mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
171 lines
5.3 KiB
HTML
171 lines
5.3 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<title>MeanShift Example</title>
|
|
<link href="js_example_style.css" rel="stylesheet" type="text/css" />
|
|
</head>
|
|
<body>
|
|
<h2>MeanShift Example</h2>
|
|
<p>
|
|
Click <b>Start/Stop</b> button to start or stop the video.<br>
|
|
The <b>videoInput</b> is a <video> element used as meanShift input.
|
|
The <b>canvasOutput</b> is a <canvas> element used as meanShift output.<br>
|
|
The code of <textarea> will be executed when video is started.
|
|
You can modify the code to investigate more.
|
|
</p>
|
|
<div>
|
|
<div class="control"><button id="startAndStop" disabled>Start</button></div>
|
|
<textarea class="code" rows="29" cols="100" id="codeEditor" spellcheck="false">
|
|
</textarea>
|
|
</div>
|
|
<p class="err" id="errorMessage"></p>
|
|
<div>
|
|
<table cellpadding="0" cellspacing="0" width="0" border="0">
|
|
<tr>
|
|
<td>
|
|
<video id="videoInput" width="320" height="240" muted loop></video>
|
|
</td>
|
|
<td>
|
|
<canvas id="canvasOutput" width="320" height="240" ></canvas>
|
|
</td>
|
|
<td></td>
|
|
<td></td>
|
|
</tr>
|
|
<tr>
|
|
<td>
|
|
<div class="caption">videoInput</div>
|
|
</td>
|
|
<td>
|
|
<div class="caption">canvasOutput</div>
|
|
</td>
|
|
<td></td>
|
|
<td></td>
|
|
</tr>
|
|
</table>
|
|
</div>
|
|
<script src="https://webrtc.github.io/adapter/adapter-5.0.4.js" type="text/javascript"></script>
|
|
<script src="utils.js" type="text/javascript"></script>
|
|
<script id="codeSnippet" type="text/code-snippet">
|
|
let video = document.getElementById('videoInput');
|
|
let cap = new cv.VideoCapture(video);
|
|
|
|
// take first frame of the video
|
|
let frame = new cv.Mat(video.height, video.width, cv.CV_8UC4);
|
|
cap.read(frame);
|
|
|
|
// hardcode the initial location of window
|
|
let trackWindow = new cv.Rect(150, 60, 63, 125);
|
|
|
|
// set up the ROI for tracking
|
|
let roi = frame.roi(trackWindow);
|
|
let hsvRoi = new cv.Mat();
|
|
cv.cvtColor(roi, hsvRoi, cv.COLOR_RGBA2RGB);
|
|
cv.cvtColor(hsvRoi, hsvRoi, cv.COLOR_RGB2HSV);
|
|
let mask = new cv.Mat();
|
|
let lowScalar = new cv.Scalar(30, 30, 0);
|
|
let highScalar = new cv.Scalar(180, 180, 180);
|
|
let low = new cv.Mat(hsvRoi.rows, hsvRoi.cols, hsvRoi.type(), lowScalar);
|
|
let high = new cv.Mat(hsvRoi.rows, hsvRoi.cols, hsvRoi.type(), highScalar);
|
|
cv.inRange(hsvRoi, low, high, mask);
|
|
let roiHist = new cv.Mat();
|
|
let hsvRoiVec = new cv.MatVector();
|
|
hsvRoiVec.push_back(hsvRoi);
|
|
cv.calcHist(hsvRoiVec, [0], mask, roiHist, [180], [0, 180]);
|
|
cv.normalize(roiHist, roiHist, 0, 255, cv.NORM_MINMAX);
|
|
|
|
// delete useless mats.
|
|
roi.delete(); hsvRoi.delete(); mask.delete(); low.delete(); high.delete(); hsvRoiVec.delete();
|
|
|
|
// Setup the termination criteria, either 10 iteration or move by at least 1 pt
|
|
let termCrit = new cv.TermCriteria(cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1);
|
|
|
|
let hsv = new cv.Mat(video.height, video.width, cv.CV_8UC3);
|
|
let dst = new cv.Mat();
|
|
let hsvVec = new cv.MatVector();
|
|
hsvVec.push_back(hsv);
|
|
|
|
const FPS = 30;
|
|
function processVideo() {
|
|
try {
|
|
if (!streaming) {
|
|
// clean and stop.
|
|
frame.delete(); dst.delete(); hsvVec.delete(); roiHist.delete(); hsv.delete();
|
|
return;
|
|
}
|
|
let begin = Date.now();
|
|
|
|
// start processing.
|
|
cap.read(frame);
|
|
cv.cvtColor(frame, hsv, cv.COLOR_RGBA2RGB);
|
|
cv.cvtColor(hsv, hsv, cv.COLOR_RGB2HSV);
|
|
cv.calcBackProject(hsvVec, [0], roiHist, dst, [0, 180], 1);
|
|
|
|
// Apply meanshift to get the new location
|
|
// and it also returns number of iterations meanShift took to converge,
|
|
// which is useless in this demo.
|
|
[, trackWindow] = cv.meanShift(dst, trackWindow, termCrit);
|
|
|
|
// Draw it on image
|
|
let [x, y, w, h] = [trackWindow.x, trackWindow.y, trackWindow.width, trackWindow.height];
|
|
cv.rectangle(frame, new cv.Point(x, y), new cv.Point(x+w, y+h), [255, 0, 0, 255], 2);
|
|
cv.imshow('canvasOutput', frame);
|
|
|
|
// schedule the next one.
|
|
let delay = 1000/FPS - (Date.now() - begin);
|
|
setTimeout(processVideo, delay);
|
|
} catch (err) {
|
|
utils.printError(err);
|
|
}
|
|
};
|
|
|
|
// schedule the first one.
|
|
setTimeout(processVideo, 0);
|
|
</script>
|
|
<script type="text/javascript">
|
|
let utils = new Utils('errorMessage');
|
|
|
|
utils.loadCode('codeSnippet', 'codeEditor');
|
|
|
|
let streaming = false;
|
|
let videoInput = document.getElementById('videoInput');
|
|
let startAndStop = document.getElementById('startAndStop');
|
|
let canvasOutput = document.getElementById('canvasOutput');
|
|
let canvasContext = canvasOutput.getContext('2d');
|
|
|
|
startAndStop.addEventListener('click', () => {
|
|
if (!streaming) {
|
|
utils.clearError();
|
|
videoInput.play().then(() => {
|
|
onVideoStarted();
|
|
});
|
|
} else {
|
|
videoInput.pause();
|
|
videoInput.currentTime = 0;
|
|
onVideoStopped();
|
|
}
|
|
});
|
|
|
|
function onVideoStarted() {
|
|
streaming = true;
|
|
startAndStop.innerText = 'Stop';
|
|
videoInput.height = videoInput.width * (videoInput.videoHeight / videoInput.videoWidth);
|
|
utils.executeCode('codeEditor');
|
|
}
|
|
|
|
function onVideoStopped() {
|
|
streaming = false;
|
|
canvasContext.clearRect(0, 0, canvasOutput.width, canvasOutput.height);
|
|
startAndStop.innerText = 'Start';
|
|
}
|
|
|
|
utils.loadOpenCv(() => {
|
|
videoInput.addEventListener('canplay', () => {
|
|
startAndStop.removeAttribute('disabled');
|
|
});
|
|
videoInput.src = 'cup.mp4';
|
|
});
|
|
</script>
|
|
</body>
|
|
</html>
|