mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
979428d590
Modify DNN Samples to use ENGINE_CLASSIC for Non-Default Back-end or Target #26334 PR resolves #26325 regarding fall-back to ENGINE_CLASSIC if non-default back-end or target is passed by user. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
180 lines
7.7 KiB
Python
180 lines
7.7 KiB
Python
'''
|
|
This sample demonstrates edge detection with dexined and canny edge detection techniques.
|
|
For switching between deep learning based model(dexined) and canny edge detector, press space bar in case of video. In case of image, pass the argument --method for switching between dexined and canny.
|
|
'''
|
|
|
|
import cv2 as cv
|
|
import argparse
|
|
import numpy as np
|
|
from common import *
|
|
|
|
def get_args_parser(func_args):
|
|
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
|
|
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
|
|
|
|
parser = argparse.ArgumentParser(add_help=False)
|
|
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
|
help='An optional path to file with preprocessing parameters.')
|
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.', default=0, required=False)
|
|
parser.add_argument('--method', help='choose method: dexined or canny', default='canny', required=False)
|
|
parser.add_argument('--backend', default="default", type=str, choices=backends,
|
|
help="Choose one of computation backends: "
|
|
"default: automatically (by default), "
|
|
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"opencv: OpenCV implementation, "
|
|
"vkcom: VKCOM, "
|
|
"cuda: CUDA, "
|
|
"webnn: WebNN")
|
|
parser.add_argument('--target', default="cpu", type=str, choices=targets,
|
|
help="Choose one of target computation devices: "
|
|
"cpu: CPU target (by default), "
|
|
"opencl: OpenCL, "
|
|
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
|
"ncs2_vpu: NCS2 VPU, "
|
|
"hddl_vpu: HDDL VPU, "
|
|
"vulkan: Vulkan, "
|
|
"cuda: CUDA, "
|
|
"cuda_fp16: CUDA fp16 (half-float preprocess)")
|
|
|
|
args, _ = parser.parse_known_args()
|
|
add_preproc_args(args.zoo, parser, 'edge_detection', 'dexined')
|
|
parser = argparse.ArgumentParser(parents=[parser],
|
|
description='''
|
|
To run:
|
|
Canny:
|
|
python edge_detection.py --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
|
|
Dexined:
|
|
python edge_detection.py dexined --input=path/to/your/input/image/or/video
|
|
|
|
"In case of video input, for switching between deep learning based model (Dexined) and Canny edge detector, press space bar. Pass as argument in case of image input."
|
|
|
|
Model path can also be specified using --model argument
|
|
''', formatter_class=argparse.RawTextHelpFormatter)
|
|
return parser.parse_args(func_args)
|
|
|
|
threshold1 = 0
|
|
threshold2 = 50
|
|
blur_amount = 5
|
|
gray = None
|
|
|
|
def sigmoid(x):
|
|
return 1.0 / (1.0 + np.exp(-x))
|
|
|
|
def post_processing(output, shape):
|
|
h, w = shape
|
|
preds = []
|
|
for p in output:
|
|
img = sigmoid(p)
|
|
img = np.squeeze(img)
|
|
img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, cv.CV_8U)
|
|
img = cv.resize(img, (w, h))
|
|
preds.append(img)
|
|
fuse = preds[-1]
|
|
ave = np.array(preds, dtype=np.float32)
|
|
ave = np.uint8(np.mean(ave, axis=0))
|
|
return fuse, ave
|
|
|
|
def apply_canny(image):
|
|
global threshold1, threshold2, blur_amount
|
|
kernel_size = 2 * blur_amount + 1
|
|
blurred = cv.GaussianBlur(image, (kernel_size, kernel_size), 0)
|
|
result = cv.Canny(blurred, threshold1, threshold2)
|
|
cv.imshow('Output', result)
|
|
|
|
def setupCannyWindow(image):
|
|
global gray
|
|
cv.destroyWindow('Output')
|
|
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
|
|
cv.moveWindow('Output', 200, 50)
|
|
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
|
|
|
cv.createTrackbar('thrs1', 'Output', threshold1, 255, lambda value: [globals().__setitem__('threshold1', value), apply_canny(gray)])
|
|
cv.createTrackbar('thrs2', 'Output', threshold2, 255, lambda value: [globals().__setitem__('threshold2', value), apply_canny(gray)])
|
|
cv.createTrackbar('blur', 'Output', blur_amount, 20, lambda value: [globals().__setitem__('blur_amount', value), apply_canny(gray)])
|
|
|
|
def loadModel(args, engine):
|
|
net = cv.dnn.readNetFromONNX(args.model, engine)
|
|
net.setPreferableBackend(get_backend_id(args.backend))
|
|
net.setPreferableTarget(get_target_id(args.target))
|
|
return net
|
|
|
|
def apply_dexined(model, image):
|
|
out = model.forward()
|
|
result,_ = post_processing(out, image.shape[:2])
|
|
t, _ = model.getPerfProfile()
|
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
|
cv.putText(image, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
|
cv.putText(result, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
|
cv.imshow("Output", result)
|
|
|
|
def main(func_args=None):
|
|
args = get_args_parser(func_args)
|
|
engine = cv.dnn.ENGINE_AUTO
|
|
if args.backend != "default" or args.target != "cpu":
|
|
engine = cv.dnn.ENGINE_CLASSIC
|
|
|
|
cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0)
|
|
if not cap.isOpened():
|
|
print("Failed to open the input video")
|
|
exit(-1)
|
|
cv.namedWindow('Input', cv.WINDOW_AUTOSIZE)
|
|
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
|
|
cv.moveWindow('Output', 200, 50)
|
|
|
|
method = args.method
|
|
if os.getenv('OPENCV_SAMPLES_DATA_PATH') is not None or hasattr(args, 'model'):
|
|
try:
|
|
args.model = findModel(args.model, args.sha1)
|
|
method = 'dexined'
|
|
except:
|
|
print("[WARN] Model file not provided, using canny instead. Pass model using --model=/path/to/dexined.onnx to use dexined model.")
|
|
method = 'canny'
|
|
args.model = None
|
|
else:
|
|
print("[WARN] Model file not provided, using canny instead. Pass model using --model=/path/to/dexined.onnx to use dexined model.")
|
|
method = 'canny'
|
|
|
|
if method == 'canny':
|
|
dummy = np.zeros((512, 512, 3), dtype="uint8")
|
|
setupCannyWindow(dummy)
|
|
net = None
|
|
if method == "dexined":
|
|
net = loadModel(args, engine)
|
|
while cv.waitKey(1) < 0:
|
|
hasFrame, image = cap.read()
|
|
if not hasFrame:
|
|
print("Press any key to exit")
|
|
cv.waitKey(0)
|
|
break
|
|
if method == "canny":
|
|
global gray
|
|
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
|
apply_canny(gray)
|
|
elif method == "dexined":
|
|
inp = cv.dnn.blobFromImage(image, args.scale, (args.width, args.height), args.mean, swapRB=args.rgb, crop=False)
|
|
|
|
net.setInput(inp)
|
|
apply_dexined(net, image)
|
|
|
|
cv.imshow("Input", image)
|
|
key = cv.waitKey(30)
|
|
if key == ord(' ') and method == 'canny':
|
|
if hasattr(args, 'model') and args.model is not None:
|
|
print("model: ", args.model)
|
|
method = "dexined"
|
|
if net is None:
|
|
net = loadModel(args, engine)
|
|
cv.destroyWindow('Output')
|
|
cv.namedWindow('Output', cv.WINDOW_AUTOSIZE)
|
|
cv.moveWindow('Output', 200, 50)
|
|
else:
|
|
print("[ERROR] Provide model file using --model to use dexined. Download model using python download_models.py dexined from dnn samples directory")
|
|
elif key == ord(' ') and method=='dexined':
|
|
method = "canny"
|
|
setupCannyWindow(image)
|
|
elif key == 27 or key == ord('q'):
|
|
break
|
|
cv.destroyAllWindows()
|
|
|
|
if __name__ == '__main__':
|
|
main() |