opencv/modules/dnn/src/op_webnn.hpp
Oleg Pipikin 6da2ddcf0e Fix for OpenVINO 2024.0
Remove support OpenVINO lower than 2022.1 release
Remove legacy InferenceEngine wrappers
2024-03-18 15:05:50 +04:00

172 lines
4.4 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_DNN_OP_WEBNN_HPP__
#define __OPENCV_DNN_OP_WEBNN_HPP__
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
#include "opencv2/dnn.hpp"
#ifdef HAVE_WEBNN
#include <webnn/webnn_cpp.h>
#include <webnn/webnn.h>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#include <emscripten/html5.h>
#include <emscripten/html5_webnn.h>
#else
#include <webnn/webnn_proc.h>
#include <webnn_native/WebnnNative.h>
#endif
#include <unordered_map>
#include <unordered_set>
#endif // HAVE_WEBNN
namespace cv { namespace dnn {
constexpr bool haveWebnn() {
#ifdef HAVE_WEBNN
return true;
#else
return false;
#endif
}
#ifdef HAVE_WEBNN
class WebnnBackendNode;
class WebnnBackendWrapper;
namespace webnn {
inline std::vector<int32_t> getShape(const Mat& mat)
{
std::vector<int32_t> result(mat.dims);
for (int i = 0; i < mat.dims; i++)
result[i] = (int32_t)mat.size[i];
return result;
}
ml::Operand BuildConstant(const ml::GraphBuilder& builder,
const std::vector<int32_t>& dimensions,
const void* value,
size_t size,
ml::OperandType type);
struct Pool2dOptions {
public:
std::vector<int32_t> windowDimensions;
std::vector<int32_t> padding;
std::vector<int32_t> strides;
std::vector<int32_t> dilations;
ml::AutoPad autoPad = ml::AutoPad::Explicit;
ml::InputOperandLayout layout = ml::InputOperandLayout::Nchw;
const ml::Pool2dOptions* AsPtr() {
if (!windowDimensions.empty()) {
mOptions.windowDimensionsCount = windowDimensions.size();
mOptions.windowDimensions = windowDimensions.data();
}
if (!padding.empty()) {
mOptions.paddingCount = padding.size();
mOptions.padding = padding.data();
}
if (!strides.empty()) {
mOptions.stridesCount = strides.size();
mOptions.strides = strides.data();
}
if (!dilations.empty()) {
mOptions.dilationsCount = dilations.size();
mOptions.dilations = dilations.data();
}
mOptions.layout = layout;
mOptions.autoPad = autoPad;
return &mOptions;
}
private:
ml::Pool2dOptions mOptions;
};
}
class WebnnNet
{
public:
WebnnNet();
void addOutput(const std::string& name);
bool isInitialized();
void init(Target targetId);
void forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync);
std::vector<ml::Operand> setInputs(const std::vector<cv::Mat>& inputs, const std::vector<std::string>& names);
void setUnconnectedNodes(Ptr<WebnnBackendNode>& node);
void addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs);
void createNet(Target targetId);
// void setNodePtr(std::shared_ptr<ov::Node>* ptr);
void reset();
ml::GraphBuilder builder;
ml::Context context;
ml::Graph graph;
std::unordered_map<std::string, cv::Ptr<WebnnBackendWrapper>> allBlobs;
bool hasNetOwner;
std::string device_name;
bool isInit = false;
std::vector<std::string> requestedOutputs;
std::vector<std::string> inputNames;
std::vector<std::string> outputNames;
ml::NamedOperands namedOperands;
};
class WebnnBackendNode : public BackendNode
{
public:
WebnnBackendNode(ml::Operand&& operand);
WebnnBackendNode(ml::Operand& operand);
std::string name;
ml::Operand operand;
Ptr<WebnnNet> net;
};
class WebnnBackendWrapper : public BackendWrapper
{
public:
WebnnBackendWrapper(int targetId, Mat& m);
~WebnnBackendWrapper();
virtual void copyToHost() CV_OVERRIDE;
virtual void setHostDirty() CV_OVERRIDE;
std::string name;
Mat* host;
std::unique_ptr<char> buffer;
size_t size;
std::vector<int32_t> dimensions;
ml::OperandDescriptor descriptor;
};
#endif // HAVE_WebNN
void forwardWebnn(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
Ptr<BackendNode>& node, bool isAsync);
}} // namespace cv::dnn
#endif // __OPENCV_DNN_OP_WEBNN_HPP__