mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00

Conflicts: modules/core/include/opencv2/core/cuda.hpp modules/cudacodec/src/thread.cpp modules/cudacodec/src/thread.hpp modules/superres/perf/perf_superres.cpp modules/superres/src/btv_l1_cuda.cpp modules/superres/src/optical_flow.cpp modules/videostab/src/global_motion.cpp modules/videostab/src/inpainting.cpp samples/cpp/stitching_detailed.cpp samples/cpp/videostab.cpp samples/gpu/stereo_multi.cpp
210 lines
8.1 KiB
C++
210 lines
8.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|
|
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int, int, double, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorMOG>(); }
|
|
|
|
#else
|
|
|
|
namespace cv { namespace cuda { namespace device
|
|
{
|
|
namespace mog
|
|
{
|
|
void mog_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzf weight, PtrStepSzf sortKey, PtrStepSzb mean, PtrStepSzb var,
|
|
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma,
|
|
cudaStream_t stream);
|
|
void getBackgroundImage_gpu(int cn, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, int nmixtures, float backgroundRatio, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
const int defaultNMixtures = 5;
|
|
const int defaultHistory = 200;
|
|
const float defaultBackgroundRatio = 0.7f;
|
|
const float defaultVarThreshold = 2.5f * 2.5f;
|
|
const float defaultNoiseSigma = 30.0f * 0.5f;
|
|
const float defaultInitialWeight = 0.05f;
|
|
|
|
class MOGImpl : public cuda::BackgroundSubtractorMOG
|
|
{
|
|
public:
|
|
MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma);
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream);
|
|
|
|
void getBackgroundImage(OutputArray backgroundImage) const;
|
|
void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const;
|
|
|
|
int getHistory() const { return history_; }
|
|
void setHistory(int nframes) { history_ = nframes; }
|
|
|
|
int getNMixtures() const { return nmixtures_; }
|
|
void setNMixtures(int nmix) { nmixtures_ = nmix; }
|
|
|
|
double getBackgroundRatio() const { return backgroundRatio_; }
|
|
void setBackgroundRatio(double backgroundRatio) { backgroundRatio_ = (float) backgroundRatio; }
|
|
|
|
double getNoiseSigma() const { return noiseSigma_; }
|
|
void setNoiseSigma(double noiseSigma) { noiseSigma_ = (float) noiseSigma; }
|
|
|
|
private:
|
|
//! re-initiaization method
|
|
void initialize(Size frameSize, int frameType);
|
|
|
|
int history_;
|
|
int nmixtures_;
|
|
float backgroundRatio_;
|
|
float noiseSigma_;
|
|
|
|
float varThreshold_;
|
|
|
|
Size frameSize_;
|
|
int frameType_;
|
|
int nframes_;
|
|
|
|
GpuMat weight_;
|
|
GpuMat sortKey_;
|
|
GpuMat mean_;
|
|
GpuMat var_;
|
|
};
|
|
|
|
MOGImpl::MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma) :
|
|
frameSize_(0, 0), frameType_(0), nframes_(0)
|
|
{
|
|
history_ = history > 0 ? history : defaultHistory;
|
|
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : defaultNMixtures, 8);
|
|
backgroundRatio_ = backgroundRatio > 0 ? (float) backgroundRatio : defaultBackgroundRatio;
|
|
noiseSigma_ = noiseSigma > 0 ? (float) noiseSigma : defaultNoiseSigma;
|
|
|
|
varThreshold_ = defaultVarThreshold;
|
|
}
|
|
|
|
void MOGImpl::apply(InputArray image, OutputArray fgmask, double learningRate)
|
|
{
|
|
apply(image, fgmask, learningRate, Stream::Null());
|
|
}
|
|
|
|
void MOGImpl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream& stream)
|
|
{
|
|
using namespace cv::cuda::device::mog;
|
|
|
|
GpuMat frame = _frame.getGpuMat();
|
|
|
|
CV_Assert( frame.depth() == CV_8U );
|
|
|
|
int ch = frame.channels();
|
|
int work_ch = ch;
|
|
|
|
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels())
|
|
initialize(frame.size(), frame.type());
|
|
|
|
_fgmask.create(frameSize_, CV_8UC1);
|
|
GpuMat fgmask = _fgmask.getGpuMat();
|
|
|
|
++nframes_;
|
|
learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(nframes_, history_);
|
|
CV_Assert( learningRate >= 0 );
|
|
|
|
mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_,
|
|
varThreshold_, (float) learningRate, backgroundRatio_, noiseSigma_,
|
|
StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void MOGImpl::getBackgroundImage(OutputArray backgroundImage) const
|
|
{
|
|
getBackgroundImage(backgroundImage, Stream::Null());
|
|
}
|
|
|
|
void MOGImpl::getBackgroundImage(OutputArray _backgroundImage, Stream& stream) const
|
|
{
|
|
using namespace cv::cuda::device::mog;
|
|
|
|
_backgroundImage.create(frameSize_, frameType_);
|
|
GpuMat backgroundImage = _backgroundImage.getGpuMat();
|
|
|
|
getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio_, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void MOGImpl::initialize(Size frameSize, int frameType)
|
|
{
|
|
CV_Assert( frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4 );
|
|
|
|
frameSize_ = frameSize;
|
|
frameType_ = frameType;
|
|
|
|
int ch = CV_MAT_CN(frameType);
|
|
int work_ch = ch;
|
|
|
|
// for each gaussian mixture of each pixel bg model we store
|
|
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
|
|
// the mean (nchannels values) and
|
|
// the diagonal covariance matrix (another nchannels values)
|
|
|
|
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
|
|
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
|
|
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
|
|
|
|
weight_.setTo(cv::Scalar::all(0));
|
|
sortKey_.setTo(cv::Scalar::all(0));
|
|
mean_.setTo(cv::Scalar::all(0));
|
|
var_.setTo(cv::Scalar::all(0));
|
|
|
|
nframes_ = 0;
|
|
}
|
|
}
|
|
|
|
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma)
|
|
{
|
|
return makePtr<MOGImpl>(history, nmixtures, backgroundRatio, noiseSigma);
|
|
}
|
|
|
|
#endif
|