mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
a2fa1d49a4
Modified Caffe parser to support the new dnn engine #26208 Now the Caffe parser supports both the old and the new engine. It can be selected using newEngine argument in PopulateNet. All cpu Caffe tests work fine except: - Test_Caffe_nets.Colorization - Test_Caffe_layers.FasterRCNN_Proposal Both these tests doesn't work because of the bug in the new net.forward function. The function takes the name of the desired target last layer, but uses this name as the name of the desired output tensor. Also Colorization test contains a strange model with a Silence layer in the end, so it doesn't have outputs. The old parser just ignored it. I think, the proper solution is to run this model until the (number_of_layers - 2) layer using proper net.forward arguments in the test. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
170 lines
6.5 KiB
C++
170 lines
6.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "npy_blob.hpp"
|
|
#include <opencv2/core/ocl.hpp>
|
|
#include <opencv2/ts/ocl_test.hpp>
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
template<typename TString>
|
|
static std::string _tf(TString filename)
|
|
{
|
|
return (getOpenCVExtraDir() + "/dnn/") + filename;
|
|
}
|
|
|
|
typedef testing::TestWithParam<Target> Reproducibility_GoogLeNet;
|
|
TEST_P(Reproducibility_GoogLeNet, Batching)
|
|
{
|
|
const int targetId = GetParam();
|
|
if (targetId == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (targetId == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt"),
|
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false));
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
if (targetId == DNN_TARGET_OPENCL)
|
|
{
|
|
// Initialize network for a single image in the batch but test with batch size=2.
|
|
Mat inp = Mat(224, 224, CV_8UC3);
|
|
randu(inp, -1, 1);
|
|
net.setInput(blobFromImage(inp));
|
|
net.forward();
|
|
}
|
|
|
|
std::vector<Mat> inpMats;
|
|
inpMats.push_back( imread(_tf("googlenet_0.png")) );
|
|
inpMats.push_back( imread(_tf("googlenet_1.png")) );
|
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
|
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data");
|
|
|
|
// BUG: https://github.com/opencv/opencv/issues/26349
|
|
Mat out;
|
|
if(net.getMainGraph())
|
|
out = net.forward();
|
|
else
|
|
out = net.forward("prob");
|
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy"));
|
|
normAssert(out, ref);
|
|
}
|
|
|
|
TEST_P(Reproducibility_GoogLeNet, IntermediateBlobs)
|
|
{
|
|
const int targetId = GetParam();
|
|
if (targetId == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (targetId == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
// BUG: https://github.com/opencv/opencv/issues/26349
|
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt"),
|
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false), ENGINE_CLASSIC);
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
std::vector<String> blobsNames;
|
|
blobsNames.push_back("conv1/7x7_s2");
|
|
blobsNames.push_back("conv1/relu_7x7");
|
|
blobsNames.push_back("inception_4c/1x1");
|
|
blobsNames.push_back("inception_4c/relu_1x1");
|
|
std::vector<Mat> outs;
|
|
Mat in = blobFromImage(imread(_tf("googlenet_0.png")), 1.0f, Size(), Scalar(), false);
|
|
net.setInput(in, "data");
|
|
net.forward(outs, blobsNames);
|
|
CV_Assert(outs.size() == blobsNames.size());
|
|
|
|
for (size_t i = 0; i < blobsNames.size(); i++)
|
|
{
|
|
std::string filename = blobsNames[i];
|
|
std::replace( filename.begin(), filename.end(), '/', '#');
|
|
Mat ref = blobFromNPY(_tf("googlenet_" + filename + ".npy"));
|
|
|
|
normAssert(outs[i], ref, "", 1E-4, 1E-2);
|
|
}
|
|
}
|
|
|
|
TEST_P(Reproducibility_GoogLeNet, SeveralCalls)
|
|
{
|
|
const int targetId = GetParam();
|
|
if (targetId == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (targetId == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
// BUG: https://github.com/opencv/opencv/issues/26349
|
|
Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt"),
|
|
findDataFile("dnn/bvlc_googlenet.caffemodel", false), ENGINE_CLASSIC);
|
|
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
|
net.setPreferableTarget(targetId);
|
|
|
|
std::vector<Mat> inpMats;
|
|
inpMats.push_back( imread(_tf("googlenet_0.png")) );
|
|
inpMats.push_back( imread(_tf("googlenet_1.png")) );
|
|
ASSERT_TRUE(!inpMats[0].empty() && !inpMats[1].empty());
|
|
|
|
net.setInput(blobFromImages(inpMats, 1.0f, Size(), Scalar(), false), "data");
|
|
Mat out = net.forward();
|
|
|
|
Mat ref = blobFromNPY(_tf("googlenet_prob.npy"));
|
|
normAssert(out, ref);
|
|
|
|
std::vector<String> blobsNames;
|
|
blobsNames.push_back("conv1/7x7_s2");
|
|
std::vector<Mat> outs;
|
|
Mat in = blobFromImage(inpMats[0], 1.0f, Size(), Scalar(), false);
|
|
net.setInput(in, "data");
|
|
net.forward(outs, blobsNames);
|
|
CV_Assert(outs.size() == blobsNames.size());
|
|
|
|
ref = blobFromNPY(_tf("googlenet_conv1#7x7_s2.npy"));
|
|
|
|
normAssert(outs[0], ref, "", 1E-4, 1E-2);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_GoogLeNet,
|
|
testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)));
|
|
|
|
}} // namespace
|