mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
3cd57ea09e
New dnn engine #26056 This is the 1st PR with the new engine; CI is green and PR is ready to be merged, I think. Merge together with https://github.com/opencv/opencv_contrib/pull/3794 --- **Known limitations:** * [solved] OpenVINO is temporarily disabled, but is probably easy to restore (it's not a deal breaker to merge this PR, I guess) * The new engine does not support any backends nor any targets except for the default CPU implementation. But it's possible to choose the old engine when loading a model, then all the functionality is available. * [Caffe patch is here: #26208] The new engine only supports ONNX. When a model is constructed manually or is loaded from a file of different format (.tf, .tflite, .caffe, .darknet), the old engine is used. * Even in the case of ONNX some layers are not supported by the new engine, such as all quantized layers (including DequantizeLinear, QuantizeLinear, QLinearConv etc.), LSTM, GRU, .... It's planned, of course, to have full support for ONNX by OpenCV 5.0 gold release. When a loaded model contains unsupported layers, we switch to the old engine automatically (at ONNX parsing time, not at `forward()` time). * Some layers , e.g. Expat, are only partially supported by the new engine. In the case of unsupported flavours it switches to the old engine automatically (at ONNX parsing time, not at `forward()` time). * 'Concat' graph optimization is disabled. The optimization eliminates Concat layer and instead makes the layers that generate tensors to be concatenated to write the outputs to the final destination. Of course, it's only possible when `axis=0` or `axis=N=1`. The optimization is not compatible with dynamic shapes since we need to know in advance where to store the tensors. Because some of the layer implementations have been modified to become more compatible with the new engine, the feature appears to be broken even when the old engine is used. * Some `dnn::Net` API is not available with the new engine. Also, shape inference may return false if some of the output or intermediate tensors' shapes cannot be inferred without running the model. Probably this can be fixed by a dummy run of the model with zero inputs. * Some overloads of `dnn::Net::getFLOPs()` and `dnn::Net::getMemoryConsumption()` are not exposed any longer in wrapper generators; but the most useful overloads are exposed (and checked by Java tests). * [in progress] A few Einsum tests related to empty shapes have been disabled due to crashes in the tests and in Einsum implementations. The code and the tests need to be repaired. * OpenCL implementation of Deconvolution is disabled. It's very bad and very slow anyway; need to be completely revised. * Deconvolution3D test is now skipped, because it was only supported by CUDA and OpenVINO backends, both of which are not supported by the new engine. * Some tests, such as FastNeuralStyle, checked that the in the case of CUDA backend there is no fallback to CPU. Currently all layers in the new engine are processed on CPU, so there are many fallbacks. The checks, therefore, have been temporarily disabled. --- - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
842 lines
34 KiB
C++
842 lines
34 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
#include "npy_blob.hpp"
|
|
namespace opencv_test { namespace {
|
|
|
|
template<typename TString>
|
|
static std::string _tf(TString filename, bool required = true)
|
|
{
|
|
String rootFolder = "dnn/";
|
|
return findDataFile(rootFolder + filename, required);
|
|
}
|
|
|
|
|
|
class Test_Model : public DNNTestLayer
|
|
{
|
|
public:
|
|
void testDetectModel(const std::string& weights, const std::string& cfg,
|
|
const std::string& imgPath, const std::vector<int>& refClassIds,
|
|
const std::vector<float>& refConfidences,
|
|
const std::vector<Rect2d>& refBoxes,
|
|
double scoreDiff, double iouDiff,
|
|
double confThreshold = 0.24, double nmsThreshold = 0.0,
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
double scale = 1.0, bool swapRB = false, bool crop = false,
|
|
bool nmsAcrossClasses = false)
|
|
{
|
|
checkBackend();
|
|
|
|
Mat frame = imread(imgPath);
|
|
DetectionModel model(weights, cfg);
|
|
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
model.setPreferableBackend(backend);
|
|
model.setPreferableTarget(target);
|
|
|
|
model.setNmsAcrossClasses(nmsAcrossClasses);
|
|
if (target == DNN_TARGET_CPU_FP16)
|
|
model.enableWinograd(false);
|
|
|
|
std::vector<int> classIds;
|
|
std::vector<float> confidences;
|
|
std::vector<Rect> boxes;
|
|
|
|
model.detect(frame, classIds, confidences, boxes, confThreshold, nmsThreshold);
|
|
|
|
std::vector<Rect2d> boxesDouble(boxes.size());
|
|
for (int i = 0; i < boxes.size(); i++) {
|
|
boxesDouble[i] = boxes[i];
|
|
}
|
|
normAssertDetections(refClassIds, refConfidences, refBoxes, classIds,
|
|
confidences, boxesDouble, "",
|
|
confThreshold, scoreDiff, iouDiff);
|
|
}
|
|
|
|
void testClassifyModel(const std::string& weights, const std::string& cfg,
|
|
const std::string& imgPath, std::pair<int, float> ref, float norm,
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
|
{
|
|
checkBackend();
|
|
|
|
Mat frame = imread(imgPath);
|
|
ClassificationModel model(weights, cfg);
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
std::pair<int, float> prediction = model.classify(frame);
|
|
EXPECT_EQ(prediction.first, ref.first);
|
|
ASSERT_NEAR(prediction.second, ref.second, norm);
|
|
}
|
|
|
|
void testKeypointsModel(const std::string& weights, const std::string& cfg,
|
|
const Mat& frame, const Mat& exp, float norm,
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
|
{
|
|
checkBackend();
|
|
|
|
std::vector<Point2f> points;
|
|
|
|
KeypointsModel model(weights, cfg);
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
model.setPreferableBackend(backend);
|
|
model.setPreferableTarget(target);
|
|
|
|
points = model.estimate(frame, 0.5);
|
|
|
|
Mat out = Mat(points).reshape(1, (int)points.size());
|
|
normAssert(exp, out, "", norm, norm);
|
|
}
|
|
|
|
void testSegmentationModel(const std::string& weights_file, const std::string& config_file,
|
|
const std::string& inImgPath, const std::string& outImgPath,
|
|
float norm, const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
double scale = 1.0, bool swapRB = false, bool crop = false,
|
|
const std::vector<std::string>& outnames=std::vector<std::string>())
|
|
{
|
|
checkBackend();
|
|
|
|
Mat frame = imread(inImgPath);
|
|
Mat mask;
|
|
Mat exp = imread(outImgPath, 0);
|
|
|
|
SegmentationModel model(weights_file, config_file);
|
|
model.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
model.setPreferableBackend(backend);
|
|
model.setPreferableTarget(target);
|
|
|
|
if(!outnames.empty())
|
|
model.setOutputNames(outnames);
|
|
|
|
model.segment(frame, mask);
|
|
normAssert(mask, exp, "", norm, norm);
|
|
}
|
|
|
|
void testTextRecognitionModel(const std::string& weights, const std::string& cfg,
|
|
const std::string& imgPath, const std::string& seq,
|
|
const std::string& decodeType, const std::vector<std::string>& vocabulary,
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
double scale = 1.0, bool swapRB = false, bool crop = false)
|
|
{
|
|
checkBackend();
|
|
|
|
Mat frame = imread(imgPath, IMREAD_GRAYSCALE);
|
|
|
|
TextRecognitionModel model(weights, cfg);
|
|
model.setDecodeType(decodeType)
|
|
.setVocabulary(vocabulary)
|
|
.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
model.setPreferableBackend(backend);
|
|
model.setPreferableTarget(target);
|
|
|
|
std::string result = model.recognize(frame);
|
|
EXPECT_EQ(result, seq) << "Full frame: " << imgPath;
|
|
|
|
std::vector<Rect> rois;
|
|
rois.push_back(Rect(0, 0, frame.cols, frame.rows));
|
|
rois.push_back(Rect(0, 0, frame.cols, frame.rows)); // twice
|
|
std::vector<std::string> results;
|
|
model.recognize(frame, rois, results);
|
|
EXPECT_EQ((size_t)2u, results.size()) << "ROI: " << imgPath;
|
|
EXPECT_EQ(results[0], seq) << "ROI[0]: " << imgPath;
|
|
EXPECT_EQ(results[1], seq) << "ROI[1]: " << imgPath;
|
|
}
|
|
|
|
void testTextDetectionModelByDB(const std::string& weights, const std::string& cfg,
|
|
const std::string& imgPath, const std::vector<std::vector<Point>>& gt,
|
|
float binThresh, float polyThresh,
|
|
uint maxCandidates, double unclipRatio,
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(), Scalar scale = Scalar::all(1.0),
|
|
double boxes_iou_diff = 0.05, bool swapRB = false, bool crop = false)
|
|
{
|
|
checkBackend();
|
|
|
|
Mat frame = imread(imgPath);
|
|
|
|
TextDetectionModel_DB model(weights, cfg);
|
|
model.setBinaryThreshold(binThresh)
|
|
.setPolygonThreshold(polyThresh)
|
|
.setUnclipRatio(unclipRatio)
|
|
.setMaxCandidates(maxCandidates)
|
|
.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
model.setPreferableBackend(backend);
|
|
model.setPreferableTarget(target);
|
|
|
|
// 1. Check common TextDetectionModel API through RotatedRect
|
|
std::vector<cv::RotatedRect> results;
|
|
model.detectTextRectangles(frame, results);
|
|
|
|
EXPECT_GT(results.size(), (size_t)0);
|
|
|
|
std::vector< std::vector<Point> > contours;
|
|
for (size_t i = 0; i < results.size(); i++)
|
|
{
|
|
const RotatedRect& box = results[i];
|
|
Mat contour;
|
|
boxPoints(box, contour);
|
|
std::vector<Point> contour2i(4);
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
contour2i[i].x = cvRound(contour.at<float>(i, 0));
|
|
contour2i[i].y = cvRound(contour.at<float>(i, 1));
|
|
}
|
|
contours.push_back(contour2i);
|
|
}
|
|
#if 0 // test debug
|
|
Mat result = frame.clone();
|
|
drawContours(result, contours, -1, Scalar(0, 0, 255), 1);
|
|
imshow("result", result); // imwrite("result.png", result);
|
|
waitKey(0);
|
|
#endif
|
|
normAssertTextDetections(gt, contours, "", boxes_iou_diff);
|
|
|
|
// 2. Check quadrangle-based API
|
|
// std::vector< std::vector<Point> > contours;
|
|
model.detect(frame, contours);
|
|
|
|
#if 0 // test debug
|
|
Mat result = frame.clone();
|
|
drawContours(result, contours, -1, Scalar(0, 0, 255), 1);
|
|
imshow("result_contours", result); // imwrite("result_contours.png", result);
|
|
waitKey(0);
|
|
#endif
|
|
normAssertTextDetections(gt, contours, "", boxes_iou_diff);
|
|
}
|
|
|
|
void testTextDetectionModelByEAST(
|
|
const std::string& weights, const std::string& cfg,
|
|
const std::string& imgPath, const std::vector<RotatedRect>& gt,
|
|
float confThresh, float nmsThresh,
|
|
const Size& size = {-1, -1}, Scalar mean = Scalar(),
|
|
double scale = 1.0, bool swapRB = false, bool crop = false,
|
|
double eps_center = 5/*pixels*/, double eps_size = 5/*pixels*/, double eps_angle = 1
|
|
)
|
|
{
|
|
checkBackend();
|
|
|
|
Mat frame = imread(imgPath);
|
|
|
|
TextDetectionModel_EAST model(weights, cfg);
|
|
model.setConfidenceThreshold(confThresh)
|
|
.setNMSThreshold(nmsThresh)
|
|
.setInputSize(size).setInputMean(mean).setInputScale(scale)
|
|
.setInputSwapRB(swapRB).setInputCrop(crop);
|
|
|
|
model.setPreferableBackend(backend);
|
|
model.setPreferableTarget(target);
|
|
|
|
std::vector<cv::RotatedRect> results;
|
|
model.detectTextRectangles(frame, results);
|
|
|
|
EXPECT_EQ(results.size(), (size_t)1);
|
|
for (size_t i = 0; i < results.size(); i++)
|
|
{
|
|
const RotatedRect& box = results[i];
|
|
#if 0 // test debug
|
|
Mat contour;
|
|
boxPoints(box, contour);
|
|
std::vector<Point> contour2i(4);
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
contour2i[i].x = cvRound(contour.at<float>(i, 0));
|
|
contour2i[i].y = cvRound(contour.at<float>(i, 1));
|
|
}
|
|
std::vector< std::vector<Point> > contours;
|
|
contours.push_back(contour2i);
|
|
|
|
Mat result = frame.clone();
|
|
drawContours(result, contours, -1, Scalar(0, 0, 255), 1);
|
|
imshow("result", result); //imwrite("result.png", result);
|
|
waitKey(0);
|
|
#endif
|
|
const RotatedRect& gtBox = gt[i];
|
|
EXPECT_NEAR(box.center.x, gtBox.center.x, eps_center);
|
|
EXPECT_NEAR(box.center.y, gtBox.center.y, eps_center);
|
|
EXPECT_NEAR(box.size.width, gtBox.size.width, eps_size);
|
|
EXPECT_NEAR(box.size.height, gtBox.size.height, eps_size);
|
|
EXPECT_NEAR(box.angle, gtBox.angle, eps_angle);
|
|
}
|
|
}
|
|
};
|
|
|
|
TEST_P(Test_Model, Classify)
|
|
{
|
|
std::pair<int, float> ref(652, 0.641789);
|
|
|
|
std::string img_path = _tf("grace_hopper_227.png");
|
|
std::string config_file = _tf("bvlc_alexnet.prototxt");
|
|
std::string weights_file = _tf("bvlc_alexnet.caffemodel", false);
|
|
|
|
Size size{227, 227};
|
|
float norm = 1e-4;
|
|
|
|
testClassifyModel(weights_file, config_file, img_path, ref, norm, size);
|
|
}
|
|
|
|
|
|
TEST_P(Test_Model, DetectRegion)
|
|
{
|
|
applyTestTag(
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
CV_TEST_TAG_LONG,
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
);
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
// accuracy
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// accuracy
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
|
// FIXIT DNN_BACKEND_INFERENCE_ENGINE is misused
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
#endif
|
|
|
|
std::vector<int> refClassIds = {6, 1, 11};
|
|
std::vector<float> refConfidences = {0.750469f, 0.780879f, 0.901615f};
|
|
std::vector<Rect2d> refBoxes = {Rect2d(240, 53, 135, 72),
|
|
Rect2d(112, 109, 192, 200),
|
|
Rect2d(58, 141, 117, 249)};
|
|
|
|
std::string img_path = _tf("dog416.png");
|
|
std::string weights_file = _tf("yolo-voc.weights", false);
|
|
std::string config_file = _tf("yolo-voc.cfg");
|
|
|
|
double scale = 1.0 / 255.0;
|
|
Size size{416, 416};
|
|
bool swapRB = true;
|
|
|
|
double confThreshold = 0.24;
|
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4;
|
|
double scoreDiff = 8e-5, iouDiff = 1e-5;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
scoreDiff = 1e-2;
|
|
iouDiff = 1.6e-2;
|
|
}
|
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences,
|
|
refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size,
|
|
Scalar(), scale, swapRB);
|
|
}
|
|
|
|
TEST_P(Test_Model, DetectRegionWithNmsAcrossClasses)
|
|
{
|
|
applyTestTag(
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
CV_TEST_TAG_LONG,
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
);
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
// accuracy
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// accuracy
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (target == DNN_TARGET_MYRIAD
|
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
|
|
#endif
|
|
|
|
std::vector<int> refClassIds = { 6, 11 };
|
|
std::vector<float> refConfidences = { 0.750469f, 0.901615f };
|
|
std::vector<Rect2d> refBoxes = { Rect2d(240, 53, 135, 72),
|
|
Rect2d(58, 141, 117, 249) };
|
|
|
|
std::string img_path = _tf("dog416.png");
|
|
std::string weights_file = _tf("yolo-voc.weights", false);
|
|
std::string config_file = _tf("yolo-voc.cfg");
|
|
|
|
double scale = 1.0 / 255.0;
|
|
Size size{ 416, 416 };
|
|
bool swapRB = true;
|
|
bool crop = false;
|
|
bool nmsAcrossClasses = true;
|
|
|
|
double confThreshold = 0.24;
|
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.15: 0.15;
|
|
double scoreDiff = 8e-5, iouDiff = 1e-5;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
scoreDiff = 1e-2;
|
|
iouDiff = 1.6e-2;
|
|
}
|
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences,
|
|
refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold, size,
|
|
Scalar(), scale, swapRB, crop,
|
|
nmsAcrossClasses);
|
|
}
|
|
|
|
TEST_P(Test_Model, DetectionOutput)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
// Check 'backward_compatible_check || in_out_elements_equal' failed at core/src/op/reshape.cpp:427:
|
|
// While validating node 'v1::Reshape bbox_pred_reshape (ave_bbox_pred_rois[0]:f32{1,8,1,1}, Constant_388[0]:i64{4}) -> (f32{?,?,?,?})' with friendly_name 'bbox_pred_reshape':
|
|
// Requested output shape {1,300,8,1} is incompatible with input shape {1, 8, 1, 1}
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// Exception: Function contains several inputs and outputs with one friendly name! (HETERO bug?)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE)
|
|
// FIXIT DNN_BACKEND_INFERENCE_ENGINE is misused
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
|
#endif
|
|
|
|
std::vector<int> refClassIds = {7, 12};
|
|
std::vector<float> refConfidences = {0.991359f, 0.94786f};
|
|
std::vector<Rect2d> refBoxes = {Rect2d(491, 81, 212, 98),
|
|
Rect2d(132, 223, 207, 344)};
|
|
|
|
std::string img_path = _tf("dog416.png");
|
|
std::string weights_file = _tf("resnet50_rfcn_final.caffemodel", false);
|
|
std::string config_file = _tf("rfcn_pascal_voc_resnet50.prototxt");
|
|
|
|
Scalar mean = Scalar(102.9801, 115.9465, 122.7717);
|
|
Size size{800, 600};
|
|
|
|
double scoreDiff = default_l1, iouDiff = 1e-5;
|
|
float confThreshold = 0.8;
|
|
double nmsThreshold = 0.0;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
if (backend == DNN_BACKEND_OPENCV)
|
|
scoreDiff = 4e-3;
|
|
else
|
|
scoreDiff = 2e-2;
|
|
iouDiff = 1.8e-1;
|
|
}
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
scoreDiff = 0.05;
|
|
iouDiff = 0.08;
|
|
}
|
|
#endif
|
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean);
|
|
}
|
|
|
|
|
|
TEST_P(Test_Model, DetectionMobilenetSSD)
|
|
{
|
|
Mat ref = blobFromNPY(_tf("mobilenet_ssd_caffe_out.npy"));
|
|
ref = ref.reshape(1, ref.size[2]);
|
|
|
|
std::string img_path = _tf("street.png");
|
|
Mat frame = imread(img_path);
|
|
int frameWidth = frame.cols;
|
|
int frameHeight = frame.rows;
|
|
|
|
std::vector<int> refClassIds;
|
|
std::vector<float> refConfidences;
|
|
std::vector<Rect2d> refBoxes;
|
|
for (int i = 0; i < ref.rows; i++)
|
|
{
|
|
refClassIds.emplace_back(ref.at<float>(i, 1));
|
|
refConfidences.emplace_back(ref.at<float>(i, 2));
|
|
int left = ref.at<float>(i, 3) * frameWidth;
|
|
int top = ref.at<float>(i, 4) * frameHeight;
|
|
int right = ref.at<float>(i, 5) * frameWidth;
|
|
int bottom = ref.at<float>(i, 6) * frameHeight;
|
|
int width = right - left + 1;
|
|
int height = bottom - top + 1;
|
|
refBoxes.emplace_back(left, top, width, height);
|
|
}
|
|
|
|
std::string weights_file = _tf("MobileNetSSD_deploy_19e3ec3.caffemodel", false);
|
|
std::string config_file = _tf("MobileNetSSD_deploy_19e3ec3.prototxt");
|
|
|
|
Scalar mean = Scalar(127.5, 127.5, 127.5);
|
|
double scale = 1.0 / 127.5;
|
|
Size size{300, 300};
|
|
|
|
double scoreDiff = 1e-5, iouDiff = 1e-5;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
scoreDiff = 1.7e-2;
|
|
iouDiff = 6.91e-2;
|
|
}
|
|
else if (target == DNN_TARGET_MYRIAD)
|
|
{
|
|
scoreDiff = 0.017;
|
|
if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
|
iouDiff = 0.1;
|
|
}
|
|
else if (target == DNN_TARGET_CUDA_FP16)
|
|
{
|
|
scoreDiff = 0.0028;
|
|
iouDiff = 1e-2;
|
|
}
|
|
float confThreshold = FLT_MIN;
|
|
double nmsThreshold = 0.0;
|
|
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale);
|
|
}
|
|
|
|
TEST_P(Test_Model, Keypoints_pose)
|
|
{
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (target == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#endif
|
|
|
|
Mat inp = imread(_tf("pose.png"));
|
|
std::string weights = _tf("onnx/models/lightweight_pose_estimation_201912.onnx", false);
|
|
float kpdata[] = {
|
|
237.65625f, 78.25f, 237.65625f, 136.9375f,
|
|
190.125f, 136.9375f, 142.59375f, 195.625f, 79.21875f, 176.0625f, 285.1875f, 117.375f,
|
|
348.5625f, 195.625f, 396.09375f, 176.0625f, 205.96875f, 313.0f, 205.96875f, 430.375f,
|
|
205.96875f, 528.1875f, 269.34375f, 293.4375f, 253.5f, 430.375f, 237.65625f, 528.1875f,
|
|
221.8125f, 58.6875f, 253.5f, 58.6875f, 205.96875f, 78.25f, 253.5f, 58.6875f
|
|
};
|
|
Mat exp(18, 2, CV_32FC1, kpdata);
|
|
|
|
Size size{256, 256};
|
|
float norm = 1e-4;
|
|
double scale = 1.0/255;
|
|
Scalar mean = Scalar(128, 128, 128);
|
|
bool swapRB = false;
|
|
|
|
// Ref. Range: [58.6875, 508.625]
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
norm = 20; // l1 = 1.5, lInf = 20
|
|
|
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB);
|
|
}
|
|
|
|
TEST_P(Test_Model, Keypoints_face)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#endif
|
|
|
|
Mat inp = imread(_tf("gray_face.png"), 0);
|
|
std::string weights = _tf("onnx/models/facial_keypoints.onnx", false);
|
|
Mat exp = blobFromNPY(_tf("facial_keypoints_exp.npy"));
|
|
|
|
Size size{224, 224};
|
|
double scale = 1.0/255;
|
|
Scalar mean = Scalar();
|
|
bool swapRB = false;
|
|
|
|
// Ref. Range: [-1.1784188, 1.7758257]
|
|
float norm = 1e-4;
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
norm = 5e-3;
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
{
|
|
// Myriad2: l1 = 0.0004, lInf = 0.002
|
|
// MyriadX: l1 = 0.003, lInf = 0.009
|
|
norm = 0.009;
|
|
}
|
|
if (target == DNN_TARGET_CUDA_FP16)
|
|
norm = 0.004; // l1 = 0.0006, lInf = 0.004
|
|
|
|
testKeypointsModel(weights, "", inp, exp, norm, size, mean, scale, swapRB);
|
|
}
|
|
|
|
TEST_P(Test_Model, Detection_normalized)
|
|
{
|
|
std::string img_path = _tf("grace_hopper_227.png");
|
|
std::vector<int> refClassIds = {15};
|
|
std::vector<float> refConfidences = {0.999222f};
|
|
std::vector<Rect2d> refBoxes = {Rect2d(0, 4, 227, 222)};
|
|
|
|
std::string weights_file = _tf("MobileNetSSD_deploy_19e3ec3.caffemodel", false);
|
|
std::string config_file = _tf("MobileNetSSD_deploy_19e3ec3.prototxt");
|
|
|
|
Scalar mean = Scalar(127.5, 127.5, 127.5);
|
|
double scale = 1.0 / 127.5;
|
|
Size size{300, 300};
|
|
|
|
double scoreDiff = 1e-5, iouDiff = 1e-5;
|
|
float confThreshold = FLT_MIN;
|
|
double nmsThreshold = 0.0;
|
|
if (target == DNN_TARGET_CUDA)
|
|
{
|
|
scoreDiff = 3e-4;
|
|
iouDiff = 0.018;
|
|
}
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
scoreDiff = 5e-3;
|
|
iouDiff = 0.09;
|
|
}
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020040000)
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
{
|
|
scoreDiff = 0.02;
|
|
iouDiff = 0.1f;
|
|
}
|
|
#endif
|
|
testDetectModel(weights_file, config_file, img_path, refClassIds, refConfidences, refBoxes,
|
|
scoreDiff, iouDiff, confThreshold, nmsThreshold, size, mean, scale);
|
|
}
|
|
|
|
TEST_P(Test_Model, Segmentation)
|
|
{
|
|
applyTestTag(
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
);
|
|
|
|
float norm = 0;
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
// Failed to allocate graph: NC_ERROR
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
// accuracy
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
{
|
|
norm = 25.0f; // depends on OS/OpenCL version
|
|
}
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// Failed to allocate graph: NC_ERROR
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
// cnn_network_ngraph_impl.cpp:104 Function contains several inputs and outputs with one friendly name: 'upscore2'!
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
// cnn_network_ngraph_impl.cpp:104 Function contains several inputs and outputs with one friendly name: 'upscore2'!
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#elif defined(INF_ENGINE_RELEASE)
|
|
// Failed to allocate graph: NC_ERROR
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
#endif
|
|
|
|
//if ((backend == DNN_BACKEND_OPENCV && (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CPU_FP16))
|
|
// || (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16))
|
|
{
|
|
// let's always set it to 7 for now
|
|
norm = 7.0f; // l1 = 0.01 lInf = 7
|
|
}
|
|
|
|
std::string inp = _tf("dog416.png");
|
|
std::string weights_file = _tf("onnx/models/fcn-resnet50-12.onnx", false);
|
|
std::string exp = _tf("segmentation_exp.png");
|
|
|
|
Size size{128, 128};
|
|
double scale = 0.019;
|
|
Scalar mean = Scalar(0.485*255, 0.456*255, 0.406*255);
|
|
bool swapRB = true;
|
|
|
|
testSegmentationModel(weights_file, "", inp, exp, norm, size, mean, scale, swapRB, false);
|
|
}
|
|
|
|
TEST_P(Test_Model, TextRecognition)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
// FIXIT: dnn/src/ie_ngraph.cpp:494: error: (-215:Assertion failed) !inps.empty() in function 'createNet'
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_CPU)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_CPU, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
|
// Node Transpose_79 was not assigned on any pointed device
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
|
);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// IE Exception: Ngraph operation Reshape with name 71 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
|
);
|
|
#endif
|
|
|
|
std::string imgPath = _tf("text_rec_test.png");
|
|
std::string weightPath = _tf("onnx/models/crnn.onnx", false);
|
|
std::string seq = "welcome";
|
|
|
|
Size size{100, 32};
|
|
double scale = 1.0 / 127.5;
|
|
Scalar mean = Scalar(127.5);
|
|
std::string decodeType = "CTC-greedy";
|
|
std::vector<std::string> vocabulary = {"0","1","2","3","4","5","6","7","8","9",
|
|
"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"};
|
|
|
|
testTextRecognitionModel(weightPath, "", imgPath, seq, decodeType, vocabulary, size, mean, scale);
|
|
}
|
|
|
|
TEST_P(Test_Model, TextRecognitionWithCTCPrefixBeamSearch)
|
|
{
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2022010000)
|
|
// Node Transpose_79 was not assigned on any pointed device
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
|
);
|
|
#elif defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
|
// IE Exception: Ngraph operation Reshape with name 71 has dynamic output shape on 0 port, but CPU plug-in supports only static shape
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
|
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16,
|
|
CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
|
);
|
|
#endif
|
|
|
|
|
|
std::string imgPath = _tf("text_rec_test.png");
|
|
std::string weightPath = _tf("onnx/models/crnn.onnx", false);
|
|
std::string seq = "welcome";
|
|
|
|
Size size{100, 32};
|
|
double scale = 1.0 / 127.5;
|
|
Scalar mean = Scalar(127.5);
|
|
std::string decodeType = "CTC-prefix-beam-search";
|
|
std::vector<std::string> vocabulary = {"0","1","2","3","4","5","6","7","8","9",
|
|
"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"};
|
|
|
|
testTextRecognitionModel(weightPath, "", imgPath, seq, decodeType, vocabulary, size, mean, scale);
|
|
}
|
|
|
|
// BUG: https://github.com/opencv/opencv/issues/26246
|
|
TEST_P(Test_Model, DISABLED_TextDetectionByDB)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
|
|
if (target == DNN_TARGET_CPU_FP16)
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CPU_FP16);
|
|
|
|
std::string imgPath = _tf("text_det_test1.png");
|
|
std::string weightPathDB = _tf("onnx/models/DB_TD500_resnet50.onnx", false);
|
|
std::string weightPathPPDB = _tf("onnx/models/PP_OCRv3_DB_text_det.onnx", false);
|
|
|
|
// GroundTruth
|
|
std::vector<std::vector<Point>> gt = {
|
|
{ Point(142, 193), Point(136, 164), Point(213, 150), Point(219, 178) },
|
|
{ Point(136, 165), Point(122, 114), Point(319, 71), Point(330, 122) }
|
|
};
|
|
|
|
Size size{736, 736};
|
|
Scalar scaleDB = Scalar::all(1.0 / 255.0);
|
|
Scalar meanDB = Scalar(122.67891434, 116.66876762, 104.00698793);
|
|
|
|
// new mean and stddev
|
|
Scalar meanPPDB = Scalar(123.675, 116.28, 103.53);
|
|
Scalar stddevPPDB = Scalar(0.229, 0.224, 0.225);
|
|
Scalar scalePPDB = scaleDB / stddevPPDB;
|
|
|
|
float binThresh = 0.3;
|
|
float polyThresh = 0.5;
|
|
uint maxCandidates = 200;
|
|
double unclipRatio = 2.0;
|
|
|
|
{
|
|
SCOPED_TRACE("Original DB");
|
|
testTextDetectionModelByDB(weightPathDB, "", imgPath, gt, binThresh, polyThresh, maxCandidates, unclipRatio, size, meanDB, scaleDB, 0.05f);
|
|
}
|
|
|
|
{
|
|
SCOPED_TRACE("PP-OCRDBv3");
|
|
testTextDetectionModelByDB(weightPathPPDB, "", imgPath, gt, binThresh, polyThresh, maxCandidates, unclipRatio, size, meanPPDB, scalePPDB, 0.21f);
|
|
}
|
|
}
|
|
|
|
TEST_P(Test_Model, TextDetectionByEAST)
|
|
{
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
std::string imgPath = _tf("text_det_test2.jpg");
|
|
std::string weightPath = _tf("frozen_east_text_detection.pb", false);
|
|
|
|
// GroundTruth
|
|
std::vector<RotatedRect> gt = {
|
|
RotatedRect(Point2f(657.55f, 409.5f), Size2f(316.84f, 62.45f), -4.79)
|
|
};
|
|
|
|
// Model parameters
|
|
Size size{320, 320};
|
|
double scale = 1.0;
|
|
Scalar mean = Scalar(123.68, 116.78, 103.94);
|
|
bool swapRB = true;
|
|
|
|
// Detection algorithm parameters
|
|
float confThresh = 0.5;
|
|
float nmsThresh = 0.4;
|
|
|
|
double eps_center = 5/*pixels*/;
|
|
double eps_size = 5/*pixels*/;
|
|
double eps_angle = 1;
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_MYRIAD || target == DNN_TARGET_CPU_FP16)
|
|
{
|
|
eps_center = 10;
|
|
eps_size = 25;
|
|
eps_angle = 3;
|
|
}
|
|
|
|
testTextDetectionModelByEAST(weightPath, "", imgPath, gt, confThresh, nmsThresh, size, mean, scale, swapRB, false/*crop*/,
|
|
eps_center, eps_size, eps_angle
|
|
);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Model, dnnBackendsAndTargets());
|
|
|
|
}} // namespace
|