mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
198 lines
6.9 KiB
C++
198 lines
6.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "../precomp.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
#include "../op_webnn.hpp"
|
|
#include "../op_cann.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/const.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class ConstLayerImpl CV_FINAL : public ConstLayer
|
|
{
|
|
public:
|
|
ConstLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
CV_Assert(blobs.size() == 1);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
#ifdef HAVE_INF_ENGINE
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
return true;
|
|
#endif
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_WEBNN ||
|
|
backendId == DNN_BACKEND_CUDA ||
|
|
backendId == DNN_BACKEND_CANN;
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.empty());
|
|
outputs.assign(1, shape(blobs[0]));
|
|
return false;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> outputs;
|
|
outs.getUMatVector(outputs);
|
|
if (outs.depth() == CV_16F) {
|
|
auto blob = blobs[0];
|
|
if (blob.type() != CV_32F) {
|
|
blob.convertTo(blob, CV_32F);
|
|
}
|
|
blob.convertTo(outputs[0], CV_16F);
|
|
}
|
|
else
|
|
blobs[0].convertTo(outputs[0], outputs[0].type());
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
std::vector<Mat> outputs;
|
|
outputs_arr.getMatVector(outputs);
|
|
blobs[0].convertTo(outputs[0], outputs[0].type());
|
|
}
|
|
|
|
#ifdef HAVE_CANN
|
|
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
|
|
const std::vector<Ptr<BackendWrapper> > &outputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto mat_shape = shape(blobs[0]);
|
|
std::vector<int64_t> mat_shape_{mat_shape.begin(), mat_shape.end()};
|
|
|
|
auto ge_shape = ge::Shape(mat_shape_);
|
|
auto ge_dtype = ge::DT_FLOAT;
|
|
switch (blobs[0].type())
|
|
{
|
|
case CV_32F: break;
|
|
case CV_32S: ge_dtype = ge::DT_INT32; break;
|
|
default: CV_Error(Error::StsNotImplemented, "Unsuppported data type");
|
|
}
|
|
auto size_of_type = sizeof(float);
|
|
switch (blobs[0].type())
|
|
{
|
|
case CV_32F: break;
|
|
case CV_32S: size_of_type = sizeof(int); break;
|
|
default: CV_Error(Error::StsNotImplemented, "Unsuppported data type");
|
|
}
|
|
|
|
auto desc = std::make_shared<ge::TensorDesc>(ge_shape, ge::FORMAT_NCHW, ge_dtype);
|
|
auto ge_tensor = std::make_shared<ge::Tensor>();
|
|
ge_tensor->SetTensorDesc(*desc);
|
|
ge_tensor->SetData(blobs[0].data, ge_shape.GetShapeSize() * size_of_type);
|
|
|
|
auto op = std::make_shared<ge::op::Const>(name);
|
|
op->set_attr_value(*ge_tensor);
|
|
|
|
return Ptr<BackendNode>(new CannBackendNode(op));
|
|
}
|
|
#endif // HAVE_CANN
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
ov::element::Type dType;
|
|
if (blobs[0].depth() == CV_32F) {
|
|
dType = ov::element::f32;
|
|
} else if (blobs[0].depth() == CV_32S) {
|
|
dType = ov::element::i32;
|
|
} else if (blobs[0].depth() == CV_8S) {
|
|
dType = ov::element::i8;
|
|
} else {
|
|
CV_Error(Error::StsNotImplemented, format("Unexpected Const data depth: %d", blobs[0].depth()));
|
|
}
|
|
std::shared_ptr<ov::Node> node =
|
|
std::make_shared<ov::op::v0::Constant>(dType,
|
|
getShape<size_t>(blobs[0]),
|
|
blobs[0].data);
|
|
if (node->get_element_type() != ov::element::f32) {
|
|
node = std::make_shared<ov::op::v0::Convert>(node, ov::element::f32);
|
|
}
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(node));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
#ifdef HAVE_WEBNN
|
|
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
ml::Operand operand = nullptr;
|
|
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
|
|
auto& webnnGraphBuilder = node->net->builder;
|
|
operand = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(blobs[0]), blobs[0].data, blobs[0].total()*blobs[0].elemSize(), ml::OperandType::Float32);
|
|
return Ptr<BackendNode>(new WebnnBackendNode(operand));
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
CV_Assert(blobs.size() == 1);
|
|
Mat blob = blobs[0];
|
|
if (blob.type() != CV_32F) {
|
|
blob.convertTo(blob, CV_32F);
|
|
}
|
|
return make_cuda_node<cuda4dnn::ConstOp>(preferableTarget, std::move(context->stream), blob);
|
|
}
|
|
#endif
|
|
|
|
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
|
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
|
{
|
|
Mat quantizedBlob;
|
|
blobs[0].convertTo(quantizedBlob, CV_8S, 1.f/scales[1][0], zeropoints[1][0]);
|
|
params.blobs.clear();
|
|
params.blobs.push_back(quantizedBlob);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
Ptr<Layer> ConstLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<Layer>(new ConstLayerImpl(params));
|
|
}
|
|
|
|
}} // namespace cv::dnn
|