mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
352 lines
14 KiB
C++
352 lines
14 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "calibController.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <ctime>
|
|
|
|
#include <opencv2/3d.hpp>
|
|
#include <opencv2/calib.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/imgcodecs.hpp>
|
|
|
|
using namespace cv;
|
|
|
|
double calib::calibController::estimateCoverageQuality()
|
|
{
|
|
int gridSize = 10;
|
|
int xGridStep = mCalibData->imageSize.width / gridSize;
|
|
int yGridStep = mCalibData->imageSize.height / gridSize;
|
|
std::vector<int> pointsInCell(gridSize*gridSize);
|
|
|
|
std::fill(pointsInCell.begin(), pointsInCell.end(), 0);
|
|
|
|
for(std::vector<std::vector<cv::Point2f> >::iterator it = mCalibData->imagePoints.begin(); it != mCalibData->imagePoints.end(); ++it)
|
|
for(std::vector<cv::Point2f>::iterator pointIt = (*it).begin(); pointIt != (*it).end(); ++pointIt) {
|
|
int i = (int)((*pointIt).x / xGridStep);
|
|
int j = (int)((*pointIt).y / yGridStep);
|
|
pointsInCell[i*gridSize + j]++;
|
|
}
|
|
|
|
for(std::vector<cv::Mat>::iterator it = mCalibData->allCharucoCorners.begin(); it != mCalibData->allCharucoCorners.end(); ++it)
|
|
for(int l = 0; l < (*it).size[0]; l++) {
|
|
int i = (int)((*it).at<float>(l, 0) / xGridStep);
|
|
int j = (int)((*it).at<float>(l, 1) / yGridStep);
|
|
pointsInCell[i*gridSize + j]++;
|
|
}
|
|
|
|
cv::Mat mean, stdDev;
|
|
cv::meanStdDev(pointsInCell, mean, stdDev);
|
|
|
|
return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7);
|
|
}
|
|
|
|
calib::calibController::calibController()
|
|
{
|
|
mCalibFlags = 0;
|
|
}
|
|
|
|
calib::calibController::calibController(cv::Ptr<calib::calibrationData> data, int initialFlags, bool autoTuning, int minFramesNum) :
|
|
mCalibData(data)
|
|
{
|
|
mCalibFlags = initialFlags;
|
|
mNeedTuning = autoTuning;
|
|
mMinFramesNum = minFramesNum;
|
|
mConfIntervalsState = false;
|
|
mCoverageQualityState = false;
|
|
}
|
|
|
|
void calib::calibController::updateState()
|
|
{
|
|
if(mCalibData->cameraMatrix.total()) {
|
|
const double relErrEps = 0.05;
|
|
bool fConfState = false, cConfState = false, dConfState = true;
|
|
if(sigmaMult*mCalibData->stdDeviations.at<double>(0) / mCalibData->cameraMatrix.at<double>(0,0) < relErrEps &&
|
|
sigmaMult*mCalibData->stdDeviations.at<double>(1) / mCalibData->cameraMatrix.at<double>(1,1) < relErrEps)
|
|
fConfState = true;
|
|
if(sigmaMult*mCalibData->stdDeviations.at<double>(2) / mCalibData->cameraMatrix.at<double>(0,2) < relErrEps &&
|
|
sigmaMult*mCalibData->stdDeviations.at<double>(3) / mCalibData->cameraMatrix.at<double>(1,2) < relErrEps)
|
|
cConfState = true;
|
|
|
|
for(int i = 0; i < 5; i++)
|
|
if(mCalibData->stdDeviations.at<double>(4+i) / fabs(mCalibData->distCoeffs.at<double>(i)) > 1)
|
|
dConfState = false;
|
|
|
|
mConfIntervalsState = fConfState && cConfState && dConfState;
|
|
}
|
|
|
|
if(getFramesNumberState())
|
|
mCoverageQualityState = estimateCoverageQuality() > 1.8 ? true : false;
|
|
|
|
if (getFramesNumberState() && mNeedTuning) {
|
|
if( !(mCalibFlags & cv::CALIB_FIX_ASPECT_RATIO) &&
|
|
mCalibData->cameraMatrix.total()) {
|
|
double fDiff = fabs(mCalibData->cameraMatrix.at<double>(0,0) -
|
|
mCalibData->cameraMatrix.at<double>(1,1));
|
|
|
|
if (fDiff < 3*mCalibData->stdDeviations.at<double>(0) &&
|
|
fDiff < 3*mCalibData->stdDeviations.at<double>(1)) {
|
|
mCalibFlags |= cv::CALIB_FIX_ASPECT_RATIO;
|
|
mCalibData->cameraMatrix.at<double>(0,0) =
|
|
mCalibData->cameraMatrix.at<double>(1,1);
|
|
}
|
|
}
|
|
|
|
if(!(mCalibFlags & cv::CALIB_ZERO_TANGENT_DIST)) {
|
|
const double eps = 0.005;
|
|
if(fabs(mCalibData->distCoeffs.at<double>(2)) < eps &&
|
|
fabs(mCalibData->distCoeffs.at<double>(3)) < eps)
|
|
mCalibFlags |= cv::CALIB_ZERO_TANGENT_DIST;
|
|
}
|
|
|
|
if(!(mCalibFlags & cv::CALIB_FIX_K1)) {
|
|
const double eps = 0.005;
|
|
if(fabs(mCalibData->distCoeffs.at<double>(0)) < eps)
|
|
mCalibFlags |= cv::CALIB_FIX_K1;
|
|
}
|
|
|
|
if(!(mCalibFlags & cv::CALIB_FIX_K2)) {
|
|
const double eps = 0.005;
|
|
if(fabs(mCalibData->distCoeffs.at<double>(1)) < eps)
|
|
mCalibFlags |= cv::CALIB_FIX_K2;
|
|
}
|
|
|
|
if(!(mCalibFlags & cv::CALIB_FIX_K3)) {
|
|
const double eps = 0.005;
|
|
if(fabs(mCalibData->distCoeffs.at<double>(4)) < eps)
|
|
mCalibFlags |= cv::CALIB_FIX_K3;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
bool calib::calibController::getCommonCalibrationState() const
|
|
{
|
|
int rating = (int)getFramesNumberState() + (int)getConfidenceIntrervalsState() +
|
|
(int)getRMSState() + (int)mCoverageQualityState;
|
|
return rating == 4;
|
|
}
|
|
|
|
bool calib::calibController::getFramesNumberState() const
|
|
{
|
|
return std::max(mCalibData->imagePoints.size(), mCalibData->allCharucoCorners.size()) > mMinFramesNum;
|
|
}
|
|
|
|
bool calib::calibController::getConfidenceIntrervalsState() const
|
|
{
|
|
return mConfIntervalsState;
|
|
}
|
|
|
|
bool calib::calibController::getRMSState() const
|
|
{
|
|
return mCalibData->totalAvgErr < 0.5;
|
|
}
|
|
|
|
int calib::calibController::getNewFlags() const
|
|
{
|
|
return mCalibFlags;
|
|
}
|
|
|
|
|
|
//////////////////// calibDataController
|
|
|
|
double calib::calibDataController::estimateGridSubsetQuality(size_t excludedIndex)
|
|
{
|
|
{
|
|
int gridSize = 10;
|
|
int xGridStep = mCalibData->imageSize.width / gridSize;
|
|
int yGridStep = mCalibData->imageSize.height / gridSize;
|
|
std::vector<int> pointsInCell(gridSize*gridSize);
|
|
|
|
std::fill(pointsInCell.begin(), pointsInCell.end(), 0);
|
|
|
|
for(size_t k = 0; k < mCalibData->imagePoints.size(); k++)
|
|
if(k != excludedIndex)
|
|
for(std::vector<cv::Point2f>::iterator pointIt = mCalibData->imagePoints[k].begin(); pointIt != mCalibData->imagePoints[k].end(); ++pointIt) {
|
|
int i = (int)((*pointIt).x / xGridStep);
|
|
int j = (int)((*pointIt).y / yGridStep);
|
|
pointsInCell[i*gridSize + j]++;
|
|
}
|
|
|
|
for(size_t k = 0; k < mCalibData->allCharucoCorners.size(); k++)
|
|
if(k != excludedIndex)
|
|
for(int l = 0; l < mCalibData->allCharucoCorners[k].size[0]; l++) {
|
|
int i = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 0) / xGridStep);
|
|
int j = (int)(mCalibData->allCharucoCorners[k].at<float>(l, 1) / yGridStep);
|
|
pointsInCell[i*gridSize + j]++;
|
|
}
|
|
|
|
cv::Mat mean, stdDev;
|
|
cv::meanStdDev(pointsInCell, mean, stdDev);
|
|
|
|
return mean.at<double>(0) / (stdDev.at<double>(0) + 1e-7);
|
|
}
|
|
}
|
|
|
|
calib::calibDataController::calibDataController(cv::Ptr<calib::calibrationData> data, int maxFrames, double convParameter) :
|
|
mCalibData(data), mParamsFileName("CamParams.xml")
|
|
{
|
|
mMaxFramesNum = maxFrames;
|
|
mAlpha = convParameter;
|
|
}
|
|
|
|
calib::calibDataController::calibDataController()
|
|
{
|
|
|
|
}
|
|
|
|
void calib::calibDataController::filterFrames()
|
|
{
|
|
size_t numberOfFrames = std::max(mCalibData->allCharucoIds.size(), mCalibData->imagePoints.size());
|
|
CV_Assert(numberOfFrames == mCalibData->perViewErrors.total());
|
|
if(numberOfFrames >= mMaxFramesNum) {
|
|
|
|
double worstValue = -HUGE_VAL, maxQuality = estimateGridSubsetQuality(numberOfFrames);
|
|
size_t worstElemIndex = 0;
|
|
for(size_t i = 0; i < numberOfFrames; i++) {
|
|
double gridQDelta = estimateGridSubsetQuality(i) - maxQuality;
|
|
double currentValue = mCalibData->perViewErrors.at<double>((int)i)*mAlpha + gridQDelta*(1. - mAlpha);
|
|
if(currentValue > worstValue) {
|
|
worstValue = currentValue;
|
|
worstElemIndex = i;
|
|
}
|
|
}
|
|
showOverlayMessage(cv::format("Frame %zu is worst", worstElemIndex + 1));
|
|
|
|
if(mCalibData->allFrames.size())
|
|
mCalibData->allFrames.erase(mCalibData->allFrames.begin() + worstElemIndex);
|
|
|
|
if(mCalibData->imagePoints.size()) {
|
|
mCalibData->imagePoints.erase(mCalibData->imagePoints.begin() + worstElemIndex);
|
|
mCalibData->objectPoints.erase(mCalibData->objectPoints.begin() + worstElemIndex);
|
|
if (mCalibData->allCharucoCorners.size()) {
|
|
mCalibData->allCharucoCorners.erase(mCalibData->allCharucoCorners.begin() + worstElemIndex);
|
|
mCalibData->allCharucoIds.erase(mCalibData->allCharucoIds.begin() + worstElemIndex);
|
|
}
|
|
}
|
|
|
|
cv::Mat newErrorsVec = cv::Mat((int)numberOfFrames - 1, 1, CV_64F);
|
|
std::copy(mCalibData->perViewErrors.ptr<double>(0),
|
|
mCalibData->perViewErrors.ptr<double>((int)worstElemIndex), newErrorsVec.ptr<double>(0));
|
|
if((int)worstElemIndex < (int)numberOfFrames-1) {
|
|
std::copy(mCalibData->perViewErrors.ptr<double>((int)worstElemIndex + 1), mCalibData->perViewErrors.ptr<double>((int)numberOfFrames),
|
|
newErrorsVec.ptr<double>((int)worstElemIndex));
|
|
}
|
|
mCalibData->perViewErrors = newErrorsVec;
|
|
}
|
|
}
|
|
|
|
void calib::calibDataController::setParametersFileName(const std::string &name)
|
|
{
|
|
mParamsFileName = name;
|
|
}
|
|
|
|
void calib::calibDataController::deleteLastFrame()
|
|
{
|
|
if(!mCalibData->allFrames.empty())
|
|
{
|
|
mCalibData->allFrames.pop_back();
|
|
}
|
|
|
|
if( !mCalibData->imagePoints.empty()) {
|
|
mCalibData->imagePoints.pop_back();
|
|
mCalibData->objectPoints.pop_back();
|
|
}
|
|
|
|
if (!mCalibData->allCharucoCorners.empty()) {
|
|
mCalibData->allCharucoCorners.pop_back();
|
|
mCalibData->allCharucoIds.pop_back();
|
|
}
|
|
|
|
if(!mParamsStack.empty()) {
|
|
mCalibData->cameraMatrix = (mParamsStack.top()).cameraMatrix;
|
|
mCalibData->distCoeffs = (mParamsStack.top()).distCoeffs;
|
|
mCalibData->stdDeviations = (mParamsStack.top()).stdDeviations;
|
|
mCalibData->totalAvgErr = (mParamsStack.top()).avgError;
|
|
mParamsStack.pop();
|
|
}
|
|
}
|
|
|
|
void calib::calibDataController::rememberCurrentParameters()
|
|
{
|
|
cv::Mat oldCameraMat, oldDistcoeefs, oldStdDevs;
|
|
mCalibData->cameraMatrix.copyTo(oldCameraMat);
|
|
mCalibData->distCoeffs.copyTo(oldDistcoeefs);
|
|
mCalibData->stdDeviations.copyTo(oldStdDevs);
|
|
mParamsStack.push(cameraParameters(oldCameraMat, oldDistcoeefs, oldStdDevs, mCalibData->totalAvgErr));
|
|
}
|
|
|
|
void calib::calibDataController::deleteAllData()
|
|
{
|
|
mCalibData->allFrames.clear();
|
|
mCalibData->imagePoints.clear();
|
|
mCalibData->objectPoints.clear();
|
|
mCalibData->allCharucoCorners.clear();
|
|
mCalibData->allCharucoIds.clear();
|
|
mCalibData->cameraMatrix = mCalibData->distCoeffs = cv::Mat();
|
|
mParamsStack = std::stack<cameraParameters>();
|
|
rememberCurrentParameters();
|
|
}
|
|
|
|
bool calib::calibDataController::saveCurrentCameraParameters() const
|
|
{
|
|
|
|
for(size_t i = 0; i < mCalibData->allFrames.size(); i++)
|
|
cv::imwrite(cv::format("calibration_%zu.png", i), mCalibData->allFrames[i]);
|
|
|
|
bool success = false;
|
|
if(mCalibData->cameraMatrix.total()) {
|
|
cv::FileStorage parametersWriter(mParamsFileName, cv::FileStorage::WRITE);
|
|
if(parametersWriter.isOpened()) {
|
|
time_t rawtime;
|
|
time(&rawtime);
|
|
char buf[256];
|
|
strftime(buf, sizeof(buf)-1, "%c", localtime(&rawtime));
|
|
|
|
parametersWriter << "calibrationDate" << buf;
|
|
parametersWriter << "framesCount" << std::max((int)mCalibData->objectPoints.size(), (int)mCalibData->allCharucoCorners.size());
|
|
parametersWriter << "cameraResolution" << mCalibData->imageSize;
|
|
parametersWriter << "cameraMatrix" << mCalibData->cameraMatrix;
|
|
parametersWriter << "cameraMatrix_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(0, 4));
|
|
parametersWriter << "dist_coeffs" << mCalibData->distCoeffs;
|
|
parametersWriter << "dist_coeffs_std_dev" << mCalibData->stdDeviations.rowRange(cv::Range(4, 9));
|
|
parametersWriter << "avg_reprojection_error" << mCalibData->totalAvgErr;
|
|
|
|
parametersWriter.release();
|
|
success = true;
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
void calib::calibDataController::printParametersToConsole(std::ostream &output) const
|
|
{
|
|
const char* border = "---------------------------------------------------";
|
|
output << border << std::endl;
|
|
output << "Frames used for calibration: " << std::max(mCalibData->objectPoints.size(), mCalibData->allCharucoCorners.size())
|
|
<< " \t RMS = " << mCalibData->totalAvgErr << std::endl;
|
|
if(mCalibData->cameraMatrix.at<double>(0,0) == mCalibData->cameraMatrix.at<double>(1,1))
|
|
output << "F = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl;
|
|
else
|
|
output << "Fx = " << mCalibData->cameraMatrix.at<double>(0,0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(0) << " \t "
|
|
<< "Fy = " << mCalibData->cameraMatrix.at<double>(1,1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(1) << std::endl;
|
|
output << "Cx = " << mCalibData->cameraMatrix.at<double>(0,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(2) << " \t"
|
|
<< "Cy = " << mCalibData->cameraMatrix.at<double>(1,2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(3) << std::endl;
|
|
output << "K1 = " << mCalibData->distCoeffs.at<double>(0) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(4) << std::endl;
|
|
output << "K2 = " << mCalibData->distCoeffs.at<double>(1) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(5) << std::endl;
|
|
output << "K3 = " << mCalibData->distCoeffs.at<double>(4) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(8) << std::endl;
|
|
output << "TD1 = " << mCalibData->distCoeffs.at<double>(2) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(6) << std::endl;
|
|
output << "TD2 = " << mCalibData->distCoeffs.at<double>(3) << " +- " << sigmaMult*mCalibData->stdDeviations.at<double>(7) << std::endl;
|
|
}
|
|
|
|
void calib::calibDataController::updateUndistortMap()
|
|
{
|
|
cv::initUndistortRectifyMap(mCalibData->cameraMatrix, mCalibData->distCoeffs, cv::noArray(),
|
|
cv::getOptimalNewCameraMatrix(mCalibData->cameraMatrix, mCalibData->distCoeffs, mCalibData->imageSize, 0.0, mCalibData->imageSize),
|
|
mCalibData->imageSize, CV_16SC2, mCalibData->undistMap1, mCalibData->undistMap2);
|
|
|
|
}
|