection,
|
|
unsigned char nShadowDetection,
|
|
float alpha)
|
|
{
|
|
CvMat sstub, *src = cvGetMat(srcarr, &sstub);
|
|
CvMat dstub, *dst = cvGetMat(dstarr, &dstub);
|
|
CvSize size = cvGetMatSize(src);
|
|
int nD=CV_MAT_CN(src->type);
|
|
|
|
//reshape if possible
|
|
if( CV_IS_MAT_CONT(src->type & dst->type) )
|
|
{
|
|
size.width *= size.height;
|
|
size.height = 1;
|
|
}
|
|
|
|
int x, y;
|
|
float data[CV_BGFG_MOG2_NDMAX];
|
|
float prune=-alpha*fCT;
|
|
|
|
//general nD
|
|
|
|
if (nD!=3)
|
|
{
|
|
switch (CV_MAT_DEPTH(src->type))
|
|
{
|
|
case CV_8U:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
uchar* sptr = src->data.ptr + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_16S:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
short* sptr = src->data.s + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_16U:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
unsigned short* sptr = (unsigned short*) (src->data.s + src->step*y);
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_32S:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
int* sptr = src->data.i + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_32F:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
float* sptr = src->data.fl + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//update GMM model
|
|
int result = _icvUpdateGMM(sptr,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_64F:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
double* sptr = src->data.db + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}else ///if (nD==3) - a bit faster
|
|
{
|
|
switch (CV_MAT_DEPTH(src->type))
|
|
{
|
|
case CV_8U:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
uchar* sptr = src->data.ptr + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_16S:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
short* sptr = src->data.s + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_16U:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
unsigned short* sptr = (unsigned short*) src->data.s + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_32S:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
int* sptr = src->data.i + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_32F:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
float* sptr = src->data.fl + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//update GMM model
|
|
int result = _icvUpdateGMM_C3(sptr[0],sptr[1],sptr[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
case CV_64F:
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
double* sptr = src->data.db + src->step*y;
|
|
uchar* pDataOutput = dst->data.ptr + dst->step*y;
|
|
for( x = 0; x < size.width; x++,
|
|
pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
|
|
{
|
|
//convert data
|
|
data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
|
|
//update GMM model
|
|
int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
|
|
//detect shadows in the foreground
|
|
if (bShadowDetection)
|
|
if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
|
|
//generate output
|
|
(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}//a bit faster for nD=3;
|
|
}
|
|
|
|
|
|
//only foreground image is updated
|
|
//no filtering included
|
|
typedef struct CvGaussBGModel2
|
|
{
|
|
CV_BG_STAT_MODEL_FIELDS();
|
|
CvGaussBGStatModel2Params params;
|
|
CvGaussBGStatModel2Data data;
|
|
int countFrames;
|
|
} CvGaussBGModel2;
|
|
|
|
CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
|
|
CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );
|
|
|
|
//////////////////////////////////////////////
|
|
//implementation as part of the CvBGStatModel
|
|
static void CV_CDECL icvReleaseGaussianBGModel2( CvGaussBGModel2** bg_model );
|
|
static int CV_CDECL icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2* bg_model );
|
|
|
|
|
|
CV_IMPL CvBGStatModel*
|
|
cvCreateGaussianBGModel2( IplImage* first_frame, CvGaussBGStatModel2Params* parameters )
|
|
{
|
|
CvGaussBGModel2* bg_model = 0;
|
|
int w,h;
|
|
|
|
CV_FUNCNAME( "cvCreateGaussianBGModel2" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvGaussBGStatModel2Params params;
|
|
|
|
if( !CV_IS_IMAGE(first_frame) )
|
|
CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
|
|
|
|
if( first_frame->nChannels>CV_BGFG_MOG2_NDMAX )
|
|
CV_ERROR( CV_StsBadArg, "Maxumum number of channels in the image is excedded (change CV_BGFG_MOG2_MAXBANDS constant)!" );
|
|
|
|
|
|
CV_CALL( bg_model = (CvGaussBGModel2*)cvAlloc( sizeof(*bg_model) ));
|
|
memset( bg_model, 0, sizeof(*bg_model) );
|
|
bg_model->type = CV_BG_MODEL_MOG2;
|
|
bg_model->release = (CvReleaseBGStatModel) icvReleaseGaussianBGModel2;
|
|
bg_model->update = (CvUpdateBGStatModel) icvUpdateGaussianBGModel2;
|
|
|
|
//init parameters
|
|
if( parameters == NULL )
|
|
{
|
|
memset(¶ms, 0, sizeof(params));
|
|
|
|
// These constants are defined in cvaux/include/cvaux.h
|
|
params.bShadowDetection = 1;
|
|
params.bPostFiltering=0;
|
|
params.minArea=CV_BGFG_MOG2_MINAREA;
|
|
|
|
//set parameters
|
|
// K - max number of Gaussians per pixel
|
|
params.nM = CV_BGFG_MOG2_NGAUSSIANS;//4;
|
|
// Tb - the threshold - n var
|
|
//pGMM->fTb = 4*4;
|
|
params.fTb = CV_BGFG_MOG2_STD_THRESHOLD*CV_BGFG_MOG2_STD_THRESHOLD;
|
|
// Tbf - the threshold
|
|
//pGMM->fTB = 0.9f;//1-cf from the paper
|
|
params.fTB = CV_BGFG_MOG2_BACKGROUND_THRESHOLD;
|
|
// Tgenerate - the threshold
|
|
params.fTg = CV_BGFG_MOG2_STD_THRESHOLD_GENERATE*CV_BGFG_MOG2_STD_THRESHOLD_GENERATE;//update the mode or generate new
|
|
//pGMM->fSigma= 11.0f;//sigma for the new mode
|
|
params.fVarInit = CV_BGFG_MOG2_VAR_INIT;
|
|
params.fVarMax = CV_BGFG_MOG2_VAR_MAX;
|
|
params.fVarMin = CV_BGFG_MOG2_VAR_MIN;
|
|
// alpha - the learning factor
|
|
params.fAlphaT = 1.0f/CV_BGFG_MOG2_WINDOW_SIZE;//0.003f;
|
|
// complexity reduction prior constant
|
|
params.fCT = CV_BGFG_MOG2_CT;//0.05f;
|
|
|
|
//shadow
|
|
// Shadow detection
|
|
params.nShadowDetection = (unsigned char)CV_BGFG_MOG2_SHADOW_VALUE;//value 0 to turn off
|
|
params.fTau = CV_BGFG_MOG2_SHADOW_TAU;//0.5f;// Tau - shadow threshold
|
|
}
|
|
else
|
|
{
|
|
params = *parameters;
|
|
}
|
|
|
|
bg_model->params = params;
|
|
|
|
//image data
|
|
w = first_frame->width;
|
|
h = first_frame->height;
|
|
|
|
bg_model->params.nWidth = w;
|
|
bg_model->params.nHeight = h;
|
|
|
|
bg_model->params.nND = first_frame->nChannels;
|
|
|
|
|
|
//allocate GMM data
|
|
|
|
//GMM for each pixel
|
|
bg_model->data.rGMM = (CvPBGMMGaussian*) malloc(w*h * params.nM * sizeof(CvPBGMMGaussian));
|
|
//used modes per pixel
|
|
bg_model->data.rnUsedModes = (unsigned char* ) malloc(w*h);
|
|
memset(bg_model->data.rnUsedModes,0,w*h);//no modes used
|
|
|
|
//prepare storages
|
|
CV_CALL( bg_model->background = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, first_frame->nChannels));
|
|
CV_CALL( bg_model->foreground = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 1));
|
|
|
|
//for eventual filtering
|
|
CV_CALL( bg_model->storage = cvCreateMemStorage());
|
|
|
|
bg_model->countFrames = 0;
|
|
|
|
__END__;
|
|
|
|
if( cvGetErrStatus() < 0 )
|
|
{
|
|
CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;
|
|
|
|
if( bg_model && bg_model->release )
|
|
bg_model->release( &base_ptr );
|
|
else
|
|
cvFree( &bg_model );
|
|
bg_model = 0;
|
|
}
|
|
|
|
return (CvBGStatModel*)bg_model;
|
|
}
|
|
|
|
|
|
static void CV_CDECL
|
|
icvReleaseGaussianBGModel2( CvGaussBGModel2** _bg_model )
|
|
{
|
|
CV_FUNCNAME( "icvReleaseGaussianBGModel2" );
|
|
|
|
__BEGIN__;
|
|
|
|
if( !_bg_model )
|
|
CV_ERROR( CV_StsNullPtr, "" );
|
|
|
|
if( *_bg_model )
|
|
{
|
|
CvGaussBGModel2* bg_model = *_bg_model;
|
|
|
|
free (bg_model->data.rGMM);
|
|
free (bg_model->data.rnUsedModes);
|
|
|
|
cvReleaseImage( &bg_model->background );
|
|
cvReleaseImage( &bg_model->foreground );
|
|
cvReleaseMemStorage(&bg_model->storage);
|
|
memset( bg_model, 0, sizeof(*bg_model) );
|
|
cvFree( _bg_model );
|
|
}
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
static int CV_CDECL
|
|
icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2* bg_model )
|
|
{
|
|
//checks
|
|
if ((curr_frame->height!=bg_model->params.nHeight)||(curr_frame->width!=bg_model->params.nWidth)||(curr_frame->nChannels!=bg_model->params.nND))
|
|
CV_Error( CV_StsBadSize, "the image not the same size as the reserved GMM background model");
|
|
|
|
float alpha=bg_model->params.fAlphaT;
|
|
bg_model->countFrames++;
|
|
|
|
//faster initial updates - increase value of alpha
|
|
if (bg_model->params.bInit){
|
|
float alphaInit=(1.0f/(2*bg_model->countFrames+1));
|
|
if (alphaInit>alpha)
|
|
{
|
|
alpha = alphaInit;
|
|
}
|
|
else
|
|
{
|
|
bg_model->params.bInit = 0;
|
|
}
|
|
}
|
|
|
|
//update background
|
|
//icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,&(bg_model->params),alpha);
|
|
icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,
|
|
bg_model->params.nM,
|
|
bg_model->params.fTb,
|
|
bg_model->params.fTB,
|
|
bg_model->params.fTg,
|
|
bg_model->params.fVarInit,
|
|
bg_model->params.fVarMax,
|
|
bg_model->params.fVarMin,
|
|
bg_model->params.fCT,
|
|
bg_model->params.fTau,
|
|
bg_model->params.bShadowDetection,
|
|
bg_model->params.nShadowDetection,
|
|
alpha);
|
|
|
|
//foreground filtering
|
|
if (bg_model->params.bPostFiltering==1)
|
|
{
|
|
int region_count = 0;
|
|
CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
|
|
|
|
|
|
//filter small regions
|
|
cvClearMemStorage(bg_model->storage);
|
|
|
|
cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 );
|
|
cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 );
|
|
|
|
cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
|
|
for( seq = first_seq; seq; seq = seq->h_next )
|
|
{
|
|
CvContour* cnt = (CvContour*)seq;
|
|
if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea )
|
|
{
|
|
//delete small contour
|
|
prev_seq = seq->h_prev;
|
|
if( prev_seq )
|
|
{
|
|
prev_seq->h_next = seq->h_next;
|
|
if( seq->h_next ) seq->h_next->h_prev = prev_seq;
|
|
}
|
|
else
|
|
{
|
|
first_seq = seq->h_next;
|
|
if( seq->h_next ) seq->h_next->h_prev = NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
region_count++;
|
|
}
|
|
}
|
|
bg_model->foreground_regions = first_seq;
|
|
cvZero(bg_model->foreground);
|
|
cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);
|
|
|
|
return region_count;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* End of file. */
|
|
|