mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00

Release convolution weightsMat after usage #25181 ### Pull Request Readiness Checklist related (but not resolved): https://github.com/opencv/opencv/issues/24134 Minor memory footprint improvement. Also, adds a test for VmHWM. RAM top memory usage (-230MB) | YOLOv3 (237MB file) | 4.x | PR | |---------------------|---------|---------| | no winograd | 808 MB | 581 MB | | winograd | 1985 MB | 1750 MB | See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2336 lines
92 KiB
C++
2336 lines
92 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "../op_halide.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_vkcom.hpp"
|
|
#include "../op_webnn.hpp"
|
|
#include "../op_cann.hpp"
|
|
|
|
#include <opencv2/core/utils/configuration.private.hpp>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
#include "opencv2/core/hal/hal.hpp"
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
#include <iostream>
|
|
#include <numeric>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
using namespace cv::dnn::ocl4dnn;
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/convolution.hpp"
|
|
#include "../cuda4dnn/primitives/transpose_convolution.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
#include "cpu_kernels/convolution.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class BaseConvolutionLayerImpl : public ConvolutionLayer
|
|
{
|
|
public:
|
|
bool fusedWeights, fusedBias;
|
|
std::vector<double> weightsMultipliers;
|
|
#ifdef HAVE_WEBNN
|
|
int groups;
|
|
#endif
|
|
BaseConvolutionLayerImpl(const LayerParams ¶ms)
|
|
{
|
|
setParamsFrom(params);
|
|
getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations,
|
|
padMode, adjust_pads, useWinograd);
|
|
|
|
numOutput = params.get<int>("num_output");
|
|
int ngroups = params.get<int>("group", 1);
|
|
#ifdef HAVE_WEBNN
|
|
groups = ngroups;
|
|
#endif
|
|
CV_Assert(numOutput % ngroups == 0);
|
|
|
|
if (kernel_size.size() == 2) {
|
|
kernel = Size(kernel_size[1], kernel_size[0]);
|
|
stride = Size(strides[1], strides[0]);
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
dilation = Size(dilations[1], dilations[0]);
|
|
|
|
adjustPad.height = adjust_pads[0];
|
|
adjustPad.width = adjust_pads[1];
|
|
}
|
|
|
|
for (int i = 0; i < adjust_pads.size(); i++) {
|
|
CV_Assert(adjust_pads[i] < strides[i]);
|
|
}
|
|
|
|
fusedWeights = false;
|
|
fusedBias = false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
CV_Assert((inputs.size() > outputs.size() && blobs.empty()) ||
|
|
(!inputs.empty() && (blobs.size() == 1 || blobs.size() == 2)));
|
|
MatSize weightShape = blobs.empty() ? inputs[1].size : blobs[0].size;
|
|
|
|
CV_Assert(inputs[0].dims == outputs[0].dims);
|
|
if (weightShape.dims() == 3)
|
|
{
|
|
kernel_size.resize(1, kernel_size[0]);
|
|
strides.resize(1, strides[0]);
|
|
dilations.resize(1, dilations[0]);
|
|
pads_begin.resize(1, pads_begin[0]);
|
|
pads_end.resize(1, pads_end[0]);
|
|
}
|
|
CV_Assert(weightShape.dims() == kernel_size.size() + 2);
|
|
for (int i = 0; i < kernel_size.size(); i++) {
|
|
CV_Assert(weightShape[i + 2] == kernel_size[i]);
|
|
}
|
|
|
|
const Mat &input = inputs[0];
|
|
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || input.dims == 4 || input.dims == 5) && (input.type() == CV_32F || input.type() == CV_16F));
|
|
for (size_t i = 0; i < outputs.size(); i++)
|
|
{
|
|
CV_Assert(inputs[i].type() == input.type());
|
|
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]);
|
|
for (int j = 0; j < inputs[i].dims; j++) {
|
|
CV_Assert(inputs[i].size[j] == input.size[j]);
|
|
}
|
|
}
|
|
|
|
std::vector<int> inpShape;
|
|
std::vector<int> outShape;
|
|
for (int i = 2; i < inputs[0].dims; i++) {
|
|
inpShape.push_back(inputs[0].size[i]);
|
|
outShape.push_back(outputs[0].size[i]);
|
|
}
|
|
getConvPoolPaddings(inpShape, kernel_size, strides, padMode, pads_begin, pads_end);
|
|
if (pads_begin.size() == 2) {
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
}
|
|
fusedWeights = false;
|
|
fusedBias = false;
|
|
}
|
|
|
|
bool hasBias() const
|
|
{
|
|
return blobs.size() >= 2;
|
|
}
|
|
|
|
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
|
|
bool is1x1() const
|
|
{
|
|
return (kernel.height == 1 && kernel.width == 1) &&
|
|
(stride.height == 1 && stride.width == 1) &&
|
|
(dilation.height == 1 && dilation.width == 1);
|
|
}
|
|
|
|
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
|
|
{
|
|
if (fusedAdd) // If the Conv layer has fused Add layer, it cannot fuse other layers.
|
|
return false;
|
|
|
|
Ptr<BlankLayer> blank_layer = top.dynamicCast<BlankLayer>();
|
|
if (blank_layer)
|
|
return true;
|
|
|
|
Mat w, b;
|
|
top->getScaleShift(w, b);
|
|
if (!w.empty() || !b.empty())
|
|
{
|
|
fuseWeights(w, b);
|
|
fusedWeights = fusedWeights || !w.empty();
|
|
fusedBias = fusedBias || (hasBias() && !w.empty()) || !b.empty();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual void fuseWeights(const Mat& w_, const Mat& b_) = 0;
|
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
|
|
const std::vector<Mat*> &inputs,
|
|
const std::vector<Mat> &outputs,
|
|
int targetId) const CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
if (targetId != DNN_TARGET_CPU)
|
|
{
|
|
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
|
|
return;
|
|
}
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
|
|
Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];
|
|
|
|
int outW, outH, outC, outN;
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
if (outW == 1 || outH <= 2)
|
|
return;
|
|
|
|
if (is1x1() || outC <= 16)
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.fuse(yo, n, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
else
|
|
top.reorder(x, c, y)
|
|
.split(y, yo, yi, 2)
|
|
.split(c, co, ci, 16)
|
|
.fuse(yo, co, tile).fuse(n, tile, tile)
|
|
.parallel(tile)
|
|
.unroll(yi)
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
padded_input.compute_at(top, yi);
|
|
#endif // HAVE_HALIDE
|
|
}
|
|
};
|
|
|
|
|
|
//TODO: simultaneously convolution and bias addition for cache optimization
|
|
class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
|
|
Mat weightsMat; // Used to store weight params. It will be used for layer fusion and memory alignment.
|
|
std::vector<float> biasvec;
|
|
std::vector<float> reluslope;
|
|
Ptr<ActivationLayer> activ;
|
|
|
|
Ptr<FastConv> fastConvImpl;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
Ptr<OCL4DNNConvSpatial<float> > convolutionOp;
|
|
std::vector<UMat> umat_blobs;
|
|
bool newActiv;
|
|
ocl4dnnFusedActiv_t activType;
|
|
float power;
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
cuda4dnn::ConvolutionConfiguration::FusionMode cudaFusionMode;
|
|
cuda4dnn::ConvolutionConfiguration::ActivationType cudaActType;
|
|
float cuda_relu_slope, cuda_crelu_floor, cuda_crelu_ceil;
|
|
float cuda_power_exp, cuda_power_scale, cuda_power_shift;
|
|
#endif
|
|
|
|
ConvolutionLayerImpl(const LayerParams ¶ms) : BaseConvolutionLayerImpl(params)
|
|
{
|
|
#ifdef HAVE_OPENCL
|
|
newActiv = false;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
|
power = 0.f;
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE;
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
|
|
#endif
|
|
}
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
int dims = inpShape.size();
|
|
int inpD = dims == 5 ? inpShape[2] : 1;
|
|
int inpH = inpShape[dims - 2];
|
|
int inpW = inpShape.back();
|
|
int inpGroupCn = blobs[0].size[1];
|
|
int ksize = inpGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
return shape(inpD * inpH * inpW, ksize);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
size_t ksize = kernel_size.size();
|
|
#ifdef HAVE_CUDA
|
|
if (backendId == DNN_BACKEND_CUDA)
|
|
{
|
|
/* only 1d, 2d and 3d convolutions supported */
|
|
if (ksize > 0 && ksize <= 3)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
{
|
|
bool isArmTarget = preferableTarget == DNN_TARGET_CPU && isArmComputePlugin();
|
|
if (isArmTarget && blobs.empty())
|
|
return false;
|
|
if (ksize == 1)
|
|
return isArmTarget;
|
|
if (ksize == 3)
|
|
return preferableTarget != DNN_TARGET_MYRIAD && !isArmTarget;
|
|
bool isMyriad = preferableTarget == DNN_TARGET_MYRIAD || preferableTarget == DNN_TARGET_HDDL;
|
|
if (!isMyriad && blobs.empty())
|
|
return false;
|
|
return (!isMyriad || dilation.width == dilation.height);
|
|
}
|
|
#endif
|
|
if (backendId == DNN_BACKEND_OPENCV)
|
|
return ksize >= 1 && ksize <= 3;
|
|
#ifdef HAVE_HALIDE
|
|
if (backendId == DNN_BACKEND_HALIDE)
|
|
return ksize == 2 && !blobs.empty();
|
|
#endif
|
|
#ifdef HAVE_VULKAN
|
|
if (backendId == DNN_BACKEND_VKCOM)
|
|
return ksize == 2;
|
|
#endif
|
|
#ifdef HAVE_WEBNN
|
|
if (backendId == DNN_BACKEND_WEBNN)
|
|
{
|
|
if (ksize != 2)
|
|
{
|
|
CV_LOG_WARNING(NULL, "WebNN only supports Conv2d.");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
#ifdef HAVE_CANN
|
|
if (backendId == DNN_BACKEND_CANN)
|
|
{
|
|
if (ksize != 2)
|
|
{
|
|
CV_LOG_WARNING(NULL, "CANN supports Conv2D for now");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif // HAVE_CANN
|
|
return false;
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty() || inputs.size() > 1);
|
|
const int* weightShape = blobs.empty() ? &inputs[1][0] : blobs[0].size.p;
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)weightShape[0]);
|
|
|
|
internals.clear();
|
|
|
|
CV_Assert(inputs.size() != 0);
|
|
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
|
|
|
|
int outCn = weightShape[0];
|
|
std::vector<int> outShape;
|
|
outShape.push_back(inputs[0][0]);
|
|
outShape.push_back(outCn);
|
|
|
|
int inpCn = inputs[0][1];
|
|
if (padMode.empty())
|
|
{
|
|
for (int i = 0; i < inpShape.size(); i++)
|
|
outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1);
|
|
}
|
|
else
|
|
{
|
|
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape);
|
|
}
|
|
|
|
int ngroups = inpCn / weightShape[1];
|
|
if (ngroups == 0 || ngroups * weightShape[1] != inpCn)
|
|
CV_Error(Error::StsError, format("Number of input channels should "
|
|
"be multiple of %d but got %d", weightShape[1], inpCn));
|
|
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
|
|
outputs.resize(1, outShape);
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
|
|
std::vector<Mat> inputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
|
|
// use vectorized (i.e. with intrinsics) loops without tail processing
|
|
if (!blobs.empty())
|
|
{
|
|
Mat wm = blobs[0].reshape(1, numOutput);
|
|
if ((wm.step1() % VEC_ALIGN != 0) ||
|
|
!isAligned<VEC_ALIGN * sizeof(float)>(wm.data)
|
|
)
|
|
{
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
|
|
wm.copyTo(wm_aligned);
|
|
wm = wm_aligned;
|
|
}
|
|
weightsMat = wm;
|
|
}
|
|
else
|
|
{
|
|
// initialized in .forward()
|
|
weightsMat.release();
|
|
}
|
|
|
|
weightsMultipliers.assign(numOutput, 1.0);
|
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, numOutput) : Mat();
|
|
biasvec.resize(numOutput+2);
|
|
if( biasMat.empty() )
|
|
{
|
|
for(int i = 0; i < numOutput; i++ )
|
|
biasvec[i] = 0.f;
|
|
}
|
|
else
|
|
{
|
|
for(int i = 0; i < numOutput; i++ )
|
|
biasvec[i] = biasMat.at<float>(i);
|
|
}
|
|
#ifdef HAVE_OPENCL
|
|
convolutionOp.release();
|
|
#endif
|
|
}
|
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
|
{
|
|
if ((!activ.empty() && !layer.empty()) || blobs.empty())
|
|
return false;
|
|
|
|
activ = layer;
|
|
if (activ.empty())
|
|
reluslope.clear();
|
|
#ifdef HAVE_OPENCL
|
|
newActiv = true;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
|
|
|
if (IS_DNN_OPENCL_TARGET(preferableTarget))
|
|
{
|
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
|
|
if (!activ_power.empty())
|
|
{
|
|
if (activ_power->scale != 1.0f) // not supported well by implementation, #17964
|
|
{
|
|
// FIXIT no way to check number of blobs (like, eltwise input)
|
|
CV_LOG_DEBUG(NULL, "DNN/OpenCL: can't configure Power activation (scale != 1.0f)");
|
|
activ.release();
|
|
newActiv = false;
|
|
return false;
|
|
}
|
|
if (activ_power->scale != 1.f || activ_power->shift != 0.f)
|
|
{
|
|
const int outCh = blobs[0].size[0];
|
|
fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)),
|
|
Mat(1, outCh, CV_32F, Scalar(activ_power->shift)));
|
|
}
|
|
|
|
power = activ_power->power;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_POWER;
|
|
}
|
|
Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
|
|
if (!activ_tanh.empty())
|
|
{
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_TANH;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
if (activ.empty())
|
|
{
|
|
/* setActivation was called with empty argument => reset all fusions */
|
|
cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE;
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
|
|
}
|
|
|
|
if(IS_DNN_CUDA_TARGET(preferableTarget))
|
|
{
|
|
CV_Assert(cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE ||
|
|
cudaFusionMode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM);
|
|
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if(!activ_relu.empty())
|
|
{
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::RELU;
|
|
cuda_relu_slope = activ_relu->negativeSlope;
|
|
}
|
|
|
|
Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
|
|
if(!activ_relu6.empty())
|
|
{
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::CLIPPED_RELU;
|
|
cuda_crelu_floor = activ_relu6->minValue;
|
|
cuda_crelu_ceil = activ_relu6->maxValue;
|
|
}
|
|
|
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
|
|
if (!activ_power.empty())
|
|
{
|
|
cuda_power_scale = activ_power->scale;
|
|
cuda_power_shift = activ_power->shift;
|
|
cuda_power_exp = activ_power->power;
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::POWER;
|
|
}
|
|
|
|
Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
|
|
if(!activ_tanh.empty())
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::TANH;
|
|
|
|
Ptr<SigmoidLayer> activ_sigmoid = activ.dynamicCast<SigmoidLayer>();
|
|
if(!activ_sigmoid.empty())
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SIGMOID;
|
|
|
|
Ptr<SwishLayer> activ_swish = activ.dynamicCast<SwishLayer>();
|
|
if(!activ_swish.empty())
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SWISH;
|
|
|
|
Ptr<MishLayer> activ_mish = activ.dynamicCast<MishLayer>();
|
|
if(!activ_mish.empty())
|
|
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::MISH;
|
|
|
|
if (cudaActType == cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY)
|
|
{
|
|
/* no activation fused */
|
|
activ.reset();
|
|
}
|
|
else
|
|
{
|
|
/* activation was fused */
|
|
if (cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE) /* no previous fusion */
|
|
cudaFusionMode = ConvolutionConfiguration::FusionMode::ACTIVATION; /* now activation */
|
|
else if (cudaFusionMode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM) /* previously eltwise was fused */
|
|
cudaFusionMode = ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION; /* now activation on eltwise output */
|
|
}
|
|
}
|
|
#endif
|
|
fusedActivation = !activ.empty();
|
|
return fusedActivation;
|
|
}
|
|
|
|
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
|
|
{
|
|
if (fusedAdd) // If the Conv layer has fused Add layer, it cannot fuse other layers.
|
|
return false;
|
|
|
|
#ifdef HAVE_CUDA
|
|
if(IS_DNN_CUDA_TARGET(preferableTarget))
|
|
{
|
|
Ptr<EltwiseLayer> eltwise = top.dynamicCast<EltwiseLayer>();
|
|
Ptr<NaryEltwiseLayer> naryEltwise = top.dynamicCast<NaryEltwiseLayer>();
|
|
if (!eltwise.empty() || !naryEltwise.empty())
|
|
{
|
|
/* we also need to check that the eltwise input does not require shortcut mechanism
|
|
* it's difficult to verify it here but we hope that `fuseLayers` has done the check already
|
|
*/
|
|
if (cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE)
|
|
{
|
|
/* no previous fusion */
|
|
cudaFusionMode = ConvolutionConfiguration::FusionMode::ELTWISE_SUM; /* now eltwise */
|
|
return true;
|
|
}
|
|
else if(cudaFusionMode == ConvolutionConfiguration::FusionMode::ACTIVATION)
|
|
{
|
|
/* previously an activation was fused */
|
|
cudaFusionMode = ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
return BaseConvolutionLayerImpl::tryFuse(top);
|
|
}
|
|
|
|
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
|
{
|
|
// Convolution weights have OIHW data layout. Parameters fusion in case of
|
|
// (conv(I) + b1 ) * w + b2
|
|
// means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
|
|
const int outCn = weightsMat.size[0];
|
|
Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at<float>(0))) : w_;
|
|
Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at<float>(0))) : b_;
|
|
CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
|
|
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
|
|
|
|
if (!w.empty())
|
|
{
|
|
// Keep origin weights unchanged.
|
|
if (weightsMat.data == blobs[0].data)
|
|
weightsMat = weightsMat.clone();
|
|
|
|
Mat originWeights = blobs[0].reshape(1, outCn);
|
|
for (int i = 0; i < outCn; ++i)
|
|
{
|
|
double wi = w.at<float>(i);
|
|
weightsMultipliers[i] *= wi;
|
|
cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i));
|
|
biasvec[i] *= wi;
|
|
}
|
|
}
|
|
|
|
if (!b.empty())
|
|
{
|
|
for (int i = 0; i < outCn; ++i)
|
|
biasvec[i] += b.at<float>(i);
|
|
}
|
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs, std::vector<Ptr<BackendWrapper> > &outputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_VULKAN
|
|
int activationType = transFusedActivType(activ);
|
|
|
|
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
|
|
Ptr<VkComBackendWrapper> inputWrap = inputs[0].dynamicCast<VkComBackendWrapper>();
|
|
Ptr<VkComBackendWrapper> outputWrap = outputs[0].dynamicCast<VkComBackendWrapper>();
|
|
CV_Assert(inputWrap && outputWrap);
|
|
|
|
MatShape inpShape = shape(*inputWrap->getMat());
|
|
MatShape outShape = shape(*outputWrap->getMat());
|
|
|
|
CV_Assert(inpShape.size() == 4 && inpShape.size() == outShape.size());
|
|
|
|
if (activationType == -1)
|
|
{
|
|
CV_LOG_WARNING(NULL, "Unsupported fused Active type in Conv layer!!!");
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
int ngroups = inpShape[1] / inpGroupCn;
|
|
CV_Assert(outShape[1] % ngroups == 0);
|
|
if (ngroups != 1)
|
|
return Ptr<BackendNode>();
|
|
|
|
Mat weightVK;
|
|
if (fusedWeights)
|
|
{
|
|
weightsMat.copyTo(weightVK); // to handle the case of isContinuous() == false
|
|
weightVK = weightVK.reshape(1, blobs[0].dims, blobs[0].size);
|
|
}
|
|
else
|
|
weightVK = blobs[0];
|
|
|
|
CV_Assert(weightVK.isContinuous());
|
|
CV_Assert(pads_begin.size() == 2);
|
|
CV_Assert(fusedAdd == false && "Vulkan Backend can not support the Conv_Add optimization.");
|
|
Ptr<vkcom::OpBase> op(new vkcom::OpConv(weightVK, biasvec, activationType, ngroups, outShape[1], inpShape[1],
|
|
kernel.height, kernel.width, stride.height, stride.width,
|
|
dilation.height, dilation.width, pads_begin[1], pads_begin[0]));
|
|
|
|
return Ptr<BackendNode>(new VkComBackendNode(inputs, op, outputs));
|
|
#endif // HAVE_VULKAN
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
CV_Assert(!blobs.empty());
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
const int inpCn = inputBuffer.channels();
|
|
const int outCn = blobs[0].size[0];
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
const int outGroupCn = outCn / group;
|
|
|
|
Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
if (pad.width || pad.height)
|
|
{
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
}
|
|
else
|
|
{
|
|
padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
|
|
}
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
|
|
Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
|
|
Halide::Expr kc = r.z;
|
|
for (int i = 1; i < group; ++i)
|
|
{
|
|
kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z);
|
|
}
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
|
|
weights(r.x, r.y, r.z, c));
|
|
if (hasBias())
|
|
{
|
|
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
#ifdef HAVE_CANN
|
|
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendWrapper> > &outputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
CV_Assert(inputs.size() == 1);
|
|
CV_Assert(nodes.size() == 1);
|
|
|
|
bool has_bias = hasBias() || fusedBias;
|
|
|
|
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
|
|
const auto shape_x = x->host->size; // [b, c, h, w]
|
|
const int filter_out_channel = blobs[0].size[1];
|
|
const int groups = shape_x[1] / filter_out_channel;
|
|
|
|
// create operator
|
|
auto op = std::make_shared<ge::op::Conv2D>(name);
|
|
|
|
// set attributes
|
|
op->set_attr_strides(ge::Operator::OpListInt(
|
|
{1, 1, (int64_t)strides[0], (int64_t)strides[1]}
|
|
));
|
|
// recalculate pads in case of "SAME" padMode with odd pads
|
|
// since in 'getConvPoolPaddings' pads are divided equally
|
|
// leading to the loss of one pad
|
|
if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (strides[i] <= kernel_size[i])
|
|
{
|
|
int pads_at_i = kernel_size[i] - 1 - (shape_x[i+2] - 1 + strides[i]) % strides[i];
|
|
pads_begin[i] = pads_at_i / 2;
|
|
// if odd, add extra padding to the end for SAME_UPPER
|
|
// or to the beginning for SAME_LOWER. Since here we cannot
|
|
// identity SAME_UPPER and SAME_LOWER, extra padding is always
|
|
// added to the end.
|
|
pads_end[i] = pads_at_i - pads_begin[i];
|
|
}
|
|
}
|
|
}
|
|
op->set_attr_pads(ge::Operator::OpListInt(
|
|
{(int64_t)pads_begin[1], (int64_t)pads_end[1], (int64_t)pads_begin[0], (int64_t)pads_end[0]}
|
|
));
|
|
op->set_attr_dilations(ge::Operator::OpListInt(
|
|
{1, 1, (int64_t)dilations[0], (int64_t)dilations[1]}
|
|
));
|
|
op->set_attr_groups(groups);
|
|
op->set_attr_data_format("NCHW");
|
|
|
|
// set inputs
|
|
// set inputs : x
|
|
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
|
op->set_input_x_by_name(*op_x, x->name.c_str());
|
|
auto x_desc = x->getTensorDesc();
|
|
op->update_input_desc_x(*x_desc);
|
|
// set inputs : weight
|
|
const Mat& w_mat = blobs[0];
|
|
auto op_const_weight = std::make_shared<CannConstOp>(w_mat.data, w_mat.type(), shape(w_mat), cv::format("%s_w", name.c_str()));
|
|
op->set_input_filter(*(op_const_weight->getOp()));
|
|
op->update_input_desc_filter(*(op_const_weight->getTensorDesc()));
|
|
// set inputs : bias
|
|
if (has_bias)
|
|
{
|
|
int out_channel = blobs[0].size[0];
|
|
Mat b_mat({out_channel}, CV_32F, &biasvec[0]);
|
|
|
|
std::vector<int> bias_shape{out_channel};
|
|
auto op_const_bias = std::make_shared<CannConstOp>(b_mat.data, b_mat.type(), bias_shape, cv::format("%s_b", name.c_str()));
|
|
op->set_input_bias(*(op_const_bias->getOp()));
|
|
op->update_input_desc_bias(*(op_const_bias->getTensorDesc()));
|
|
}
|
|
|
|
// set outputs
|
|
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
|
op->update_output_desc_y(*output_desc);
|
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op));
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1);
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
std::vector<size_t> dims = ieInpNode.get_shape();
|
|
CV_Check(dims.size(), dims.size() >= 3 && dims.size() <= 5, "");
|
|
ov::Output<ov::Node> ieWeights;
|
|
if (nodes.size() > 1)
|
|
ieWeights = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
|
|
const int inpCn = dims[1];
|
|
const int inpGroupCn = nodes.size() > 1 ? ieWeights.get_shape()[1] : blobs[0].size[1];
|
|
const int group = inpCn / inpGroupCn;
|
|
|
|
std::vector<size_t> kernel_shape;
|
|
if (group != 1)
|
|
{
|
|
kernel_shape.push_back(group);
|
|
}
|
|
kernel_shape.push_back(numOutput / group);
|
|
kernel_shape.push_back(inpCn / group);
|
|
std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape));
|
|
|
|
if (nodes.size() == 1)
|
|
{
|
|
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, blobs[0].data);
|
|
if (fusedWeights)
|
|
{
|
|
if (weightsMat.isContinuous())
|
|
{
|
|
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, weightsMat.data);
|
|
}
|
|
else
|
|
{
|
|
Mat newWeights;
|
|
Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / numOutput);
|
|
cvWeights.copyTo(newWeights);
|
|
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, newWeights.data);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto shape = std::make_shared<ov::op::v0::Constant>(ov::element::i64,
|
|
ov::Shape{kernel_shape.size()}, std::vector<int64_t>(kernel_shape.begin(), kernel_shape.end()));
|
|
ieWeights = std::make_shared<ov::op::v1::Reshape>(ieWeights, shape, true);
|
|
}
|
|
|
|
ov::op::PadType pad_type = ov::op::PadType::EXPLICIT;
|
|
if (!padMode.empty())
|
|
pad_type = padMode == "VALID" ? ov::op::PadType::VALID : ov::op::PadType::SAME_UPPER;
|
|
|
|
std::shared_ptr<ov::Node> conv_node;
|
|
if (group != 1) {
|
|
conv_node = std::make_shared<ov::op::v1::GroupConvolution>(
|
|
ieInpNode, ieWeights,
|
|
ov::Strides(strides),
|
|
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
|
|
ov::Strides(dilations),
|
|
pad_type);
|
|
} else {
|
|
conv_node = std::make_shared<ov::op::v1::Convolution>(
|
|
ieInpNode, ieWeights,
|
|
ov::Strides(strides),
|
|
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
|
|
ov::Strides(dilations),
|
|
pad_type);
|
|
}
|
|
|
|
if (hasBias() || fusedBias || nodes.size() == 3)
|
|
{
|
|
std::vector<size_t> shape(conv_node->get_shape().size(), 1);
|
|
shape[1] = conv_node->get_shape()[1];
|
|
std::shared_ptr<ov::Node> bias;
|
|
if (nodes.size() == 3)
|
|
{
|
|
auto bias_shape = std::make_shared<ov::op::v0::Constant>(ov::element::i64,
|
|
ov::Shape{shape.size()}, std::vector<int64_t>(shape.begin(), shape.end()));
|
|
bias = std::make_shared<ov::op::v1::Reshape>(nodes[2].dynamicCast<InfEngineNgraphNode>()->node, bias_shape, true);
|
|
}
|
|
else
|
|
{
|
|
bias = std::make_shared<ov::op::v0::Constant>(ov::element::f32, ov::Shape(shape), biasvec.data());
|
|
}
|
|
auto conv_bias = std::make_shared<ov::op::v1::Add>(conv_node, bias, ov::op::AutoBroadcastType::NUMPY);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_bias));
|
|
}
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_node));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
#ifdef HAVE_WEBNN
|
|
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1);
|
|
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
|
|
auto& webnnInpOperand = node->operand;
|
|
auto& webnnGraphBuilder = node->net->builder;
|
|
ml::Operand webnnWeights = nodes.size() > 1 ? nodes[1].dynamicCast<WebnnBackendNode>()->operand : nullptr;
|
|
if (nodes.size() > 1)
|
|
CV_Assert(webnnWeights);
|
|
const int inpCn = weightsMat.total()/(kernel_size[0]*kernel_size[1]*numOutput);
|
|
const int group = groups;
|
|
const int inpGroupCn = inpCn / group;
|
|
std::vector<int32_t> kernel_shape;
|
|
if (group != 1)
|
|
{
|
|
kernel_shape.push_back(group);
|
|
}
|
|
kernel_shape.push_back(numOutput / group);
|
|
kernel_shape.push_back(inpGroupCn);
|
|
std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape));
|
|
|
|
if (nodes.size() == 1)
|
|
{
|
|
webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(blobs[0]), blobs[0].data, blobs[0].total()*blobs[0].elemSize(), ml::OperandType::Float32);
|
|
if (fusedWeights)
|
|
{
|
|
if (weightsMat.isContinuous())
|
|
{
|
|
webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(weightsMat), weightsMat.data, weightsMat.total()*weightsMat.elemSize(), ml::OperandType::Float32);
|
|
}
|
|
else
|
|
{
|
|
Mat newWeights;
|
|
Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / numOutput);
|
|
cvWeights.copyTo(newWeights);
|
|
webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(newWeights), newWeights.data, newWeights.total()*newWeights.elemSize(), ml::OperandType::Float32);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
webnnWeights = webnnGraphBuilder.Reshape(webnnWeights, kernel_shape.data(), kernel_shape.size());
|
|
}
|
|
|
|
ml::AutoPad pad_type = ml::AutoPad::Explicit;
|
|
if (!padMode.empty())
|
|
pad_type = padMode == "VALID" ? ml::AutoPad::Explicit : ml::AutoPad::SameUpper;
|
|
|
|
ml::Conv2dOptions options = {};
|
|
options.groups = group;
|
|
options.autoPad = pad_type;
|
|
std::vector<int32_t> Strides(strides.begin(), strides.end());
|
|
if (!Strides.empty())
|
|
{
|
|
options.stridesCount = Strides.size();
|
|
options.strides = Strides.data();
|
|
}
|
|
std::vector<int32_t> Padding;
|
|
if (padMode.empty())
|
|
{
|
|
Padding = {static_cast<int32_t>(pads_begin[0]),
|
|
static_cast<int32_t>(pads_end[0]),
|
|
static_cast<int32_t>(pads_begin[1]),
|
|
static_cast<int32_t>(pads_end[1])};
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
Padding = {0, 0, 0, 0};
|
|
}
|
|
if (!Padding.empty())
|
|
{
|
|
options.paddingCount = Padding.size();
|
|
options.padding = Padding.data();
|
|
}
|
|
std::vector<int32_t> Dilations(dilations.begin(), dilations.end());
|
|
if (!Dilations.empty())
|
|
{
|
|
options.dilationsCount = Dilations.size();
|
|
options.dilations = Dilations.data();
|
|
}
|
|
ml::Operand operand = webnnGraphBuilder.Conv2d(webnnInpOperand, webnnWeights, &options);
|
|
|
|
// ml::Operand result = operand;
|
|
if (hasBias() || fusedBias || nodes.size() == 3)
|
|
{
|
|
ml::Operand webnnBias = nullptr;
|
|
if (nodes.size() == 3)
|
|
{
|
|
std::vector<int32_t> bias_shape = {1, numOutput, 1, 1};
|
|
webnnBias = webnnGraphBuilder.Reshape(nodes[2].dynamicCast<WebnnBackendNode>()->operand, bias_shape.data(), bias_shape.size());
|
|
}
|
|
else
|
|
{
|
|
webnnBias = webnn::BuildConstant(webnnGraphBuilder, {1, numOutput, 1, 1}, biasvec.data(), (numOutput) * sizeof(float), ml::OperandType::Float32);
|
|
}
|
|
operand = webnnGraphBuilder.Add(operand, webnnBias);
|
|
}
|
|
return Ptr<BackendNode>(new WebnnBackendNode(operand));
|
|
}
|
|
#endif // HAVE_WEBNN
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
if (kernel_size.size() != 2)
|
|
{
|
|
// no OpenCL optimizations, see .supportedBacked()
|
|
return false;
|
|
}
|
|
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
bool use_half = (inps.depth() == CV_16F);
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
CV_Assert(inputs[i].u != outputs[0].u);
|
|
|
|
if (blobs.empty())
|
|
{
|
|
size_t n = inputs.size() - 1;
|
|
umat_blobs.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
CV_Assert(!use_half); // TODO: not implemented
|
|
inputs[i + 1].copyTo(umat_blobs[i]);
|
|
}
|
|
inputs.resize(1);
|
|
}
|
|
|
|
if (umat_blobs.empty())
|
|
{
|
|
size_t n = blobs.size();
|
|
umat_blobs.resize(n);
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
if (use_half)
|
|
blobs[i].convertTo(umat_blobs[i], CV_16F);
|
|
else
|
|
blobs[i].copyTo(umat_blobs[i]);
|
|
}
|
|
}
|
|
|
|
if (convolutionOp.empty() || blobs.empty())
|
|
{
|
|
OCL4DNNConvConfig config;
|
|
config.in_shape = shape(inputs[0]);
|
|
config.out_shape = shape(outputs[0]);
|
|
config.kernel = kernel;
|
|
// pads_begin: 0 - pad_top, 1 - pad_left
|
|
// pads_end: 0 - pad_bottom, 1 - pad_right
|
|
std::vector<int> pads = {int(pads_begin[0]), int(pads_end[0]), int(pads_begin[1]), int(pads_end[1])};
|
|
config.pads = pads;
|
|
config.stride = stride;
|
|
config.dilation = dilation;
|
|
if (inputs[0].dims != 4 && inputs[0].dims != (blobs.empty() ? umat_blobs[0].dims : blobs[0].dims))
|
|
{
|
|
static bool bypassCheck = utils::getConfigurationParameterBool("OPENCV_OCL4DNN_CONVOLUTION_IGNORE_INPUT_DIMS_4_CHECK", false);
|
|
if (!bypassCheck)
|
|
{
|
|
CV_LOG_ERROR(NULL, "DNN/OpenCL: Unsupported configuration: inputs[0].dims=" << inputs[0].dims << " umat_blobs[0].dims=" << umat_blobs[0].dims
|
|
<< ". Consider reporting complete reproducer to https://github.com/opencv/opencv/issues/20833."
|
|
<< " You can skip this check temporary through OPENCV_OCL4DNN_CONVOLUTION_IGNORE_INPUT_DIMS_4_CHECK=1"
|
|
);
|
|
return false;
|
|
}
|
|
}
|
|
config.group = inputs[0].size[1] / (blobs.empty() ? umat_blobs[0].size[1] : blobs[0].size[1]);
|
|
if (config.group < 1) // config.group == 0 causes div by zero in ocl4dnn code
|
|
{
|
|
CV_LOG_WARNING(NULL, "DNN/OpenCL: Unsupported config.group=" << config.group
|
|
<< ". Consider reporting complete reproducer to https://github.com/opencv/opencv/issues/20833"
|
|
);
|
|
return false;
|
|
}
|
|
config.bias_term = umat_blobs.size() == 2;
|
|
config.use_half = use_half;
|
|
|
|
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
|
|
}
|
|
|
|
int outCn = umat_blobs[0].size[0];
|
|
|
|
reluslope.clear();
|
|
if( activ )
|
|
{
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
{
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU;
|
|
}
|
|
|
|
Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
|
|
if( !activ_relu6.empty() )
|
|
{
|
|
reluslope.resize(2);
|
|
reluslope[0] = activ_relu6->minValue;
|
|
reluslope[1] = activ_relu6->maxValue;
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU6;
|
|
}
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
if( !activ_chprelu.empty() )
|
|
{
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
const float* mdata = m.ptr<float>();
|
|
reluslope.resize(outCn+2);
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU;
|
|
}
|
|
}
|
|
|
|
if (fusedWeights)
|
|
{
|
|
if (use_half)
|
|
weightsMat.convertTo(umat_blobs[0], CV_16F);
|
|
else
|
|
weightsMat.copyTo(umat_blobs[0]);
|
|
fusedWeights = false;
|
|
}
|
|
if (fusedBias)
|
|
{
|
|
if ( umat_blobs.size() < 2 )
|
|
umat_blobs.resize(2);
|
|
if (use_half)
|
|
Mat(biasvec, true).convertTo(umat_blobs[1], CV_16F);
|
|
else
|
|
Mat(biasvec, true).copyTo(umat_blobs[1]);
|
|
convolutionOp->setBias(true);
|
|
fusedBias = false;
|
|
}
|
|
|
|
if ( newActiv )
|
|
{
|
|
if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU )
|
|
{
|
|
CV_Assert(!reluslope.empty());
|
|
convolutionOp->setActivReLU(true, reluslope[0]);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU)
|
|
{
|
|
CV_Assert(!reluslope.empty());
|
|
convolutionOp->setActivPReLU(true, reluslope);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER)
|
|
{
|
|
convolutionOp->setActivPower(true, power);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_TANH)
|
|
{
|
|
convolutionOp->setActivTanh(true);
|
|
}
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU6)
|
|
{
|
|
convolutionOp->setActivReLU6(true, reluslope[0], reluslope[1]);
|
|
}
|
|
else
|
|
{
|
|
convolutionOp->setActivReLU(false, 0);
|
|
convolutionOp->setActivPReLU(false, reluslope);
|
|
convolutionOp->setActivPower(false, 1.f);
|
|
convolutionOp->setActivTanh(false);
|
|
convolutionOp->setActivReLU6(false, 0, 0);
|
|
}
|
|
newActiv = false;
|
|
}
|
|
|
|
UMat& inpMat = inputs[0];
|
|
UMat& outMat = outputs[0];
|
|
int batch_size = inpMat.size[0];
|
|
|
|
return convolutionOp->Forward(inpMat,
|
|
inputs.size() == 2 ? inputs[1] : UMat(),
|
|
umat_blobs[0],
|
|
umat_blobs.size() > 1 ? umat_blobs[1] : UMat(),
|
|
outMat,
|
|
batch_size);
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16F)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
int outCn = blobs.empty() ? inputs[1].size[0] : blobs[0].size[0];
|
|
// Need to align non-const blobs
|
|
bool variableWeight = false;
|
|
if (blobs.empty())
|
|
{
|
|
variableWeight = true;
|
|
Mat wm = inputs[1].reshape(1, outCn);
|
|
if (wm.data != weightsMat.data)
|
|
{
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
weightsMat = wm_buffer.colRange(0, wm.cols);
|
|
|
|
wm.copyTo((const Mat&)weightsMat);
|
|
if (inputs.size() > 2)
|
|
{
|
|
Mat biasMat = inputs[2].reshape(1, outCn);
|
|
biasMat.col(0).copyTo(biasvec);
|
|
}
|
|
biasvec.resize(outCn + 2, 0);
|
|
}
|
|
}
|
|
/*if (inputs[0].dims > 3) {
|
|
printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
|
|
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3],
|
|
kernel.width, kernel.height, pad.width, pad.height,
|
|
stride.width, stride.height, dilation.width, dilation.height);
|
|
}
|
|
else {
|
|
printf("conv %s: input (%d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
|
|
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2],
|
|
kernel.width, kernel.height, pad.width, pad.height,
|
|
stride.width, stride.height, dilation.width, dilation.height);
|
|
}*/
|
|
int inpGroupCn = blobs.empty() ? inputs[1].size[1] : blobs[0].size[1];
|
|
CV_Assert_N(inputs.size() >= (size_t)1, inputs[0].size[1] % inpGroupCn == 0,
|
|
outputs.size() == 1, inputs[0].data != outputs[0].data);
|
|
|
|
int ngroups = inputs[0].size[1] / inpGroupCn;
|
|
CV_Assert(outputs[0].size[1] % ngroups == 0);
|
|
|
|
reluslope.clear();
|
|
if( activ )
|
|
{
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
if( !activ_relu.empty() )
|
|
{
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
}
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
if( !activ_chprelu.empty() )
|
|
{
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
const float* mdata = m.ptr<float>();
|
|
reluslope.resize(outCn+2);
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
}
|
|
}
|
|
|
|
{
|
|
int nstripes = std::max(getNumThreads(), 1);
|
|
int conv_dim = CONV_2D;
|
|
if (inputs[0].dims == 3)
|
|
conv_dim = CONV_1D;
|
|
if (inputs[0].dims == 5)
|
|
conv_dim = CONV_3D;
|
|
|
|
// Initialization of FastCovn2d, pack weight.
|
|
if (!fastConvImpl || variableWeight)
|
|
{
|
|
int K = outputs[0].size[1];
|
|
int C = inputs[0].size[1];
|
|
|
|
// Winograd only works when input h and w >= 12.
|
|
bool canUseWinograd = useWinograd && conv_dim == CONV_2D && inputs[0].size[2] >= 12 && inputs[0].size[3] >= 12;
|
|
|
|
CV_Assert(outputs[0].size[1] % ngroups == 0);
|
|
fastConvImpl = initFastConv(weightsMat, &biasvec[0], ngroups, K, C, kernel_size, strides,
|
|
dilations, pads_begin, pads_end, conv_dim,
|
|
preferableTarget == DNN_TARGET_CPU_FP16, canUseWinograd);
|
|
// This is legal to release weightsMat here as this is not used anymore for
|
|
// OpenCV inference. If network needs to be reinitialized (new shape, new backend)
|
|
// a new version of weightsMat is created at .finalize() from original weights
|
|
weightsMat.release();
|
|
}
|
|
|
|
runFastConv(inputs[0], outputs[0], fastConvImpl, nstripes, activ, reluslope, fusedAdd);
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
// TODO: extract bias from inputs and pass it
|
|
CV_Assert(inputs.size() == 1 || inputs.size() == 2);
|
|
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto input_shape = input_wrapper->getShape();
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
auto output_wrapper = outputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto output_shape = output_wrapper->getShape();
|
|
|
|
CV_Assert(!blobs.empty());
|
|
const auto output_feature_maps = blobs[0].size[0];
|
|
const auto input_feature_maps = input_shape[1];
|
|
const auto input_feature_maps_per_group = blobs[0].size[1];
|
|
const auto groups = input_feature_maps / input_feature_maps_per_group;
|
|
|
|
ConvolutionConfiguration config;
|
|
|
|
if (input_shape.size() == 3)
|
|
{
|
|
// Conv1D
|
|
// We add an extra dim for input and output tensors, because CuDNN doesn't support convolution with 3D tensors
|
|
input_shape.insert(std::end(input_shape) - 1, 1);
|
|
output_shape.insert(std::end(output_shape) - 1, 1);
|
|
|
|
// Do the similar thing for the other parameters
|
|
pads_begin.insert(std::begin(pads_begin), 0);
|
|
pads_end.insert(std::begin(pads_end), 0);
|
|
strides.insert(std::begin(strides), 1);
|
|
dilations.insert(std::begin(dilations), 1);
|
|
kernel_size.insert(std::begin(kernel_size), 1);
|
|
}
|
|
config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size));
|
|
config.dilations.assign(std::begin(dilations), std::end(dilations));
|
|
config.strides.assign(std::begin(strides), std::end(strides));
|
|
|
|
if (padMode.empty())
|
|
{
|
|
config.padMode = ConvolutionConfiguration::PaddingMode::MANUAL;
|
|
config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin));
|
|
config.pads_end.assign(std::begin(pads_end), std::end(pads_end));
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
config.padMode = ConvolutionConfiguration::PaddingMode::VALID;
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
config.padMode = ConvolutionConfiguration::PaddingMode::SAME;
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by ConvolutionLayer");
|
|
}
|
|
|
|
config.input_shape.assign(std::begin(input_shape), std::end(input_shape));
|
|
config.output_shape.assign(std::begin(output_shape), std::end(output_shape));
|
|
config.groups = groups;
|
|
|
|
config.fusion_mode = cudaFusionMode;
|
|
config.activation_type = cudaActType;
|
|
config.relu_negative_slope = cuda_relu_slope;
|
|
config.crelu_floor = cuda_crelu_floor;
|
|
config.crelu_ceil = cuda_crelu_ceil;
|
|
config.power_exp = cuda_power_exp;
|
|
config.power_scale = cuda_power_scale;
|
|
config.power_shift = cuda_power_shift;
|
|
|
|
Mat filtersMat = fusedWeights ? weightsMat : blobs[0];
|
|
Mat biasMat = (hasBias() || fusedBias) ? Mat(output_feature_maps, 1, CV_32F, biasvec.data()) : Mat();
|
|
if (countNonZero(biasMat) == 0)
|
|
biasMat = Mat();
|
|
|
|
return make_cuda_node<cuda4dnn::ConvolutionOp>(
|
|
preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat);
|
|
}
|
|
#endif
|
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
|
{
|
|
// References - https://arxiv.org/pdf/1712.05877.pdf
|
|
|
|
// Quantized convolution with variable weights is not supported.
|
|
if (blobs.empty())
|
|
return false;
|
|
|
|
float inputScale = scales[0][0], outputScale = scales[1][0];
|
|
int inputZp = zeropoints[0][0];
|
|
params.set("input_zeropoint", inputZp);
|
|
params.set("input_scale", inputScale);
|
|
|
|
Mat weightsMat = blobs[0].reshape(1, numOutput);
|
|
Mat weightsQuantized(weightsMat.rows, weightsMat.cols, CV_8S);
|
|
Mat biasQuantized(1, numOutput, CV_32S);
|
|
Mat outputMultiplier(1, numOutput, CV_32F);
|
|
bool perChannel = params.get<bool>("per_channel", true);
|
|
|
|
if (perChannel) // per-Channel quantization.
|
|
{
|
|
for (int i = 0; i < numOutput; i++)
|
|
{
|
|
double weightsScale = getWeightScale(weightsMat.row(i));
|
|
|
|
weightsMat.row(i).convertTo(weightsQuantized.row(i), CV_8S, 1.f/weightsScale);
|
|
float biasScale = inputScale * weightsScale;
|
|
biasQuantized.at<int>(i) = cvRound(biasvec[i]/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]);
|
|
outputMultiplier.at<float>(i) = biasScale / outputScale;
|
|
}
|
|
}
|
|
else // per-Tensor quantization.
|
|
{
|
|
double weightsScale = getWeightScale(weightsMat);
|
|
|
|
weightsMat.convertTo(weightsQuantized, CV_8S, 1.f/weightsScale);
|
|
float biasScale = inputScale * weightsScale;
|
|
|
|
for (int i = 0; i < numOutput; i++)
|
|
{
|
|
biasQuantized.at<int>(i) = cvRound(biasvec[i]/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]);
|
|
outputMultiplier.at<float>(i) = biasScale / outputScale;
|
|
}
|
|
}
|
|
|
|
params.blobs.clear();
|
|
params.set("per_channel", perChannel);
|
|
params.blobs.push_back(weightsQuantized.reshape(1, shape(blobs[0])));
|
|
params.blobs.push_back(biasQuantized);
|
|
params.blobs.push_back(outputMultiplier);
|
|
return true;
|
|
}
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size() || inputs.size() == outputs.size() + blobs.size());
|
|
|
|
int64 flops = 0;
|
|
int karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies<size_t>());
|
|
for (int i = 0; i < outputs.size(); i++)
|
|
{
|
|
flops += total(outputs[i])*(CV_BIG_INT(2)*karea*inputs[i][1] + 1);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
class DeConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
|
|
{
|
|
public:
|
|
Mat weightsMat, biasesMat;
|
|
UMat umat_weights;
|
|
UMat umat_biases;
|
|
|
|
DeConvolutionLayerImpl(const LayerParams& params) : BaseConvolutionLayerImpl(params) {}
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
|
|
{
|
|
int dims = inpShape.size();
|
|
int inpCn = inpShape[1];
|
|
int inpD = dims == 5 ? inpShape[2] : 1;
|
|
int inpH = inpShape[dims - 2];
|
|
int inpW = inpShape.back();
|
|
int outCn = outShape[1];
|
|
int ngroups = inpCn / blobs[0].size[0];
|
|
int outGroupCn = outCn / ngroups;
|
|
int ksize = outGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
return shape(ksize, inpD * inpH * inpW);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
if (backendId == DNN_BACKEND_CUDA)
|
|
{
|
|
/* only deconvolution 2d and 3d supported */
|
|
if (kernel_size.size() == 2 || kernel_size.size() == 3)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW or IODHW layout
|
|
const int group = numOutput / outGroupCn;
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
|
|
return group == 1;
|
|
}
|
|
#endif // HAVE_INF_ENGINE
|
|
{
|
|
return backendId == DNN_BACKEND_CUDA ||
|
|
(kernel_size.size() == 2 && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE)) ||
|
|
(kernel_size.size() == 2 && backendId == DNN_BACKEND_CANN);
|
|
}
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput);
|
|
CV_Assert(inputs.size() != 0);
|
|
|
|
int outCn = numOutput;
|
|
std::vector<int> outShape;
|
|
outShape.push_back(inputs[0][0]); // batch
|
|
outShape.push_back(outCn);
|
|
if (padMode.empty())
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]);
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] + adjust_pads[i]);
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < kernel_size.size(); i++)
|
|
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + 1 + adjust_pads[i]);
|
|
}
|
|
else
|
|
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
|
|
|
|
CV_Assert(outCn % blobs[0].size[1] == 0);
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
|
|
int inpCn = inputs[0][1];
|
|
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
|
|
CV_Assert(blobs[0].size[0] == inpCn);
|
|
|
|
outputs.resize(1, outShape);
|
|
|
|
if (!is1x1())
|
|
internals.push_back(computeColRowShape(inputs[0], outputs[0]));
|
|
|
|
return false;
|
|
}
|
|
|
|
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
std::vector<int> inpShape;
|
|
std::vector<int> outShape;
|
|
for (int i = 2; i < inputs[0].dims; i++) {
|
|
inpShape.push_back(inputs[0].size[i]);
|
|
outShape.push_back(outputs[0].size[i]);
|
|
}
|
|
getConvPoolPaddings(outShape, kernel_size, strides, padMode, pads_begin, pads_end);
|
|
if (pads_begin.size() == 2) {
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
if (pads_begin[i] != pads_end[i])
|
|
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in deconvolution layer");
|
|
}
|
|
pad = Size(pads_begin[1], pads_begin[0]);
|
|
}
|
|
|
|
weightsMultipliers.assign(numOutput, 1.0);
|
|
if (weightsMat.empty())
|
|
{
|
|
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, numOutput)
|
|
: Mat::zeros(numOutput, 1, CV_32F);
|
|
}
|
|
}
|
|
|
|
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
|
|
{
|
|
Mat w = w_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(w_.at<float>(0))) : w_;
|
|
Mat b = b_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(b_.at<float>(0))) : b_;
|
|
|
|
CV_Assert_N(!weightsMat.empty(),
|
|
w.empty() || numOutput == w.total(),
|
|
b.empty() || numOutput == b.total());
|
|
|
|
if (!w.empty())
|
|
{
|
|
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
|
|
weightsMat = weightsMat.reshape(1, numOutput);
|
|
for (int i = 0; i < numOutput; ++i)
|
|
{
|
|
double wi = w.at<float>(i);
|
|
weightsMultipliers[i] *= wi;
|
|
cv::multiply(weightsMat.row(i), weightsMultipliers[i], weightsMat.row(i));
|
|
biasesMat.at<float>(i) *= wi;
|
|
}
|
|
weightsMat = weightsMat.reshape(1, weightsMat.total() / blobs[0].size[0]);
|
|
}
|
|
|
|
if (!b.empty())
|
|
{
|
|
cv::add(biasesMat, b.reshape(1, numOutput), biasesMat);
|
|
}
|
|
}
|
|
|
|
class MatMulInvoker : public ParallelLoopBody
|
|
{
|
|
public:
|
|
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
|
|
{
|
|
a_ = &a;
|
|
b_ = &b;
|
|
c_ = &c;
|
|
nstripes_ = nstripes;
|
|
useAVX = checkHardwareSupport(CPU_AVX);
|
|
useAVX2 = checkHardwareSupport(CPU_AVX2);
|
|
useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
|
|
useRVV = checkHardwareSupport(CPU_RVV);
|
|
useLASX = checkHardwareSupport(CPU_LASX);
|
|
}
|
|
|
|
void operator()(const Range& range_) const CV_OVERRIDE
|
|
{
|
|
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
|
|
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
|
|
int mmax = a_->rows;
|
|
int nmax = range.end - range.start;
|
|
int kmax = a_->cols;
|
|
int m, n, k;
|
|
const float* aptr = a_->ptr<float>();
|
|
const float* bptr = b_->ptr<float>() + range.start;
|
|
float* cptr = c_->ptr<float>() + range.start;
|
|
size_t astep = a_->step1();
|
|
size_t bstep = b_->step1();
|
|
size_t cstep = c_->step1();
|
|
|
|
#if CV_TRY_AVX512_SKX
|
|
if( useAVX512 )
|
|
opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX2
|
|
if( useAVX2 )
|
|
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_AVX
|
|
if( useAVX )
|
|
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
#if CV_TRY_RVV
|
|
if( useRVV ) {
|
|
opt_RVV::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
}
|
|
else
|
|
#endif
|
|
#if CV_TRY_LASX
|
|
if( useLASX )
|
|
opt_LASX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
|
else
|
|
#endif
|
|
for( m = 0; m < mmax; m += 2 )
|
|
{
|
|
float* dst0 = cptr + cstep*m;
|
|
float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
|
|
const float* aptr0 = aptr + astep*m;
|
|
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
|
|
|
|
for( n = 0; n < nmax; n++ )
|
|
{
|
|
dst0[n] = 0.f;
|
|
dst1[n] = 0.f;
|
|
}
|
|
|
|
for( k = 0; k < kmax; k += 4 )
|
|
{
|
|
float alpha00 = aptr0[k];
|
|
float alpha01 = aptr1[k];
|
|
float alpha10 = 0.f, alpha11 = 0.f;
|
|
float alpha20 = 0.f, alpha21 = 0.f;
|
|
float alpha30 = 0.f, alpha31 = 0.f;
|
|
const float* bptr0 = bptr + k*bstep;
|
|
const float* bptr1 = bptr0;
|
|
const float* bptr2 = bptr0;
|
|
const float* bptr3 = bptr0;
|
|
|
|
if( k+1 < kmax )
|
|
{
|
|
alpha10 = aptr0[k+1];
|
|
alpha11 = aptr1[k+1];
|
|
bptr1 = bptr0 + bstep;
|
|
if( k+2 < kmax )
|
|
{
|
|
alpha20 = aptr0[k+2];
|
|
alpha21 = aptr1[k+2];
|
|
bptr2 = bptr1 + bstep;
|
|
if( k+3 < kmax )
|
|
{
|
|
alpha30 = aptr0[k+3];
|
|
alpha31 = aptr1[k+3];
|
|
bptr3 = bptr2 + bstep;
|
|
}
|
|
}
|
|
}
|
|
n = 0;
|
|
|
|
#if CV_SIMD128
|
|
v_float32x4 a00 = v_setall_f32(alpha00);
|
|
v_float32x4 a01 = v_setall_f32(alpha01);
|
|
v_float32x4 a10 = v_setall_f32(alpha10);
|
|
v_float32x4 a11 = v_setall_f32(alpha11);
|
|
v_float32x4 a20 = v_setall_f32(alpha20);
|
|
v_float32x4 a21 = v_setall_f32(alpha21);
|
|
v_float32x4 a30 = v_setall_f32(alpha30);
|
|
v_float32x4 a31 = v_setall_f32(alpha31);
|
|
|
|
for( ; n <= nmax - 4; n += 4 )
|
|
{
|
|
v_float32x4 d0 = v_load(dst0 + n);
|
|
v_float32x4 d1 = v_load(dst1 + n);
|
|
v_float32x4 b0 = v_load(bptr0 + n);
|
|
v_float32x4 b1 = v_load(bptr1 + n);
|
|
v_float32x4 b2 = v_load(bptr2 + n);
|
|
v_float32x4 b3 = v_load(bptr3 + n);
|
|
// TODO try to improve pipeline width
|
|
d0 = v_fma(b0, a00, d0);
|
|
d1 = v_fma(b0, a01, d1);
|
|
d0 = v_fma(b1, a10, d0);
|
|
d1 = v_fma(b1, a11, d1);
|
|
d0 = v_fma(b2, a20, d0);
|
|
d1 = v_fma(b2, a21, d1);
|
|
d0 = v_fma(b3, a30, d0);
|
|
d1 = v_fma(b3, a31, d1);
|
|
v_store(dst0 + n, d0);
|
|
v_store(dst1 + n, d1);
|
|
}
|
|
#endif
|
|
|
|
for( ; n < nmax; n++ )
|
|
{
|
|
float b0 = bptr0[n];
|
|
float b1 = bptr1[n];
|
|
float b2 = bptr2[n];
|
|
float b3 = bptr3[n];
|
|
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
|
|
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
|
|
dst0[n] = d0;
|
|
dst1[n] = d1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const Mat *a_, *b_;
|
|
Mat* c_;
|
|
int nstripes_;
|
|
bool useAVX;
|
|
bool useAVX2;
|
|
bool useAVX512;
|
|
bool useRVV;
|
|
bool useLASX;
|
|
};
|
|
|
|
class Col2ImInvoker : public cv::ParallelLoopBody
|
|
{
|
|
public:
|
|
const float* data_col;
|
|
const float* biasvec;
|
|
int channels, height, width;
|
|
int kernel_h, kernel_w;
|
|
int pad_h, pad_w;
|
|
int stride_h, stride_w;
|
|
float* data_im;
|
|
int height_col, width_col;
|
|
int nstripes;
|
|
bool is1x1;
|
|
|
|
Col2ImInvoker()
|
|
: data_col(0), biasvec(0), channels(0), height(0), width(0),
|
|
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
|
|
height_col(0), width_col(0), nstripes(0), is1x1(0)
|
|
{}
|
|
|
|
static void run(const float* data_col,
|
|
int channels, int height, int width,
|
|
int kernel_h, int kernel_w,
|
|
int pad_h, int pad_w,
|
|
int stride_h, int stride_w,
|
|
int height_col, int width_col,
|
|
float* data_im,
|
|
const float* biasvec,
|
|
bool is1x1)
|
|
{
|
|
const int nstripes = getNumThreads();
|
|
|
|
Col2ImInvoker t;
|
|
t.data_col = data_col;
|
|
t.data_im = data_im;
|
|
t.channels = channels; t.height = height; t.width = width;
|
|
t.kernel_h = kernel_h; t.kernel_w = kernel_w;
|
|
t.pad_h = pad_h; t.pad_w = pad_w;
|
|
t.stride_h = stride_h; t.stride_w = stride_w;
|
|
t.height_col = height_col;
|
|
t.width_col = width_col;
|
|
t.nstripes = nstripes;
|
|
t.is1x1 = is1x1;
|
|
t.biasvec = biasvec;
|
|
|
|
parallel_for_(Range(0, nstripes), t, nstripes);
|
|
}
|
|
|
|
virtual void operator ()(const Range &r) const CV_OVERRIDE
|
|
{
|
|
const float* data_col_ = data_col;
|
|
float* data_im_ = data_im;
|
|
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
|
|
int coeff_w = (1 - stride_w * height_col * width_col);
|
|
size_t total = (size_t)channels * height * width;
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
size_t startIndex = r.start*stripeSize;
|
|
size_t endIndex = std::min(r.end*stripeSize, total);
|
|
int w = (int)(startIndex % width + pad_w);
|
|
int h = (int)((startIndex / width) % height + pad_h);
|
|
int c = (int)(startIndex / (width * height));
|
|
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
int h_col_end = std::min(h / stride_h + 1, height_col);
|
|
int plane_size_col = height_col * width_col;
|
|
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
bool is1x1_ = is1x1;
|
|
const float* biasvec_ = biasvec;
|
|
|
|
for (size_t index = startIndex; index < endIndex; index++)
|
|
{
|
|
// compute the start and end of the output
|
|
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
|
|
int w_col_end = std::min(w / stride_w + 1, width_col);
|
|
float val;
|
|
|
|
if( is1x1_ )
|
|
val = data_im_[index];
|
|
else
|
|
{
|
|
val = 0.f;
|
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
|
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
|
|
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
|
|
}
|
|
}
|
|
}
|
|
data_im_[index] = val + biasvec_[c];
|
|
|
|
offset += plane_size_col;
|
|
if( ++w >= width + pad_w )
|
|
{
|
|
w = (int)((index + 1)% width + pad_w);
|
|
h = (int)(((index + 1) / width) % height + pad_h);
|
|
c = (int)((index + 1) / (width * height));
|
|
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
h_col_end = std::min(h / stride_h + 1, height_col);
|
|
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
std::vector<UMat> internals;
|
|
|
|
if (inputs_.depth() == CV_16F)
|
|
return false;
|
|
|
|
inputs_.getUMatVector(inputs);
|
|
outputs_.getUMatVector(outputs);
|
|
internals_.getUMatVector(internals);
|
|
|
|
int outCn = numOutput;
|
|
int inpCn = inputs[0].size[1];
|
|
|
|
if (is1x1())
|
|
return false;
|
|
|
|
if (umat_weights.empty())
|
|
{
|
|
if (fusedWeights)
|
|
weightsMat.copyTo(umat_weights);
|
|
else
|
|
transpose(blobs[0].reshape(1, inpCn), umat_weights);
|
|
|
|
if (fusedBias)
|
|
biasesMat.copyTo(umat_biases);
|
|
else
|
|
{
|
|
if (hasBias())
|
|
blobs[1].reshape(1, outCn).copyTo(umat_biases);
|
|
else
|
|
umat_biases = UMat::zeros(outCn, 1, CV_32F);
|
|
}
|
|
}
|
|
|
|
String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type()));
|
|
buildopt += format("-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d ",
|
|
pad.height, pad.width, kernel.height, kernel.width, stride.height, stride.width);
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
{
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
int inpGroupCn = inpCn / ngroups;
|
|
int outGroupCn = blobs[0].size[1];
|
|
const UMat& inp = inputs[ii];
|
|
UMat& out = outputs[ii];
|
|
int numImg = inp.size[0];
|
|
int inpH = inp.size[2], inpW = inp.size[3];
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
MatShape inpshape = shape(numImg*inpCn, inpH*inpW);
|
|
MatShape outshape = shape(numImg*outCn, outH*outW);
|
|
UMat convBlob = inputs[ii].reshape(1, inpshape.size(), &inpshape[0]);
|
|
UMat decnBlob = out.reshape(1, outshape.size(), &outshape[0]);
|
|
int rows = internals[0].rows / ngroups;
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
{
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
UMat colMat = internals[0].rowRange(_Range(g * rows, rows));
|
|
UMat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
UMat wghtMat = umat_weights.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
gemm(wghtMat, convMat, 1, noArray(), 0, colMat, 0);
|
|
}
|
|
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
int total = outGroupCn * decnBlob.cols;
|
|
int index = 0;
|
|
int height_col = inpH;
|
|
int width_col = inpW;
|
|
int coeff_h = (1 - stride.height * kernel.width * height_col) * width_col;
|
|
int coeff_w = (1 - stride.width * height_col * width_col);
|
|
|
|
ocl::Kernel k("col2im", ocl::dnn::col2im_oclsrc, buildopt);
|
|
k.set(index++, total);
|
|
k.set(index++, ocl::KernelArg::PtrReadOnly(internals[0]));
|
|
k.set(index++, (int)(g * rows * internals[0].cols));
|
|
k.set(index++, outGroupCn);
|
|
k.set(index++, outH);
|
|
k.set(index++, outW);
|
|
k.set(index++, height_col);
|
|
k.set(index++, width_col);
|
|
k.set(index++, coeff_h);
|
|
k.set(index++, coeff_w);
|
|
k.set(index++, ocl::KernelArg::PtrReadOnly(umat_biases));
|
|
k.set(index++, (int)(g * outGroupCn * umat_biases.cols));
|
|
k.set(index++, ocl::KernelArg::PtrWriteOnly(decnBlob));
|
|
k.set(index++, (int)((g + n * ngroups) * outGroupCn * decnBlob.cols));
|
|
|
|
size_t global[] = { (size_t)total };
|
|
bool ret = k.run(1, global, NULL, false);
|
|
if (!ret)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr));
|
|
|
|
if (inputs_arr.depth() == CV_16F)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs, internals;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
int outCn = numOutput;
|
|
int inpCn = inputs[0].size[1];
|
|
bool is1x1flag = is1x1();
|
|
int nstripes = getNumThreads();
|
|
|
|
if( weightsMat.empty() )
|
|
{
|
|
transpose(blobs[0].reshape(1, inpCn), weightsMat);
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
|
|
}
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
{
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
int inpGroupCn = inpCn / ngroups;
|
|
int outGroupCn = blobs[0].size[1];
|
|
const Mat& inp = inputs[ii];
|
|
Mat& out = outputs[ii];
|
|
int numImg = inp.size[0];
|
|
int inpH = inp.size[2], inpW = inp.size[3];
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
Mat convBlob = inputs[ii].reshape(1, numImg*inpCn);
|
|
Mat decnBlob = out.reshape(1, numImg*outCn);
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
{
|
|
for (int g = 0; g < ngroups; g++)
|
|
{
|
|
Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
|
|
Mat &colMat = is1x1flag ? dstMat : internals[0];
|
|
|
|
Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
|
|
|
|
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
|
|
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
|
|
parallel_for_(Range(0, nstripes), mminvoker, nstripes);
|
|
|
|
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
|
|
kernel.height, kernel.width, pad.height, pad.width,
|
|
stride.height, stride.width, inpH, inpW, dstMat.ptr<float>(),
|
|
curBiasMat.ptr<float>(), is1x1flag);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
CV_Assert(inputs.size() == 1);
|
|
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto input_shape = input_wrapper->getShape();
|
|
|
|
CV_Assert(outputs.size() == 1);
|
|
auto output_wrapper = outputs[0].dynamicCast<CUDABackendWrapper>();
|
|
auto output_shape = output_wrapper->getShape();
|
|
|
|
const auto output_feature_maps = numOutput;
|
|
const auto output_feature_maps_per_group = blobs[0].size[1];
|
|
const auto groups = output_feature_maps / output_feature_maps_per_group;
|
|
|
|
TransposeConvolutionConfiguration config;
|
|
config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size));
|
|
config.dilations.assign(std::begin(dilations), std::end(dilations));
|
|
config.strides.assign(std::begin(strides), std::end(strides));
|
|
|
|
if (padMode.empty())
|
|
{
|
|
config.padMode = TransposeConvolutionConfiguration::PaddingMode::MANUAL;
|
|
config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin));
|
|
config.pads_end.assign(std::begin(pads_end), std::end(pads_end));
|
|
}
|
|
else if (padMode == "VALID")
|
|
{
|
|
config.padMode = TransposeConvolutionConfiguration::PaddingMode::VALID;
|
|
}
|
|
else if (padMode == "SAME")
|
|
{
|
|
config.padMode = TransposeConvolutionConfiguration::PaddingMode::SAME;
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by DeconvolutionLayer");
|
|
}
|
|
|
|
config.input_shape.assign(std::begin(input_shape), std::end(input_shape));
|
|
config.output_shape.assign(std::begin(output_shape), std::end(output_shape));
|
|
config.groups = groups;
|
|
|
|
CV_Assert(blobs.size() >= 1);
|
|
Mat filtersMat = fusedWeights ? weightsMat.t() : blobs[0];
|
|
|
|
Mat biasMat = (hasBias() || fusedBias) ? biasesMat : Mat();
|
|
if (countNonZero(biasMat) == 0)
|
|
biasMat = Mat();
|
|
|
|
return make_cuda_node<cuda4dnn::TransposeConvolutionOp>(
|
|
preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat);
|
|
}
|
|
#endif
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
CV_Assert(!blobs.empty());
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
int inW, inH, inC, inN;
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
const int outGroupCn = blobs[0].size[1];
|
|
const int group = numOutput / outGroupCn;
|
|
const int inpGroupCn = blobs[0].size[0] / group;
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
auto weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
Halide::Func dilated_input("dilated_input");
|
|
dilated_input(x, y, c, n) = 0.0f;
|
|
Halide::RDom r1(0, inW, 0, inH);
|
|
dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
|
|
inputBuffer(r1.x, r1.y, c, n);
|
|
dilated_input.compute_root();
|
|
|
|
Halide::Func bounded =
|
|
Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
|
|
0, (inW - 1) * stride.width + 1,
|
|
0, (inH - 1) * stride.height + 1,
|
|
0, inC, 0, inN);
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
Halide::Expr kx = x + pad.width - r.x;
|
|
Halide::Expr ky = y + pad.height - r.y;
|
|
Halide::Expr kInC = r.z;
|
|
Halide::Expr kOutC = c;
|
|
for (int i = 1; i < group; ++i)
|
|
{
|
|
kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z);
|
|
kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i);
|
|
}
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) *
|
|
weights(r.x, r.y, kOutC, kInC));
|
|
if (hasBias())
|
|
{
|
|
auto bias = wrapToHalideBuffer(blobs[1], {numOutput});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
#ifdef HAVE_CANN
|
|
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendWrapper> > &outputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
CV_Assert(inputs.size() == 1);
|
|
CV_Assert(nodes.size() == 1);
|
|
|
|
bool has_bias = hasBias() || fusedBias;
|
|
|
|
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
|
|
auto y = outputs[0].dynamicCast<CannBackendWrapper>();
|
|
const auto shape_x = x->host->size; // [N, C, H, W]
|
|
const auto shape_y = y->host->size; // [N, C, H, W]
|
|
const int filter_out_channel = blobs[0].size[0];
|
|
const int groups = shape_x[1] / filter_out_channel;
|
|
|
|
// create operator
|
|
auto op = std::make_shared<ge::op::Conv2DTransposeD>(name);
|
|
|
|
// set attributes
|
|
op->set_attr_input_size(
|
|
ge::Operator::OpListInt({(int64_t)shape_y[0],
|
|
(int64_t)shape_y[1],
|
|
(int64_t)shape_y[2],
|
|
(int64_t)shape_y[3],})
|
|
);
|
|
op->set_attr_strides(
|
|
ge::Operator::OpListInt({1, 1, (int64_t)strides[0], (int64_t)strides[1]})
|
|
);
|
|
op->set_attr_pads(ge::Operator::OpListInt(
|
|
{(int64_t)pads_begin[1], (int64_t)pads_end[1], (int64_t)pads_begin[0], (int64_t)pads_end[0]}
|
|
));
|
|
op->set_attr_dilations(ge::Operator::OpListInt(
|
|
{1, 1, (int64_t)dilations[0], (int64_t)dilations[1]}
|
|
));
|
|
op->set_attr_groups(groups);
|
|
op->set_attr_data_format("NCHW");
|
|
op->set_attr_output_padding(
|
|
ge::Operator::OpListInt({0, 0, (int64_t)adjust_pads[0], (int64_t)adjust_pads[1]}) // adjust_pads: [height, width]
|
|
);
|
|
|
|
// set inputs
|
|
// set inputs : x
|
|
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
|
|
op->set_input_x_by_name(*op_x, x->name.c_str());
|
|
auto desc_x = x->getTensorDesc();
|
|
op->update_input_desc_x(*desc_x);
|
|
// set inputs : weight
|
|
const Mat& mat_w = blobs[0];
|
|
auto op_const_w = std::make_shared<CannConstOp>(mat_w.data, mat_w.type(), shape(mat_w), cv::format("%s_w", name.c_str()));
|
|
op->set_input_filter(*(op_const_w->getOp()));
|
|
op->update_input_desc_filter(*(op_const_w->getTensorDesc()));
|
|
// set inputs : bias
|
|
if (has_bias)
|
|
{
|
|
int out_channel = blobs[0].size[0];
|
|
const Mat& mat_b = blobs[1];
|
|
|
|
std::vector<int> shape_b{out_channel};
|
|
auto op_const_b = std::make_shared<CannConstOp>(mat_b.data, mat_b.type(), shape_b, cv::format("%s_b", name.c_str()));
|
|
op->set_input_bias(*(op_const_b->getOp()));
|
|
op->update_input_desc_bias(*(op_const_b->getTensorDesc()));
|
|
}
|
|
|
|
// set outputs
|
|
auto desc_output = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
|
|
op->update_output_desc_y(*desc_output);
|
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op));
|
|
}
|
|
#endif // HAVE_CANN
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
CV_Assert(!blobs.empty());
|
|
const int outGroupCn = blobs[0].size[1];
|
|
const int group = numOutput / outGroupCn;
|
|
CV_Assert(group == 1);
|
|
|
|
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
|
std::vector<size_t> kernel_shape = getShape<size_t>(blobs[0]);
|
|
auto ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, blobs[0].data);
|
|
|
|
if (fusedWeights)
|
|
{
|
|
Mat newWeights;
|
|
transpose(weightsMat, newWeights);
|
|
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, newWeights.data);
|
|
}
|
|
std::vector<size_t> paddings_end;
|
|
if (padMode == "SAME")
|
|
{
|
|
for (int i = 0; i < pads_begin.size(); i++) {
|
|
paddings_end.push_back(kernel_size[i] - pads_begin[i] - 1 - adjust_pads[i]);
|
|
}
|
|
adjust_pads = std::vector<size_t>(pads_begin.size(), 0);
|
|
} else {
|
|
paddings_end = pads_end;
|
|
}
|
|
ov::op::PadType pad_type = padMode == "VALID" ? ov::op::PadType::VALID : ov::op::PadType::EXPLICIT;
|
|
|
|
auto deconv = std::make_shared<ov::op::v1::ConvolutionBackpropData>(
|
|
ieInpNode,
|
|
ieWeights,
|
|
ov::Strides(strides),
|
|
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
|
|
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(paddings_end.begin(), paddings_end.end())),
|
|
ov::Strides(dilations),
|
|
pad_type,
|
|
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(adjust_pads.begin(), adjust_pads.end())));
|
|
|
|
if (hasBias() || fusedBias)
|
|
{
|
|
std::vector<size_t> shape(deconv->get_shape().size(), 1);
|
|
shape[1] = numOutput;
|
|
auto bias = std::make_shared<ov::op::v0::Constant>(ov::element::f32, ov::Shape(shape), blobs[1].data);
|
|
auto deconv_bias = std::make_shared<ov::op::v1::Add>(deconv, bias, ov::op::AutoBroadcastType::NUMPY);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv_bias));
|
|
}
|
|
|
|
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
float flops = 0;
|
|
int outChannels = blobs[0].size[0];
|
|
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
|
|
1, std::multiplies<size_t>());
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += CV_BIG_INT(2)*outChannels*karea*total(inputs[i]);
|
|
}
|
|
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
Ptr<ConvolutionLayerImpl> l(new ConvolutionLayerImpl(params));
|
|
return l;
|
|
}
|
|
|
|
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms)
|
|
{
|
|
return Ptr<BaseConvolutionLayer>(new DeConvolutionLayerImpl(params));
|
|
}
|
|
|
|
}
|
|
}
|