mirror of
https://github.com/opencv/opencv.git
synced 2024-12-01 06:49:50 +08:00
0c84b91dde
- https://github.com/uclouvain/openjpeg/releases/tag/v2.3.1 - src/lib/openjp2 - readme files
2893 lines
101 KiB
C
2893 lines
101 KiB
C
/*
|
|
* The copyright in this software is being made available under the 2-clauses
|
|
* BSD License, included below. This software may be subject to other third
|
|
* party and contributor rights, including patent rights, and no such rights
|
|
* are granted under this license.
|
|
*
|
|
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
|
|
* Copyright (c) 2002-2014, Professor Benoit Macq
|
|
* Copyright (c) 2001-2003, David Janssens
|
|
* Copyright (c) 2002-2003, Yannick Verschueren
|
|
* Copyright (c) 2003-2007, Francois-Olivier Devaux
|
|
* Copyright (c) 2003-2014, Antonin Descampe
|
|
* Copyright (c) 2005, Herve Drolon, FreeImage Team
|
|
* Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
|
|
* Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
|
|
* Copyright (c) 2017, IntoPIX SA <support@intopix.com>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#define OPJ_SKIP_POISON
|
|
#include "opj_includes.h"
|
|
|
|
#ifdef __SSE__
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
#ifdef __SSE2__
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#ifdef __SSSE3__
|
|
#include <tmmintrin.h>
|
|
#endif
|
|
#ifdef __AVX2__
|
|
#include <immintrin.h>
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC poison malloc calloc realloc free
|
|
#endif
|
|
|
|
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
|
|
/*@{*/
|
|
|
|
#define OPJ_WS(i) v->mem[(i)*2]
|
|
#define OPJ_WD(i) v->mem[(1+(i)*2)]
|
|
|
|
#ifdef __AVX2__
|
|
/** Number of int32 values in a AVX2 register */
|
|
#define VREG_INT_COUNT 8
|
|
#else
|
|
/** Number of int32 values in a SSE2 register */
|
|
#define VREG_INT_COUNT 4
|
|
#endif
|
|
|
|
/** Number of columns that we can process in parallel in the vertical pass */
|
|
#define PARALLEL_COLS_53 (2*VREG_INT_COUNT)
|
|
|
|
/** @name Local data structures */
|
|
/*@{*/
|
|
|
|
typedef struct dwt_local {
|
|
OPJ_INT32* mem;
|
|
OPJ_INT32 dn; /* number of elements in high pass band */
|
|
OPJ_INT32 sn; /* number of elements in low pass band */
|
|
OPJ_INT32 cas; /* 0 = start on even coord, 1 = start on odd coord */
|
|
} opj_dwt_t;
|
|
|
|
typedef union {
|
|
OPJ_FLOAT32 f[4];
|
|
} opj_v4_t;
|
|
|
|
typedef struct v4dwt_local {
|
|
opj_v4_t* wavelet ;
|
|
OPJ_INT32 dn ; /* number of elements in high pass band */
|
|
OPJ_INT32 sn ; /* number of elements in low pass band */
|
|
OPJ_INT32 cas ; /* 0 = start on even coord, 1 = start on odd coord */
|
|
OPJ_UINT32 win_l_x0; /* start coord in low pass band */
|
|
OPJ_UINT32 win_l_x1; /* end coord in low pass band */
|
|
OPJ_UINT32 win_h_x0; /* start coord in high pass band */
|
|
OPJ_UINT32 win_h_x1; /* end coord in high pass band */
|
|
} opj_v4dwt_t ;
|
|
|
|
static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */
|
|
static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */
|
|
static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */
|
|
static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */
|
|
|
|
static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */
|
|
static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
|
|
|
|
/*@}*/
|
|
|
|
/**
|
|
Virtual function type for wavelet transform in 1-D
|
|
*/
|
|
typedef void (*DWT1DFN)(const opj_dwt_t* v);
|
|
|
|
/** @name Local static functions */
|
|
/*@{*/
|
|
|
|
/**
|
|
Forward lazy transform (horizontal)
|
|
*/
|
|
static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
|
|
OPJ_INT32 sn, OPJ_INT32 cas);
|
|
/**
|
|
Forward lazy transform (vertical)
|
|
*/
|
|
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
|
|
OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
|
|
/**
|
|
Forward 5-3 wavelet transform in 1-D
|
|
*/
|
|
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
|
|
OPJ_INT32 cas);
|
|
/**
|
|
Forward 9-7 wavelet transform in 1-D
|
|
*/
|
|
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
|
|
OPJ_INT32 cas);
|
|
/**
|
|
Explicit calculation of the Quantization Stepsizes
|
|
*/
|
|
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
|
|
opj_stepsize_t *bandno_stepsize);
|
|
/**
|
|
Inverse wavelet transform in 2-D.
|
|
*/
|
|
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
|
|
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
|
|
|
|
static OPJ_BOOL opj_dwt_decode_partial_tile(
|
|
opj_tcd_tilecomp_t* tilec,
|
|
OPJ_UINT32 numres);
|
|
|
|
static OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,
|
|
void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32));
|
|
|
|
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
|
|
OPJ_UINT32 i);
|
|
|
|
/* <summary> */
|
|
/* Inverse 9-7 wavelet transform in 1-D. */
|
|
/* </summary> */
|
|
static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt);
|
|
|
|
static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
|
OPJ_FLOAT32* OPJ_RESTRICT a,
|
|
OPJ_UINT32 width,
|
|
OPJ_UINT32 remaining_height);
|
|
|
|
static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
|
OPJ_FLOAT32* OPJ_RESTRICT a,
|
|
OPJ_UINT32 width,
|
|
OPJ_UINT32 nb_elts_read);
|
|
|
|
#ifdef __SSE__
|
|
static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
const __m128 c);
|
|
|
|
static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
OPJ_UINT32 m, __m128 c);
|
|
|
|
#else
|
|
static void opj_v4dwt_decode_step1(opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
const OPJ_FLOAT32 c);
|
|
|
|
static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
OPJ_UINT32 m,
|
|
OPJ_FLOAT32 c);
|
|
|
|
#endif
|
|
|
|
/*@}*/
|
|
|
|
/*@}*/
|
|
|
|
#define OPJ_S(i) a[(i)*2]
|
|
#define OPJ_D(i) a[(1+(i)*2)]
|
|
#define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i)))
|
|
#define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i)))
|
|
/* new */
|
|
#define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i)))
|
|
#define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i)))
|
|
|
|
/* <summary> */
|
|
/* This table contains the norms of the 5-3 wavelets for different bands. */
|
|
/* </summary> */
|
|
/* FIXME! the array should really be extended up to 33 resolution levels */
|
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */
|
|
static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
|
|
{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
|
|
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
|
|
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
|
|
{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
|
|
};
|
|
|
|
/* <summary> */
|
|
/* This table contains the norms of the 9-7 wavelets for different bands. */
|
|
/* </summary> */
|
|
/* FIXME! the array should really be extended up to 33 resolution levels */
|
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */
|
|
static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
|
|
{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
|
|
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
|
|
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
|
|
{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
|
|
};
|
|
|
|
/*
|
|
==========================================================
|
|
local functions
|
|
==========================================================
|
|
*/
|
|
|
|
/* <summary> */
|
|
/* Forward lazy transform (horizontal). */
|
|
/* </summary> */
|
|
static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
|
|
OPJ_INT32 sn, OPJ_INT32 cas)
|
|
{
|
|
OPJ_INT32 i;
|
|
OPJ_INT32 * l_dest = b;
|
|
OPJ_INT32 * l_src = a + cas;
|
|
|
|
for (i = 0; i < sn; ++i) {
|
|
*l_dest++ = *l_src;
|
|
l_src += 2;
|
|
}
|
|
|
|
l_dest = b + sn;
|
|
l_src = a + 1 - cas;
|
|
|
|
for (i = 0; i < dn; ++i) {
|
|
*l_dest++ = *l_src;
|
|
l_src += 2;
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Forward lazy transform (vertical). */
|
|
/* </summary> */
|
|
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
|
|
OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas)
|
|
{
|
|
OPJ_INT32 i = sn;
|
|
OPJ_INT32 * l_dest = b;
|
|
OPJ_INT32 * l_src = a + cas;
|
|
|
|
while (i--) {
|
|
*l_dest = *l_src;
|
|
l_dest += x;
|
|
l_src += 2;
|
|
} /* b[i*x]=a[2*i+cas]; */
|
|
|
|
l_dest = b + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)x;
|
|
l_src = a + 1 - cas;
|
|
|
|
i = dn;
|
|
while (i--) {
|
|
*l_dest = *l_src;
|
|
l_dest += x;
|
|
l_src += 2;
|
|
} /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
|
|
}
|
|
|
|
#ifdef STANDARD_SLOW_VERSION
|
|
/* <summary> */
|
|
/* Inverse lazy transform (horizontal). */
|
|
/* </summary> */
|
|
static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a)
|
|
{
|
|
OPJ_INT32 *ai = a;
|
|
OPJ_INT32 *bi = h->mem + h->cas;
|
|
OPJ_INT32 i = h->sn;
|
|
while (i--) {
|
|
*bi = *(ai++);
|
|
bi += 2;
|
|
}
|
|
ai = a + h->sn;
|
|
bi = h->mem + 1 - h->cas;
|
|
i = h->dn ;
|
|
while (i--) {
|
|
*bi = *(ai++);
|
|
bi += 2;
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Inverse lazy transform (vertical). */
|
|
/* </summary> */
|
|
static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
|
|
{
|
|
OPJ_INT32 *ai = a;
|
|
OPJ_INT32 *bi = v->mem + v->cas;
|
|
OPJ_INT32 i = v->sn;
|
|
while (i--) {
|
|
*bi = *ai;
|
|
bi += 2;
|
|
ai += x;
|
|
}
|
|
ai = a + (v->sn * (OPJ_SIZE_T)x);
|
|
bi = v->mem + 1 - v->cas;
|
|
i = v->dn ;
|
|
while (i--) {
|
|
*bi = *ai;
|
|
bi += 2;
|
|
ai += x;
|
|
}
|
|
}
|
|
|
|
#endif /* STANDARD_SLOW_VERSION */
|
|
|
|
/* <summary> */
|
|
/* Forward 5-3 wavelet transform in 1-D. */
|
|
/* </summary> */
|
|
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
|
|
OPJ_INT32 cas)
|
|
{
|
|
OPJ_INT32 i;
|
|
|
|
if (!cas) {
|
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
|
|
}
|
|
}
|
|
} else {
|
|
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
|
|
OPJ_S(0) *= 2;
|
|
} else {
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef STANDARD_SLOW_VERSION
|
|
/* <summary> */
|
|
/* Inverse 5-3 wavelet transform in 1-D. */
|
|
/* </summary> */
|
|
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
|
|
OPJ_INT32 cas)
|
|
{
|
|
OPJ_INT32 i;
|
|
|
|
if (!cas) {
|
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
|
|
}
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
|
|
}
|
|
}
|
|
} else {
|
|
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
|
|
OPJ_S(0) /= 2;
|
|
} else {
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
|
|
}
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void opj_dwt_decode_1(const opj_dwt_t *v)
|
|
{
|
|
opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas);
|
|
}
|
|
|
|
#endif /* STANDARD_SLOW_VERSION */
|
|
|
|
#if !defined(STANDARD_SLOW_VERSION)
|
|
static void opj_idwt53_h_cas0(OPJ_INT32* tmp,
|
|
const OPJ_INT32 sn,
|
|
const OPJ_INT32 len,
|
|
OPJ_INT32* tiledp)
|
|
{
|
|
OPJ_INT32 i, j;
|
|
const OPJ_INT32* in_even = &tiledp[0];
|
|
const OPJ_INT32* in_odd = &tiledp[sn];
|
|
|
|
#ifdef TWO_PASS_VERSION
|
|
/* For documentation purpose: performs lifting in two iterations, */
|
|
/* but without explicit interleaving */
|
|
|
|
assert(len > 1);
|
|
|
|
/* Even */
|
|
tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1);
|
|
for (i = 2, j = 0; i <= len - 2; i += 2, j++) {
|
|
tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2);
|
|
}
|
|
if (len & 1) { /* if len is odd */
|
|
tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1);
|
|
}
|
|
|
|
/* Odd */
|
|
for (i = 1, j = 0; i < len - 1; i += 2, j++) {
|
|
tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1);
|
|
}
|
|
if (!(len & 1)) { /* if len is even */
|
|
tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2];
|
|
}
|
|
#else
|
|
OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
|
|
|
|
assert(len > 1);
|
|
|
|
/* Improved version of the TWO_PASS_VERSION: */
|
|
/* Performs lifting in one single iteration. Saves memory */
|
|
/* accesses and explicit interleaving. */
|
|
s1n = in_even[0];
|
|
d1n = in_odd[0];
|
|
s0n = s1n - ((d1n + 1) >> 1);
|
|
|
|
for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
|
|
d1c = d1n;
|
|
s0c = s0n;
|
|
|
|
s1n = in_even[j];
|
|
d1n = in_odd[j];
|
|
|
|
s0n = s1n - ((d1c + d1n + 2) >> 2);
|
|
|
|
tmp[i ] = s0c;
|
|
tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
|
|
}
|
|
|
|
tmp[i] = s0n;
|
|
|
|
if (len & 1) {
|
|
tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1);
|
|
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
|
|
} else {
|
|
tmp[len - 1] = d1n + s0n;
|
|
}
|
|
#endif
|
|
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
|
|
}
|
|
|
|
static void opj_idwt53_h_cas1(OPJ_INT32* tmp,
|
|
const OPJ_INT32 sn,
|
|
const OPJ_INT32 len,
|
|
OPJ_INT32* tiledp)
|
|
{
|
|
OPJ_INT32 i, j;
|
|
const OPJ_INT32* in_even = &tiledp[sn];
|
|
const OPJ_INT32* in_odd = &tiledp[0];
|
|
|
|
#ifdef TWO_PASS_VERSION
|
|
/* For documentation purpose: performs lifting in two iterations, */
|
|
/* but without explicit interleaving */
|
|
|
|
assert(len > 2);
|
|
|
|
/* Odd */
|
|
for (i = 1, j = 0; i < len - 1; i += 2, j++) {
|
|
tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2);
|
|
}
|
|
if (!(len & 1)) {
|
|
tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1);
|
|
}
|
|
|
|
/* Even */
|
|
tmp[0] = in_even[0] + tmp[1];
|
|
for (i = 2, j = 1; i < len - 1; i += 2, j++) {
|
|
tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1);
|
|
}
|
|
if (len & 1) {
|
|
tmp[len - 1] = in_even[len / 2] + tmp[len - 2];
|
|
}
|
|
#else
|
|
OPJ_INT32 s1, s2, dc, dn;
|
|
|
|
assert(len > 2);
|
|
|
|
/* Improved version of the TWO_PASS_VERSION: */
|
|
/* Performs lifting in one single iteration. Saves memory */
|
|
/* accesses and explicit interleaving. */
|
|
|
|
s1 = in_even[1];
|
|
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
|
|
tmp[0] = in_even[0] + dc;
|
|
|
|
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
|
|
|
|
s2 = in_even[j + 1];
|
|
|
|
dn = in_odd[j] - ((s1 + s2 + 2) >> 2);
|
|
tmp[i ] = dc;
|
|
tmp[i + 1] = s1 + ((dn + dc) >> 1);
|
|
|
|
dc = dn;
|
|
s1 = s2;
|
|
}
|
|
|
|
tmp[i] = dc;
|
|
|
|
if (!(len & 1)) {
|
|
dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1);
|
|
tmp[len - 2] = s1 + ((dn + dc) >> 1);
|
|
tmp[len - 1] = dn;
|
|
} else {
|
|
tmp[len - 1] = s1 + dc;
|
|
}
|
|
#endif
|
|
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
|
|
}
|
|
|
|
|
|
#endif /* !defined(STANDARD_SLOW_VERSION) */
|
|
|
|
/* <summary> */
|
|
/* Inverse 5-3 wavelet transform in 1-D for one row. */
|
|
/* </summary> */
|
|
/* Performs interleave, inverse wavelet transform and copy back to buffer */
|
|
static void opj_idwt53_h(const opj_dwt_t *dwt,
|
|
OPJ_INT32* tiledp)
|
|
{
|
|
#ifdef STANDARD_SLOW_VERSION
|
|
/* For documentation purpose */
|
|
opj_dwt_interleave_h(dwt, tiledp);
|
|
opj_dwt_decode_1(dwt);
|
|
memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32));
|
|
#else
|
|
const OPJ_INT32 sn = dwt->sn;
|
|
const OPJ_INT32 len = sn + dwt->dn;
|
|
if (dwt->cas == 0) { /* Left-most sample is on even coordinate */
|
|
if (len > 1) {
|
|
opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp);
|
|
} else {
|
|
/* Unmodified value */
|
|
}
|
|
} else { /* Left-most sample is on odd coordinate */
|
|
if (len == 1) {
|
|
tiledp[0] /= 2;
|
|
} else if (len == 2) {
|
|
OPJ_INT32* out = dwt->mem;
|
|
const OPJ_INT32* in_even = &tiledp[sn];
|
|
const OPJ_INT32* in_odd = &tiledp[0];
|
|
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
|
|
out[0] = in_even[0] + out[1];
|
|
memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32));
|
|
} else if (len > 2) {
|
|
opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION)
|
|
|
|
/* Conveniency macros to improve the readabilty of the formulas */
|
|
#if __AVX2__
|
|
#define VREG __m256i
|
|
#define LOAD_CST(x) _mm256_set1_epi32(x)
|
|
#define LOAD(x) _mm256_load_si256((const VREG*)(x))
|
|
#define LOADU(x) _mm256_loadu_si256((const VREG*)(x))
|
|
#define STORE(x,y) _mm256_store_si256((VREG*)(x),(y))
|
|
#define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y))
|
|
#define ADD(x,y) _mm256_add_epi32((x),(y))
|
|
#define SUB(x,y) _mm256_sub_epi32((x),(y))
|
|
#define SAR(x,y) _mm256_srai_epi32((x),(y))
|
|
#else
|
|
#define VREG __m128i
|
|
#define LOAD_CST(x) _mm_set1_epi32(x)
|
|
#define LOAD(x) _mm_load_si128((const VREG*)(x))
|
|
#define LOADU(x) _mm_loadu_si128((const VREG*)(x))
|
|
#define STORE(x,y) _mm_store_si128((VREG*)(x),(y))
|
|
#define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y))
|
|
#define ADD(x,y) _mm_add_epi32((x),(y))
|
|
#define SUB(x,y) _mm_sub_epi32((x),(y))
|
|
#define SAR(x,y) _mm_srai_epi32((x),(y))
|
|
#endif
|
|
#define ADD3(x,y,z) ADD(ADD(x,y),z)
|
|
|
|
static
|
|
void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col,
|
|
const OPJ_INT32* tmp,
|
|
OPJ_INT32 len,
|
|
OPJ_SIZE_T stride)
|
|
{
|
|
OPJ_INT32 i;
|
|
for (i = 0; i < len; ++i) {
|
|
/* A memcpy(&tiledp_col[i * stride + 0],
|
|
&tmp[PARALLEL_COLS_53 * i + 0],
|
|
PARALLEL_COLS_53 * sizeof(OPJ_INT32))
|
|
would do but would be a tiny bit slower.
|
|
We can take here advantage of our knowledge of alignment */
|
|
STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0],
|
|
LOAD(&tmp[PARALLEL_COLS_53 * i + 0]));
|
|
STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT],
|
|
LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT]));
|
|
}
|
|
}
|
|
|
|
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
|
|
* 16 in AVX2, when top-most pixel is on even coordinate */
|
|
static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(
|
|
OPJ_INT32* tmp,
|
|
const OPJ_INT32 sn,
|
|
const OPJ_INT32 len,
|
|
OPJ_INT32* tiledp_col,
|
|
const OPJ_SIZE_T stride)
|
|
{
|
|
const OPJ_INT32* in_even = &tiledp_col[0];
|
|
const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride];
|
|
|
|
OPJ_INT32 i;
|
|
OPJ_SIZE_T j;
|
|
VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0;
|
|
VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1;
|
|
const VREG two = LOAD_CST(2);
|
|
|
|
assert(len > 1);
|
|
#if __AVX2__
|
|
assert(PARALLEL_COLS_53 == 16);
|
|
assert(VREG_INT_COUNT == 8);
|
|
#else
|
|
assert(PARALLEL_COLS_53 == 8);
|
|
assert(VREG_INT_COUNT == 4);
|
|
#endif
|
|
|
|
/* Note: loads of input even/odd values must be done in a unaligned */
|
|
/* fashion. But stores in tmp can be done with aligned store, since */
|
|
/* the temporary buffer is properly aligned */
|
|
assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
|
|
|
|
s1n_0 = LOADU(in_even + 0);
|
|
s1n_1 = LOADU(in_even + VREG_INT_COUNT);
|
|
d1n_0 = LOADU(in_odd);
|
|
d1n_1 = LOADU(in_odd + VREG_INT_COUNT);
|
|
|
|
/* s0n = s1n - ((d1n + 1) >> 1); <==> */
|
|
/* s0n = s1n - ((d1n + d1n + 2) >> 2); */
|
|
s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
|
|
s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
|
|
|
|
for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
|
|
d1c_0 = d1n_0;
|
|
s0c_0 = s0n_0;
|
|
d1c_1 = d1n_1;
|
|
s0c_1 = s0n_1;
|
|
|
|
s1n_0 = LOADU(in_even + j * stride);
|
|
s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT);
|
|
d1n_0 = LOADU(in_odd + j * stride);
|
|
d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT);
|
|
|
|
/*s0n = s1n - ((d1c + d1n + 2) >> 2);*/
|
|
s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2));
|
|
s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2));
|
|
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0);
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1);
|
|
|
|
/* d1c + ((s0c + s0n) >> 1) */
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
|
|
ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1)));
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
|
|
ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1)));
|
|
}
|
|
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0);
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1);
|
|
|
|
if (len & 1) {
|
|
VREG tmp_len_minus_1;
|
|
s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride);
|
|
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
|
|
tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1);
|
|
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2),
|
|
ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1)));
|
|
|
|
s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT);
|
|
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
|
|
tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
|
|
tmp_len_minus_1);
|
|
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
|
|
ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1)));
|
|
|
|
|
|
} else {
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0,
|
|
ADD(d1n_0, s0n_0));
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
|
|
ADD(d1n_1, s0n_1));
|
|
}
|
|
|
|
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
|
|
}
|
|
|
|
|
|
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
|
|
* 16 in AVX2, when top-most pixel is on odd coordinate */
|
|
static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(
|
|
OPJ_INT32* tmp,
|
|
const OPJ_INT32 sn,
|
|
const OPJ_INT32 len,
|
|
OPJ_INT32* tiledp_col,
|
|
const OPJ_SIZE_T stride)
|
|
{
|
|
OPJ_INT32 i;
|
|
OPJ_SIZE_T j;
|
|
|
|
VREG s1_0, s2_0, dc_0, dn_0;
|
|
VREG s1_1, s2_1, dc_1, dn_1;
|
|
const VREG two = LOAD_CST(2);
|
|
|
|
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
|
|
const OPJ_INT32* in_odd = &tiledp_col[0];
|
|
|
|
assert(len > 2);
|
|
#if __AVX2__
|
|
assert(PARALLEL_COLS_53 == 16);
|
|
assert(VREG_INT_COUNT == 8);
|
|
#else
|
|
assert(PARALLEL_COLS_53 == 8);
|
|
assert(VREG_INT_COUNT == 4);
|
|
#endif
|
|
|
|
/* Note: loads of input even/odd values must be done in a unaligned */
|
|
/* fashion. But stores in tmp can be done with aligned store, since */
|
|
/* the temporary buffer is properly aligned */
|
|
assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
|
|
|
|
s1_0 = LOADU(in_even + stride);
|
|
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
|
|
dc_0 = SUB(LOADU(in_odd + 0),
|
|
SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2));
|
|
STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0));
|
|
|
|
s1_1 = LOADU(in_even + stride + VREG_INT_COUNT);
|
|
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
|
|
dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT),
|
|
SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2));
|
|
STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT,
|
|
ADD(LOADU(in_even + VREG_INT_COUNT), dc_1));
|
|
|
|
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
|
|
|
|
s2_0 = LOADU(in_even + (j + 1) * stride);
|
|
s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT);
|
|
|
|
/* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */
|
|
dn_0 = SUB(LOADU(in_odd + j * stride),
|
|
SAR(ADD3(s1_0, s2_0, two), 2));
|
|
dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT),
|
|
SAR(ADD3(s1_1, s2_1, two), 2));
|
|
|
|
STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
|
|
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
|
|
|
|
/* tmp[i + 1] = s1 + ((dn + dc) >> 1); */
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
|
|
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
|
|
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
|
|
|
|
dc_0 = dn_0;
|
|
s1_0 = s2_0;
|
|
dc_1 = dn_1;
|
|
s1_1 = s2_1;
|
|
}
|
|
STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
|
|
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
|
|
|
|
if (!(len & 1)) {
|
|
/*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */
|
|
dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride),
|
|
SAR(ADD3(s1_0, s1_0, two), 2));
|
|
dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT),
|
|
SAR(ADD3(s1_1, s1_1, two), 2));
|
|
|
|
/* tmp[len - 2] = s1 + ((dn + dc) >> 1); */
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0,
|
|
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
|
|
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
|
|
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0);
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1);
|
|
} else {
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0));
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
|
|
ADD(s1_1, dc_1));
|
|
}
|
|
|
|
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
|
|
}
|
|
|
|
#undef VREG
|
|
#undef LOAD_CST
|
|
#undef LOADU
|
|
#undef LOAD
|
|
#undef STORE
|
|
#undef STOREU
|
|
#undef ADD
|
|
#undef ADD3
|
|
#undef SUB
|
|
#undef SAR
|
|
|
|
#endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */
|
|
|
|
#if !defined(STANDARD_SLOW_VERSION)
|
|
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
|
|
* pixel is on even coordinate */
|
|
static void opj_idwt3_v_cas0(OPJ_INT32* tmp,
|
|
const OPJ_INT32 sn,
|
|
const OPJ_INT32 len,
|
|
OPJ_INT32* tiledp_col,
|
|
const OPJ_SIZE_T stride)
|
|
{
|
|
OPJ_INT32 i, j;
|
|
OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
|
|
|
|
assert(len > 1);
|
|
|
|
/* Performs lifting in one single iteration. Saves memory */
|
|
/* accesses and explicit interleaving. */
|
|
|
|
s1n = tiledp_col[0];
|
|
d1n = tiledp_col[(OPJ_SIZE_T)sn * stride];
|
|
s0n = s1n - ((d1n + 1) >> 1);
|
|
|
|
for (i = 0, j = 0; i < (len - 3); i += 2, j++) {
|
|
d1c = d1n;
|
|
s0c = s0n;
|
|
|
|
s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride];
|
|
d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride];
|
|
|
|
s0n = s1n - ((d1c + d1n + 2) >> 2);
|
|
|
|
tmp[i ] = s0c;
|
|
tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
|
|
}
|
|
|
|
tmp[i] = s0n;
|
|
|
|
if (len & 1) {
|
|
tmp[len - 1] =
|
|
tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] -
|
|
((d1n + 1) >> 1);
|
|
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
|
|
} else {
|
|
tmp[len - 1] = d1n + s0n;
|
|
}
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
|
|
}
|
|
}
|
|
|
|
|
|
/** Vertical inverse 5x3 wavelet transform for one column, when top-most
|
|
* pixel is on odd coordinate */
|
|
static void opj_idwt3_v_cas1(OPJ_INT32* tmp,
|
|
const OPJ_INT32 sn,
|
|
const OPJ_INT32 len,
|
|
OPJ_INT32* tiledp_col,
|
|
const OPJ_SIZE_T stride)
|
|
{
|
|
OPJ_INT32 i, j;
|
|
OPJ_INT32 s1, s2, dc, dn;
|
|
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
|
|
const OPJ_INT32* in_odd = &tiledp_col[0];
|
|
|
|
assert(len > 2);
|
|
|
|
/* Performs lifting in one single iteration. Saves memory */
|
|
/* accesses and explicit interleaving. */
|
|
|
|
s1 = in_even[stride];
|
|
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
|
|
tmp[0] = in_even[0] + dc;
|
|
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
|
|
|
|
s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride];
|
|
|
|
dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2);
|
|
tmp[i ] = dc;
|
|
tmp[i + 1] = s1 + ((dn + dc) >> 1);
|
|
|
|
dc = dn;
|
|
s1 = s2;
|
|
}
|
|
tmp[i] = dc;
|
|
if (!(len & 1)) {
|
|
dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1);
|
|
tmp[len - 2] = s1 + ((dn + dc) >> 1);
|
|
tmp[len - 1] = dn;
|
|
} else {
|
|
tmp[len - 1] = s1 + dc;
|
|
}
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
|
|
}
|
|
}
|
|
#endif /* !defined(STANDARD_SLOW_VERSION) */
|
|
|
|
/* <summary> */
|
|
/* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */
|
|
/* </summary> */
|
|
/* Performs interleave, inverse wavelet transform and copy back to buffer */
|
|
static void opj_idwt53_v(const opj_dwt_t *dwt,
|
|
OPJ_INT32* tiledp_col,
|
|
OPJ_SIZE_T stride,
|
|
OPJ_INT32 nb_cols)
|
|
{
|
|
#ifdef STANDARD_SLOW_VERSION
|
|
/* For documentation purpose */
|
|
OPJ_INT32 k, c;
|
|
for (c = 0; c < nb_cols; c ++) {
|
|
opj_dwt_interleave_v(dwt, tiledp_col + c, stride);
|
|
opj_dwt_decode_1(dwt);
|
|
for (k = 0; k < dwt->sn + dwt->dn; ++k) {
|
|
tiledp_col[c + k * stride] = dwt->mem[k];
|
|
}
|
|
}
|
|
#else
|
|
const OPJ_INT32 sn = dwt->sn;
|
|
const OPJ_INT32 len = sn + dwt->dn;
|
|
if (dwt->cas == 0) {
|
|
/* If len == 1, unmodified value */
|
|
|
|
#if (defined(__SSE2__) || defined(__AVX2__))
|
|
if (len > 1 && nb_cols == PARALLEL_COLS_53) {
|
|
/* Same as below general case, except that thanks to SSE2/AVX2 */
|
|
/* we can efficiently process 8/16 columns in parallel */
|
|
opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
|
|
return;
|
|
}
|
|
#endif
|
|
if (len > 1) {
|
|
OPJ_INT32 c;
|
|
for (c = 0; c < nb_cols; c++, tiledp_col++) {
|
|
opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride);
|
|
}
|
|
return;
|
|
}
|
|
} else {
|
|
if (len == 1) {
|
|
OPJ_INT32 c;
|
|
for (c = 0; c < nb_cols; c++, tiledp_col++) {
|
|
tiledp_col[0] /= 2;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (len == 2) {
|
|
OPJ_INT32 c;
|
|
OPJ_INT32* out = dwt->mem;
|
|
for (c = 0; c < nb_cols; c++, tiledp_col++) {
|
|
OPJ_INT32 i;
|
|
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
|
|
const OPJ_INT32* in_odd = &tiledp_col[0];
|
|
|
|
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
|
|
out[0] = in_even[0] + out[1];
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
tiledp_col[(OPJ_SIZE_T)i * stride] = out[i];
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#if (defined(__SSE2__) || defined(__AVX2__))
|
|
if (len > 2 && nb_cols == PARALLEL_COLS_53) {
|
|
/* Same as below general case, except that thanks to SSE2/AVX2 */
|
|
/* we can efficiently process 8/16 columns in parallel */
|
|
opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
|
|
return;
|
|
}
|
|
#endif
|
|
if (len > 2) {
|
|
OPJ_INT32 c;
|
|
for (c = 0; c < nb_cols; c++, tiledp_col++) {
|
|
opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/* <summary> */
|
|
/* Forward 9-7 wavelet transform in 1-D. */
|
|
/* </summary> */
|
|
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
|
|
OPJ_INT32 cas)
|
|
{
|
|
OPJ_INT32 i;
|
|
if (!cas) {
|
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
|
|
}
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
|
|
}
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */
|
|
}
|
|
}
|
|
} else {
|
|
if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
|
|
}
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
|
|
}
|
|
for (i = 0; i < dn; i++) {
|
|
OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */
|
|
}
|
|
for (i = 0; i < sn; i++) {
|
|
OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
|
|
opj_stepsize_t *bandno_stepsize)
|
|
{
|
|
OPJ_INT32 p, n;
|
|
p = opj_int_floorlog2(stepsize) - 13;
|
|
n = 11 - opj_int_floorlog2(stepsize);
|
|
bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
|
|
bandno_stepsize->expn = numbps - p;
|
|
}
|
|
|
|
/*
|
|
==========================================================
|
|
DWT interface
|
|
==========================================================
|
|
*/
|
|
|
|
|
|
/* <summary> */
|
|
/* Forward 5-3 wavelet transform in 2-D. */
|
|
/* </summary> */
|
|
static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,
|
|
void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32))
|
|
{
|
|
OPJ_INT32 i, j, k;
|
|
OPJ_INT32 *a = 00;
|
|
OPJ_INT32 *aj = 00;
|
|
OPJ_INT32 *bj = 00;
|
|
OPJ_INT32 w, l;
|
|
|
|
OPJ_INT32 rw; /* width of the resolution level computed */
|
|
OPJ_INT32 rh; /* height of the resolution level computed */
|
|
OPJ_SIZE_T l_data_size;
|
|
|
|
opj_tcd_resolution_t * l_cur_res = 0;
|
|
opj_tcd_resolution_t * l_last_res = 0;
|
|
|
|
w = tilec->x1 - tilec->x0;
|
|
l = (OPJ_INT32)tilec->numresolutions - 1;
|
|
a = tilec->data;
|
|
|
|
l_cur_res = tilec->resolutions + l;
|
|
l_last_res = l_cur_res - 1;
|
|
|
|
l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions);
|
|
/* overflow check */
|
|
if (l_data_size > (SIZE_MAX / sizeof(OPJ_INT32))) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
l_data_size *= sizeof(OPJ_INT32);
|
|
bj = (OPJ_INT32*)opj_malloc(l_data_size);
|
|
/* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */
|
|
/* in that case, so do not error out */
|
|
if (l_data_size != 0 && ! bj) {
|
|
return OPJ_FALSE;
|
|
}
|
|
i = l;
|
|
|
|
while (i--) {
|
|
OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */
|
|
OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */
|
|
OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
|
|
OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
|
|
OPJ_INT32 dn, sn;
|
|
|
|
rw = l_cur_res->x1 - l_cur_res->x0;
|
|
rh = l_cur_res->y1 - l_cur_res->y0;
|
|
rw1 = l_last_res->x1 - l_last_res->x0;
|
|
rh1 = l_last_res->y1 - l_last_res->y0;
|
|
|
|
cas_row = l_cur_res->x0 & 1;
|
|
cas_col = l_cur_res->y0 & 1;
|
|
|
|
sn = rh1;
|
|
dn = rh - rh1;
|
|
for (j = 0; j < rw; ++j) {
|
|
aj = a + j;
|
|
for (k = 0; k < rh; ++k) {
|
|
bj[k] = aj[k * w];
|
|
}
|
|
|
|
(*p_function)(bj, dn, sn, cas_col);
|
|
|
|
opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
|
|
}
|
|
|
|
sn = rw1;
|
|
dn = rw - rw1;
|
|
|
|
for (j = 0; j < rh; j++) {
|
|
aj = a + j * w;
|
|
for (k = 0; k < rw; k++) {
|
|
bj[k] = aj[k];
|
|
}
|
|
(*p_function)(bj, dn, sn, cas_row);
|
|
opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
|
|
}
|
|
|
|
l_cur_res = l_last_res;
|
|
|
|
--l_last_res;
|
|
}
|
|
|
|
opj_free(bj);
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
/* Forward 5-3 wavelet transform in 2-D. */
|
|
/* </summary> */
|
|
OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
|
|
{
|
|
return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1);
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Inverse 5-3 wavelet transform in 2-D. */
|
|
/* </summary> */
|
|
OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec,
|
|
OPJ_UINT32 numres)
|
|
{
|
|
if (p_tcd->whole_tile_decoding) {
|
|
return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres);
|
|
} else {
|
|
return opj_dwt_decode_partial_tile(tilec, numres);
|
|
}
|
|
}
|
|
|
|
|
|
/* <summary> */
|
|
/* Get gain of 5-3 wavelet transform. */
|
|
/* </summary> */
|
|
OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient)
|
|
{
|
|
if (orient == 0) {
|
|
return 0;
|
|
}
|
|
if (orient == 1 || orient == 2) {
|
|
return 1;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Get norm of 5-3 wavelet. */
|
|
/* </summary> */
|
|
OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient)
|
|
{
|
|
/* FIXME ! This is just a band-aid to avoid a buffer overflow */
|
|
/* but the array should really be extended up to 33 resolution levels */
|
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */
|
|
if (orient == 0 && level >= 10) {
|
|
level = 9;
|
|
} else if (orient > 0 && level >= 9) {
|
|
level = 8;
|
|
}
|
|
return opj_dwt_norms[orient][level];
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Forward 9-7 wavelet transform in 2-D. */
|
|
/* </summary> */
|
|
OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
|
|
{
|
|
return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1_real);
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Get gain of 9-7 wavelet transform. */
|
|
/* </summary> */
|
|
OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient)
|
|
{
|
|
(void)orient;
|
|
return 0;
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Get norm of 9-7 wavelet. */
|
|
/* </summary> */
|
|
OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient)
|
|
{
|
|
/* FIXME ! This is just a band-aid to avoid a buffer overflow */
|
|
/* but the array should really be extended up to 33 resolution levels */
|
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */
|
|
if (orient == 0 && level >= 10) {
|
|
level = 9;
|
|
} else if (orient > 0 && level >= 9) {
|
|
level = 8;
|
|
}
|
|
return opj_dwt_norms_real[orient][level];
|
|
}
|
|
|
|
void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec)
|
|
{
|
|
OPJ_UINT32 numbands, bandno;
|
|
numbands = 3 * tccp->numresolutions - 2;
|
|
for (bandno = 0; bandno < numbands; bandno++) {
|
|
OPJ_FLOAT64 stepsize;
|
|
OPJ_UINT32 resno, level, orient, gain;
|
|
|
|
resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
|
|
orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
|
|
level = tccp->numresolutions - 1 - resno;
|
|
gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) ||
|
|
(orient == 2)) ? 1 : 2));
|
|
if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
|
|
stepsize = 1.0;
|
|
} else {
|
|
OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
|
|
stepsize = (1 << (gain)) / norm;
|
|
}
|
|
opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0),
|
|
(OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Determine maximum computed resolution level for inverse wavelet transform */
|
|
/* </summary> */
|
|
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
|
|
OPJ_UINT32 i)
|
|
{
|
|
OPJ_UINT32 mr = 0;
|
|
OPJ_UINT32 w;
|
|
while (--i) {
|
|
++r;
|
|
if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) {
|
|
mr = w ;
|
|
}
|
|
if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) {
|
|
mr = w ;
|
|
}
|
|
}
|
|
return mr ;
|
|
}
|
|
|
|
typedef struct {
|
|
opj_dwt_t h;
|
|
OPJ_UINT32 rw;
|
|
OPJ_UINT32 w;
|
|
OPJ_INT32 * OPJ_RESTRICT tiledp;
|
|
OPJ_UINT32 min_j;
|
|
OPJ_UINT32 max_j;
|
|
} opj_dwd_decode_h_job_t;
|
|
|
|
static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
|
|
{
|
|
OPJ_UINT32 j;
|
|
opj_dwd_decode_h_job_t* job;
|
|
(void)tls;
|
|
|
|
job = (opj_dwd_decode_h_job_t*)user_data;
|
|
for (j = job->min_j; j < job->max_j; j++) {
|
|
opj_idwt53_h(&job->h, &job->tiledp[j * job->w]);
|
|
}
|
|
|
|
opj_aligned_free(job->h.mem);
|
|
opj_free(job);
|
|
}
|
|
|
|
typedef struct {
|
|
opj_dwt_t v;
|
|
OPJ_UINT32 rh;
|
|
OPJ_UINT32 w;
|
|
OPJ_INT32 * OPJ_RESTRICT tiledp;
|
|
OPJ_UINT32 min_j;
|
|
OPJ_UINT32 max_j;
|
|
} opj_dwd_decode_v_job_t;
|
|
|
|
static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
|
|
{
|
|
OPJ_UINT32 j;
|
|
opj_dwd_decode_v_job_t* job;
|
|
(void)tls;
|
|
|
|
job = (opj_dwd_decode_v_job_t*)user_data;
|
|
for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j;
|
|
j += PARALLEL_COLS_53) {
|
|
opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
|
|
PARALLEL_COLS_53);
|
|
}
|
|
if (j < job->max_j)
|
|
opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
|
|
(OPJ_INT32)(job->max_j - j));
|
|
|
|
opj_aligned_free(job->v.mem);
|
|
opj_free(job);
|
|
}
|
|
|
|
|
|
/* <summary> */
|
|
/* Inverse wavelet transform in 2-D. */
|
|
/* </summary> */
|
|
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
|
|
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
|
|
{
|
|
opj_dwt_t h;
|
|
opj_dwt_t v;
|
|
|
|
opj_tcd_resolution_t* tr = tilec->resolutions;
|
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
|
|
tr->x0); /* width of the resolution level computed */
|
|
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
|
|
tr->y0); /* height of the resolution level computed */
|
|
|
|
OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
|
|
1].x1 -
|
|
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
|
|
OPJ_SIZE_T h_mem_size;
|
|
int num_threads;
|
|
|
|
if (numres == 1U) {
|
|
return OPJ_TRUE;
|
|
}
|
|
num_threads = opj_thread_pool_get_thread_count(tp);
|
|
h_mem_size = opj_dwt_max_resolution(tr, numres);
|
|
/* overflow check */
|
|
if (h_mem_size > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
/* We need PARALLEL_COLS_53 times the height of the array, */
|
|
/* since for the vertical pass */
|
|
/* we process PARALLEL_COLS_53 columns at a time */
|
|
h_mem_size *= PARALLEL_COLS_53 * sizeof(OPJ_INT32);
|
|
h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
|
|
if (! h.mem) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
v.mem = h.mem;
|
|
|
|
while (--numres) {
|
|
OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
|
|
OPJ_UINT32 j;
|
|
|
|
++tr;
|
|
h.sn = (OPJ_INT32)rw;
|
|
v.sn = (OPJ_INT32)rh;
|
|
|
|
rw = (OPJ_UINT32)(tr->x1 - tr->x0);
|
|
rh = (OPJ_UINT32)(tr->y1 - tr->y0);
|
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
|
|
h.cas = tr->x0 % 2;
|
|
|
|
if (num_threads <= 1 || rh <= 1) {
|
|
for (j = 0; j < rh; ++j) {
|
|
opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]);
|
|
}
|
|
} else {
|
|
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
|
|
OPJ_UINT32 step_j;
|
|
|
|
if (rh < num_jobs) {
|
|
num_jobs = rh;
|
|
}
|
|
step_j = (rh / num_jobs);
|
|
|
|
for (j = 0; j < num_jobs; j++) {
|
|
opj_dwd_decode_h_job_t* job;
|
|
|
|
job = (opj_dwd_decode_h_job_t*) opj_malloc(sizeof(opj_dwd_decode_h_job_t));
|
|
if (!job) {
|
|
/* It would be nice to fallback to single thread case, but */
|
|
/* unfortunately some jobs may be launched and have modified */
|
|
/* tiledp, so it is not practical to recover from that error */
|
|
/* FIXME event manager error callback */
|
|
opj_thread_pool_wait_completion(tp, 0);
|
|
opj_aligned_free(h.mem);
|
|
return OPJ_FALSE;
|
|
}
|
|
job->h = h;
|
|
job->rw = rw;
|
|
job->w = w;
|
|
job->tiledp = tiledp;
|
|
job->min_j = j * step_j;
|
|
job->max_j = (j + 1U) * step_j; /* this can overflow */
|
|
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
|
|
job->max_j = rh;
|
|
}
|
|
job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
|
|
if (!job->h.mem) {
|
|
/* FIXME event manager error callback */
|
|
opj_thread_pool_wait_completion(tp, 0);
|
|
opj_free(job);
|
|
opj_aligned_free(h.mem);
|
|
return OPJ_FALSE;
|
|
}
|
|
opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job);
|
|
}
|
|
opj_thread_pool_wait_completion(tp, 0);
|
|
}
|
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
|
|
v.cas = tr->y0 % 2;
|
|
|
|
if (num_threads <= 1 || rw <= 1) {
|
|
for (j = 0; j + PARALLEL_COLS_53 <= rw;
|
|
j += PARALLEL_COLS_53) {
|
|
opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53);
|
|
}
|
|
if (j < rw) {
|
|
opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j));
|
|
}
|
|
} else {
|
|
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
|
|
OPJ_UINT32 step_j;
|
|
|
|
if (rw < num_jobs) {
|
|
num_jobs = rw;
|
|
}
|
|
step_j = (rw / num_jobs);
|
|
|
|
for (j = 0; j < num_jobs; j++) {
|
|
opj_dwd_decode_v_job_t* job;
|
|
|
|
job = (opj_dwd_decode_v_job_t*) opj_malloc(sizeof(opj_dwd_decode_v_job_t));
|
|
if (!job) {
|
|
/* It would be nice to fallback to single thread case, but */
|
|
/* unfortunately some jobs may be launched and have modified */
|
|
/* tiledp, so it is not practical to recover from that error */
|
|
/* FIXME event manager error callback */
|
|
opj_thread_pool_wait_completion(tp, 0);
|
|
opj_aligned_free(v.mem);
|
|
return OPJ_FALSE;
|
|
}
|
|
job->v = v;
|
|
job->rh = rh;
|
|
job->w = w;
|
|
job->tiledp = tiledp;
|
|
job->min_j = j * step_j;
|
|
job->max_j = (j + 1U) * step_j; /* this can overflow */
|
|
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
|
|
job->max_j = rw;
|
|
}
|
|
job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
|
|
if (!job->v.mem) {
|
|
/* FIXME event manager error callback */
|
|
opj_thread_pool_wait_completion(tp, 0);
|
|
opj_free(job);
|
|
opj_aligned_free(v.mem);
|
|
return OPJ_FALSE;
|
|
}
|
|
opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job);
|
|
}
|
|
opj_thread_pool_wait_completion(tp, 0);
|
|
}
|
|
}
|
|
opj_aligned_free(h.mem);
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest,
|
|
OPJ_INT32 cas,
|
|
opj_sparse_array_int32_t* sa,
|
|
OPJ_UINT32 sa_line,
|
|
OPJ_UINT32 sn,
|
|
OPJ_UINT32 win_l_x0,
|
|
OPJ_UINT32 win_l_x1,
|
|
OPJ_UINT32 win_h_x0,
|
|
OPJ_UINT32 win_h_x1)
|
|
{
|
|
OPJ_BOOL ret;
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
win_l_x0, sa_line,
|
|
win_l_x1, sa_line + 1,
|
|
dest + cas + 2 * win_l_x0,
|
|
2, 0, OPJ_TRUE);
|
|
assert(ret);
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
sn + win_h_x0, sa_line,
|
|
sn + win_h_x1, sa_line + 1,
|
|
dest + 1 - cas + 2 * win_h_x0,
|
|
2, 0, OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
}
|
|
|
|
|
|
static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest,
|
|
OPJ_INT32 cas,
|
|
opj_sparse_array_int32_t* sa,
|
|
OPJ_UINT32 sa_col,
|
|
OPJ_UINT32 nb_cols,
|
|
OPJ_UINT32 sn,
|
|
OPJ_UINT32 win_l_y0,
|
|
OPJ_UINT32 win_l_y1,
|
|
OPJ_UINT32 win_h_y0,
|
|
OPJ_UINT32 win_h_y1)
|
|
{
|
|
OPJ_BOOL ret;
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
sa_col, win_l_y0,
|
|
sa_col + nb_cols, win_l_y1,
|
|
dest + cas * 4 + 2 * 4 * win_l_y0,
|
|
1, 2 * 4, OPJ_TRUE);
|
|
assert(ret);
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
sa_col, sn + win_h_y0,
|
|
sa_col + nb_cols, sn + win_h_y1,
|
|
dest + (1 - cas) * 4 + 2 * 4 * win_h_y0,
|
|
1, 2 * 4, OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
}
|
|
|
|
static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn,
|
|
OPJ_INT32 cas,
|
|
OPJ_INT32 win_l_x0,
|
|
OPJ_INT32 win_l_x1,
|
|
OPJ_INT32 win_h_x0,
|
|
OPJ_INT32 win_h_x1)
|
|
{
|
|
OPJ_INT32 i;
|
|
|
|
if (!cas) {
|
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
|
|
|
|
/* Naive version is :
|
|
for (i = win_l_x0; i < i_max; i++) {
|
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
|
|
}
|
|
for (i = win_h_x0; i < win_h_x1; i++) {
|
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
|
|
}
|
|
but the compiler doesn't manage to unroll it to avoid bound
|
|
checking in OPJ_S_ and OPJ_D_ macros
|
|
*/
|
|
|
|
i = win_l_x0;
|
|
if (i < win_l_x1) {
|
|
OPJ_INT32 i_max;
|
|
|
|
/* Left-most case */
|
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
|
|
i ++;
|
|
|
|
i_max = win_l_x1;
|
|
if (i_max > dn) {
|
|
i_max = dn;
|
|
}
|
|
for (; i < i_max; i++) {
|
|
/* No bound checking */
|
|
OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2;
|
|
}
|
|
for (; i < win_l_x1; i++) {
|
|
/* Right-most case */
|
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
|
|
}
|
|
}
|
|
|
|
i = win_h_x0;
|
|
if (i < win_h_x1) {
|
|
OPJ_INT32 i_max = win_h_x1;
|
|
if (i_max >= sn) {
|
|
i_max = sn - 1;
|
|
}
|
|
for (; i < i_max; i++) {
|
|
/* No bound checking */
|
|
OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1;
|
|
}
|
|
for (; i < win_h_x1; i++) {
|
|
/* Right-most case */
|
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
|
|
OPJ_S(0) /= 2;
|
|
} else {
|
|
for (i = win_l_x0; i < win_l_x1; i++) {
|
|
OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
|
|
}
|
|
for (i = win_h_x0; i < win_h_x1; i++) {
|
|
OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off]
|
|
#define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off]
|
|
#define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off)))
|
|
#define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off)))
|
|
#define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off)))
|
|
#define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off)))
|
|
|
|
static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a,
|
|
OPJ_UINT32 nb_cols,
|
|
OPJ_INT32 dn, OPJ_INT32 sn,
|
|
OPJ_INT32 cas,
|
|
OPJ_INT32 win_l_x0,
|
|
OPJ_INT32 win_l_x1,
|
|
OPJ_INT32 win_h_x0,
|
|
OPJ_INT32 win_h_x1)
|
|
{
|
|
OPJ_INT32 i;
|
|
OPJ_UINT32 off;
|
|
|
|
(void)nb_cols;
|
|
|
|
if (!cas) {
|
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
|
|
|
|
/* Naive version is :
|
|
for (i = win_l_x0; i < i_max; i++) {
|
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
|
|
}
|
|
for (i = win_h_x0; i < win_h_x1; i++) {
|
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
|
|
}
|
|
but the compiler doesn't manage to unroll it to avoid bound
|
|
checking in OPJ_S_ and OPJ_D_ macros
|
|
*/
|
|
|
|
i = win_l_x0;
|
|
if (i < win_l_x1) {
|
|
OPJ_INT32 i_max;
|
|
|
|
/* Left-most case */
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
|
|
}
|
|
i ++;
|
|
|
|
i_max = win_l_x1;
|
|
if (i_max > dn) {
|
|
i_max = dn;
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
if (i + 1 < i_max) {
|
|
const __m128i two = _mm_set1_epi32(2);
|
|
__m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8));
|
|
for (; i + 1 < i_max; i += 2) {
|
|
/* No bound checking */
|
|
__m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
|
|
__m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
|
|
__m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
|
|
__m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
|
|
S = _mm_sub_epi32(S,
|
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2));
|
|
S1 = _mm_sub_epi32(S1,
|
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2));
|
|
_mm_store_si128((__m128i*)(a + i * 8), S);
|
|
_mm_store_si128((__m128i*)(a + (i + 1) * 8), S1);
|
|
Dm1 = D1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (; i < i_max; i++) {
|
|
/* No bound checking */
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2;
|
|
}
|
|
}
|
|
for (; i < win_l_x1; i++) {
|
|
/* Right-most case */
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
i = win_h_x0;
|
|
if (i < win_h_x1) {
|
|
OPJ_INT32 i_max = win_h_x1;
|
|
if (i_max >= sn) {
|
|
i_max = sn - 1;
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
if (i + 1 < i_max) {
|
|
__m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
|
|
for (; i + 1 < i_max; i += 2) {
|
|
/* No bound checking */
|
|
__m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
|
|
__m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
|
|
__m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
|
|
__m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8));
|
|
D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1));
|
|
D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1));
|
|
_mm_store_si128((__m128i*)(a + 4 + i * 8), D);
|
|
_mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1);
|
|
S = S2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (; i < i_max; i++) {
|
|
/* No bound checking */
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1;
|
|
}
|
|
}
|
|
for (; i < win_h_x1; i++) {
|
|
/* Right-most case */
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_S_off(0, off) /= 2;
|
|
}
|
|
} else {
|
|
for (i = win_l_x0; i < win_l_x1; i++) {
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2;
|
|
}
|
|
}
|
|
for (i = win_h_x0; i < win_h_x1; i++) {
|
|
for (off = 0; off < 4; off++) {
|
|
OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec,
|
|
OPJ_UINT32 resno,
|
|
OPJ_UINT32 bandno,
|
|
OPJ_UINT32 tcx0,
|
|
OPJ_UINT32 tcy0,
|
|
OPJ_UINT32 tcx1,
|
|
OPJ_UINT32 tcy1,
|
|
OPJ_UINT32* tbx0,
|
|
OPJ_UINT32* tby0,
|
|
OPJ_UINT32* tbx1,
|
|
OPJ_UINT32* tby1)
|
|
{
|
|
/* Compute number of decomposition for this band. See table F-1 */
|
|
OPJ_UINT32 nb = (resno == 0) ?
|
|
tilec->numresolutions - 1 :
|
|
tilec->numresolutions - resno;
|
|
/* Map above tile-based coordinates to sub-band-based coordinates per */
|
|
/* equation B-15 of the standard */
|
|
OPJ_UINT32 x0b = bandno & 1;
|
|
OPJ_UINT32 y0b = bandno >> 1;
|
|
if (tbx0) {
|
|
*tbx0 = (nb == 0) ? tcx0 :
|
|
(tcx0 <= (1U << (nb - 1)) * x0b) ? 0 :
|
|
opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb);
|
|
}
|
|
if (tby0) {
|
|
*tby0 = (nb == 0) ? tcy0 :
|
|
(tcy0 <= (1U << (nb - 1)) * y0b) ? 0 :
|
|
opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb);
|
|
}
|
|
if (tbx1) {
|
|
*tbx1 = (nb == 0) ? tcx1 :
|
|
(tcx1 <= (1U << (nb - 1)) * x0b) ? 0 :
|
|
opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb);
|
|
}
|
|
if (tby1) {
|
|
*tby1 = (nb == 0) ? tcy1 :
|
|
(tcy1 <= (1U << (nb - 1)) * y0b) ? 0 :
|
|
opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb);
|
|
}
|
|
}
|
|
|
|
static void opj_dwt_segment_grow(OPJ_UINT32 filter_width,
|
|
OPJ_UINT32 max_size,
|
|
OPJ_UINT32* start,
|
|
OPJ_UINT32* end)
|
|
{
|
|
*start = opj_uint_subs(*start, filter_width);
|
|
*end = opj_uint_adds(*end, filter_width);
|
|
*end = opj_uint_min(*end, max_size);
|
|
}
|
|
|
|
|
|
static opj_sparse_array_int32_t* opj_dwt_init_sparse_array(
|
|
opj_tcd_tilecomp_t* tilec,
|
|
OPJ_UINT32 numres)
|
|
{
|
|
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
|
|
OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0);
|
|
OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0);
|
|
OPJ_UINT32 resno, bandno, precno, cblkno;
|
|
opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create(
|
|
w, h, opj_uint_min(w, 64), opj_uint_min(h, 64));
|
|
if (sa == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (resno = 0; resno < numres; ++resno) {
|
|
opj_tcd_resolution_t* res = &tilec->resolutions[resno];
|
|
|
|
for (bandno = 0; bandno < res->numbands; ++bandno) {
|
|
opj_tcd_band_t* band = &res->bands[bandno];
|
|
|
|
for (precno = 0; precno < res->pw * res->ph; ++precno) {
|
|
opj_tcd_precinct_t* precinct = &band->precincts[precno];
|
|
for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
|
|
opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
|
|
if (cblk->decoded_data != NULL) {
|
|
OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0);
|
|
OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0);
|
|
OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
|
|
OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
|
|
|
|
if (band->bandno & 1) {
|
|
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
|
|
x += (OPJ_UINT32)(pres->x1 - pres->x0);
|
|
}
|
|
if (band->bandno & 2) {
|
|
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
|
|
y += (OPJ_UINT32)(pres->y1 - pres->y0);
|
|
}
|
|
|
|
if (!opj_sparse_array_int32_write(sa, x, y,
|
|
x + cblk_w, y + cblk_h,
|
|
cblk->decoded_data,
|
|
1, cblk_w, OPJ_TRUE)) {
|
|
opj_sparse_array_int32_free(sa);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return sa;
|
|
}
|
|
|
|
|
|
static OPJ_BOOL opj_dwt_decode_partial_tile(
|
|
opj_tcd_tilecomp_t* tilec,
|
|
OPJ_UINT32 numres)
|
|
{
|
|
opj_sparse_array_int32_t* sa;
|
|
opj_dwt_t h;
|
|
opj_dwt_t v;
|
|
OPJ_UINT32 resno;
|
|
/* This value matches the maximum left/right extension given in tables */
|
|
/* F.2 and F.3 of the standard. */
|
|
const OPJ_UINT32 filter_width = 2U;
|
|
|
|
opj_tcd_resolution_t* tr = tilec->resolutions;
|
|
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
|
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
|
|
tr->x0); /* width of the resolution level computed */
|
|
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
|
|
tr->y0); /* height of the resolution level computed */
|
|
|
|
OPJ_SIZE_T h_mem_size;
|
|
|
|
/* Compute the intersection of the area of interest, expressed in tile coordinates */
|
|
/* with the tile coordinates */
|
|
OPJ_UINT32 win_tcx0 = tilec->win_x0;
|
|
OPJ_UINT32 win_tcy0 = tilec->win_y0;
|
|
OPJ_UINT32 win_tcx1 = tilec->win_x1;
|
|
OPJ_UINT32 win_tcy1 = tilec->win_y1;
|
|
|
|
if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
sa = opj_dwt_init_sparse_array(tilec, numres);
|
|
if (sa == NULL) {
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
if (numres == 1U) {
|
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
|
tilec->data_win,
|
|
1, tr_max->win_x1 - tr_max->win_x0,
|
|
OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_TRUE;
|
|
}
|
|
h_mem_size = opj_dwt_max_resolution(tr, numres);
|
|
/* overflow check */
|
|
/* in vertical pass, we process 4 columns at a time */
|
|
if (h_mem_size > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
h_mem_size *= 4 * sizeof(OPJ_INT32);
|
|
h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
|
|
if (! h.mem) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
v.mem = h.mem;
|
|
|
|
for (resno = 1; resno < numres; resno ++) {
|
|
OPJ_UINT32 i, j;
|
|
/* Window of interest subband-based coordinates */
|
|
OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
|
|
OPJ_UINT32 win_hl_x0, win_hl_x1;
|
|
OPJ_UINT32 win_lh_y0, win_lh_y1;
|
|
/* Window of interest tile-resolution-based coordinates */
|
|
OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
|
|
/* Tile-resolution subband-based coordinates */
|
|
OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
|
|
|
|
++tr;
|
|
|
|
h.sn = (OPJ_INT32)rw;
|
|
v.sn = (OPJ_INT32)rh;
|
|
|
|
rw = (OPJ_UINT32)(tr->x1 - tr->x0);
|
|
rh = (OPJ_UINT32)(tr->y1 - tr->y0);
|
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
|
|
h.cas = tr->x0 % 2;
|
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
|
|
v.cas = tr->y0 % 2;
|
|
|
|
/* Get the subband coordinates for the window of interest */
|
|
/* LL band */
|
|
opj_dwt_get_band_coordinates(tilec, resno, 0,
|
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1,
|
|
&win_ll_x0, &win_ll_y0,
|
|
&win_ll_x1, &win_ll_y1);
|
|
|
|
/* HL band */
|
|
opj_dwt_get_band_coordinates(tilec, resno, 1,
|
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1,
|
|
&win_hl_x0, NULL, &win_hl_x1, NULL);
|
|
|
|
/* LH band */
|
|
opj_dwt_get_band_coordinates(tilec, resno, 2,
|
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1,
|
|
NULL, &win_lh_y0, NULL, &win_lh_y1);
|
|
|
|
/* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
|
|
tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
|
|
tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
|
|
tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
|
|
tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
|
|
|
|
/* Subtract the origin of the bands for this tile, to the subwindow */
|
|
/* of interest band coordinates, so as to get them relative to the */
|
|
/* tile */
|
|
win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
|
|
win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
|
|
win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
|
|
win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
|
|
win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
|
|
win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
|
|
win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
|
|
win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
|
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
|
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
|
|
|
|
/* Compute the tile-resolution-based coordinates for the window of interest */
|
|
if (h.cas == 0) {
|
|
win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
|
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
|
|
} else {
|
|
win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
|
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
|
|
}
|
|
|
|
if (v.cas == 0) {
|
|
win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
|
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
|
|
} else {
|
|
win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
|
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
|
|
}
|
|
|
|
for (j = 0; j < rh; ++j) {
|
|
if ((j >= win_ll_y0 && j < win_ll_y1) ||
|
|
(j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
|
|
|
|
/* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */
|
|
/* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */
|
|
/* on opj_decompress -i ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */
|
|
/* This is less extreme than memsetting the whole buffer to 0 */
|
|
/* although we could potentially do better with better handling of edge conditions */
|
|
if (win_tr_x1 >= 1 && win_tr_x1 < rw) {
|
|
h.mem[win_tr_x1 - 1] = 0;
|
|
}
|
|
if (win_tr_x1 < rw) {
|
|
h.mem[win_tr_x1] = 0;
|
|
}
|
|
|
|
opj_dwt_interleave_partial_h(h.mem,
|
|
h.cas,
|
|
sa,
|
|
j,
|
|
(OPJ_UINT32)h.sn,
|
|
win_ll_x0,
|
|
win_ll_x1,
|
|
win_hl_x0,
|
|
win_hl_x1);
|
|
opj_dwt_decode_partial_1(h.mem, h.dn, h.sn, h.cas,
|
|
(OPJ_INT32)win_ll_x0,
|
|
(OPJ_INT32)win_ll_x1,
|
|
(OPJ_INT32)win_hl_x0,
|
|
(OPJ_INT32)win_hl_x1);
|
|
if (!opj_sparse_array_int32_write(sa,
|
|
win_tr_x0, j,
|
|
win_tr_x1, j + 1,
|
|
h.mem + win_tr_x0,
|
|
1, 0, OPJ_TRUE)) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
opj_aligned_free(h.mem);
|
|
return OPJ_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = win_tr_x0; i < win_tr_x1;) {
|
|
OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i);
|
|
opj_dwt_interleave_partial_v(v.mem,
|
|
v.cas,
|
|
sa,
|
|
i,
|
|
nb_cols,
|
|
(OPJ_UINT32)v.sn,
|
|
win_ll_y0,
|
|
win_ll_y1,
|
|
win_lh_y0,
|
|
win_lh_y1);
|
|
opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas,
|
|
(OPJ_INT32)win_ll_y0,
|
|
(OPJ_INT32)win_ll_y1,
|
|
(OPJ_INT32)win_lh_y0,
|
|
(OPJ_INT32)win_lh_y1);
|
|
if (!opj_sparse_array_int32_write(sa,
|
|
i, win_tr_y0,
|
|
i + nb_cols, win_tr_y1,
|
|
v.mem + 4 * win_tr_y0,
|
|
1, 4, OPJ_TRUE)) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
opj_aligned_free(h.mem);
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
i += nb_cols;
|
|
}
|
|
}
|
|
opj_aligned_free(h.mem);
|
|
|
|
{
|
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
|
tilec->data_win,
|
|
1, tr_max->win_x1 - tr_max->win_x0,
|
|
OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
}
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
|
OPJ_FLOAT32* OPJ_RESTRICT a,
|
|
OPJ_UINT32 width,
|
|
OPJ_UINT32 remaining_height)
|
|
{
|
|
OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas);
|
|
OPJ_UINT32 i, k;
|
|
OPJ_UINT32 x0 = dwt->win_l_x0;
|
|
OPJ_UINT32 x1 = dwt->win_l_x1;
|
|
|
|
for (k = 0; k < 2; ++k) {
|
|
if (remaining_height >= 4 && ((OPJ_SIZE_T) a & 0x0f) == 0 &&
|
|
((OPJ_SIZE_T) bi & 0x0f) == 0 && (width & 0x0f) == 0) {
|
|
/* Fast code path */
|
|
for (i = x0; i < x1; ++i) {
|
|
OPJ_UINT32 j = i;
|
|
bi[i * 8 ] = a[j];
|
|
j += width;
|
|
bi[i * 8 + 1] = a[j];
|
|
j += width;
|
|
bi[i * 8 + 2] = a[j];
|
|
j += width;
|
|
bi[i * 8 + 3] = a[j];
|
|
}
|
|
} else {
|
|
/* Slow code path */
|
|
for (i = x0; i < x1; ++i) {
|
|
OPJ_UINT32 j = i;
|
|
bi[i * 8 ] = a[j];
|
|
j += width;
|
|
if (remaining_height == 1) {
|
|
continue;
|
|
}
|
|
bi[i * 8 + 1] = a[j];
|
|
j += width;
|
|
if (remaining_height == 2) {
|
|
continue;
|
|
}
|
|
bi[i * 8 + 2] = a[j];
|
|
j += width;
|
|
if (remaining_height == 3) {
|
|
continue;
|
|
}
|
|
bi[i * 8 + 3] = a[j]; /* This one*/
|
|
}
|
|
}
|
|
|
|
bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas);
|
|
a += dwt->sn;
|
|
x0 = dwt->win_h_x0;
|
|
x1 = dwt->win_h_x1;
|
|
}
|
|
}
|
|
|
|
static void opj_v4dwt_interleave_partial_h(opj_v4dwt_t* dwt,
|
|
opj_sparse_array_int32_t* sa,
|
|
OPJ_UINT32 sa_line,
|
|
OPJ_UINT32 remaining_height)
|
|
{
|
|
OPJ_UINT32 i;
|
|
for (i = 0; i < remaining_height; i++) {
|
|
OPJ_BOOL ret;
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
dwt->win_l_x0, sa_line + i,
|
|
dwt->win_l_x1, sa_line + i + 1,
|
|
/* Nasty cast from float* to int32* */
|
|
(OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i,
|
|
8, 0, OPJ_TRUE);
|
|
assert(ret);
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
(OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i,
|
|
(OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1,
|
|
/* Nasty cast from float* to int32* */
|
|
(OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i,
|
|
8, 0, OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
}
|
|
}
|
|
|
|
static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
|
OPJ_FLOAT32* OPJ_RESTRICT a,
|
|
OPJ_UINT32 width,
|
|
OPJ_UINT32 nb_elts_read)
|
|
{
|
|
opj_v4_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas;
|
|
OPJ_UINT32 i;
|
|
|
|
for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) {
|
|
memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
|
|
(OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
|
|
}
|
|
|
|
a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width;
|
|
bi = dwt->wavelet + 1 - dwt->cas;
|
|
|
|
for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) {
|
|
memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
|
|
(OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
|
|
}
|
|
}
|
|
|
|
static void opj_v4dwt_interleave_partial_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
|
|
opj_sparse_array_int32_t* sa,
|
|
OPJ_UINT32 sa_col,
|
|
OPJ_UINT32 nb_elts_read)
|
|
{
|
|
OPJ_BOOL ret;
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
sa_col, dwt->win_l_x0,
|
|
sa_col + nb_elts_read, dwt->win_l_x1,
|
|
(OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0),
|
|
1, 8, OPJ_TRUE);
|
|
assert(ret);
|
|
ret = opj_sparse_array_int32_read(sa,
|
|
sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0,
|
|
sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1,
|
|
(OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0),
|
|
1, 8, OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
}
|
|
|
|
#ifdef __SSE__
|
|
|
|
static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
const __m128 c)
|
|
{
|
|
__m128* OPJ_RESTRICT vw = (__m128*) w;
|
|
OPJ_UINT32 i;
|
|
/* 4x unrolled loop */
|
|
vw += 2 * start;
|
|
for (i = start; i + 3 < end; i += 4, vw += 8) {
|
|
__m128 xmm0 = _mm_mul_ps(vw[0], c);
|
|
__m128 xmm2 = _mm_mul_ps(vw[2], c);
|
|
__m128 xmm4 = _mm_mul_ps(vw[4], c);
|
|
__m128 xmm6 = _mm_mul_ps(vw[6], c);
|
|
vw[0] = xmm0;
|
|
vw[2] = xmm2;
|
|
vw[4] = xmm4;
|
|
vw[6] = xmm6;
|
|
}
|
|
for (; i < end; ++i, vw += 2) {
|
|
vw[0] = _mm_mul_ps(vw[0], c);
|
|
}
|
|
}
|
|
|
|
static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
OPJ_UINT32 m,
|
|
__m128 c)
|
|
{
|
|
__m128* OPJ_RESTRICT vl = (__m128*) l;
|
|
__m128* OPJ_RESTRICT vw = (__m128*) w;
|
|
OPJ_UINT32 i;
|
|
OPJ_UINT32 imax = opj_uint_min(end, m);
|
|
__m128 tmp1, tmp2, tmp3;
|
|
if (start == 0) {
|
|
tmp1 = vl[0];
|
|
} else {
|
|
vw += start * 2;
|
|
tmp1 = vw[-3];
|
|
}
|
|
|
|
i = start;
|
|
|
|
/* 4x loop unrolling */
|
|
for (; i + 3 < imax; i += 4) {
|
|
__m128 tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
|
|
tmp2 = vw[-1];
|
|
tmp3 = vw[ 0];
|
|
tmp4 = vw[ 1];
|
|
tmp5 = vw[ 2];
|
|
tmp6 = vw[ 3];
|
|
tmp7 = vw[ 4];
|
|
tmp8 = vw[ 5];
|
|
tmp9 = vw[ 6];
|
|
vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
|
|
vw[ 1] = _mm_add_ps(tmp4, _mm_mul_ps(_mm_add_ps(tmp3, tmp5), c));
|
|
vw[ 3] = _mm_add_ps(tmp6, _mm_mul_ps(_mm_add_ps(tmp5, tmp7), c));
|
|
vw[ 5] = _mm_add_ps(tmp8, _mm_mul_ps(_mm_add_ps(tmp7, tmp9), c));
|
|
tmp1 = tmp9;
|
|
vw += 8;
|
|
}
|
|
|
|
for (; i < imax; ++i) {
|
|
tmp2 = vw[-1];
|
|
tmp3 = vw[ 0];
|
|
vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
|
|
tmp1 = tmp3;
|
|
vw += 2;
|
|
}
|
|
if (m < end) {
|
|
assert(m + 1 == end);
|
|
c = _mm_add_ps(c, c);
|
|
c = _mm_mul_ps(c, vw[-2]);
|
|
vw[-1] = _mm_add_ps(vw[-1], c);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void opj_v4dwt_decode_step1(opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
const OPJ_FLOAT32 c)
|
|
{
|
|
OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w;
|
|
OPJ_UINT32 i;
|
|
for (i = start; i < end; ++i) {
|
|
OPJ_FLOAT32 tmp1 = fw[i * 8 ];
|
|
OPJ_FLOAT32 tmp2 = fw[i * 8 + 1];
|
|
OPJ_FLOAT32 tmp3 = fw[i * 8 + 2];
|
|
OPJ_FLOAT32 tmp4 = fw[i * 8 + 3];
|
|
fw[i * 8 ] = tmp1 * c;
|
|
fw[i * 8 + 1] = tmp2 * c;
|
|
fw[i * 8 + 2] = tmp3 * c;
|
|
fw[i * 8 + 3] = tmp4 * c;
|
|
}
|
|
}
|
|
|
|
static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
|
|
OPJ_UINT32 start,
|
|
OPJ_UINT32 end,
|
|
OPJ_UINT32 m,
|
|
OPJ_FLOAT32 c)
|
|
{
|
|
OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l;
|
|
OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w;
|
|
OPJ_UINT32 i;
|
|
OPJ_UINT32 imax = opj_uint_min(end, m);
|
|
if (start > 0) {
|
|
fw += 8 * start;
|
|
fl = fw - 8;
|
|
}
|
|
for (i = start; i < imax; ++i) {
|
|
OPJ_FLOAT32 tmp1_1 = fl[0];
|
|
OPJ_FLOAT32 tmp1_2 = fl[1];
|
|
OPJ_FLOAT32 tmp1_3 = fl[2];
|
|
OPJ_FLOAT32 tmp1_4 = fl[3];
|
|
OPJ_FLOAT32 tmp2_1 = fw[-4];
|
|
OPJ_FLOAT32 tmp2_2 = fw[-3];
|
|
OPJ_FLOAT32 tmp2_3 = fw[-2];
|
|
OPJ_FLOAT32 tmp2_4 = fw[-1];
|
|
OPJ_FLOAT32 tmp3_1 = fw[0];
|
|
OPJ_FLOAT32 tmp3_2 = fw[1];
|
|
OPJ_FLOAT32 tmp3_3 = fw[2];
|
|
OPJ_FLOAT32 tmp3_4 = fw[3];
|
|
fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
|
|
fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
|
|
fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
|
|
fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
|
|
fl = fw;
|
|
fw += 8;
|
|
}
|
|
if (m < end) {
|
|
assert(m + 1 == end);
|
|
c += c;
|
|
fw[-4] = fw[-4] + fl[0] * c;
|
|
fw[-3] = fw[-3] + fl[1] * c;
|
|
fw[-2] = fw[-2] + fl[2] * c;
|
|
fw[-1] = fw[-1] + fl[3] * c;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* <summary> */
|
|
/* Inverse 9-7 wavelet transform in 1-D. */
|
|
/* </summary> */
|
|
static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt)
|
|
{
|
|
OPJ_INT32 a, b;
|
|
if (dwt->cas == 0) {
|
|
if (!((dwt->dn > 0) || (dwt->sn > 1))) {
|
|
return;
|
|
}
|
|
a = 0;
|
|
b = 1;
|
|
} else {
|
|
if (!((dwt->sn > 0) || (dwt->dn > 1))) {
|
|
return;
|
|
}
|
|
a = 1;
|
|
b = 0;
|
|
}
|
|
#ifdef __SSE__
|
|
opj_v4dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
|
|
_mm_set1_ps(opj_K));
|
|
opj_v4dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
|
|
_mm_set1_ps(opj_c13318));
|
|
opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
|
|
dwt->win_l_x0, dwt->win_l_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
|
|
_mm_set1_ps(opj_dwt_delta));
|
|
opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
|
|
dwt->win_h_x0, dwt->win_h_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
|
|
_mm_set1_ps(opj_dwt_gamma));
|
|
opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
|
|
dwt->win_l_x0, dwt->win_l_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
|
|
_mm_set1_ps(opj_dwt_beta));
|
|
opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
|
|
dwt->win_h_x0, dwt->win_h_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
|
|
_mm_set1_ps(opj_dwt_alpha));
|
|
#else
|
|
opj_v4dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
|
|
opj_K);
|
|
opj_v4dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
|
|
opj_c13318);
|
|
opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
|
|
dwt->win_l_x0, dwt->win_l_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
|
|
opj_dwt_delta);
|
|
opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
|
|
dwt->win_h_x0, dwt->win_h_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
|
|
opj_dwt_gamma);
|
|
opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
|
|
dwt->win_l_x0, dwt->win_l_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
|
|
opj_dwt_beta);
|
|
opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
|
|
dwt->win_h_x0, dwt->win_h_x1,
|
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
|
|
opj_dwt_alpha);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* <summary> */
|
|
/* Inverse 9-7 wavelet transform in 2-D. */
|
|
/* </summary> */
|
|
static
|
|
OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
|
OPJ_UINT32 numres)
|
|
{
|
|
opj_v4dwt_t h;
|
|
opj_v4dwt_t v;
|
|
|
|
opj_tcd_resolution_t* res = tilec->resolutions;
|
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 -
|
|
res->x0); /* width of the resolution level computed */
|
|
OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 -
|
|
res->y0); /* height of the resolution level computed */
|
|
|
|
OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
|
|
1].x1 -
|
|
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
|
|
|
|
OPJ_SIZE_T l_data_size;
|
|
|
|
l_data_size = opj_dwt_max_resolution(res, numres);
|
|
/* overflow check */
|
|
if (l_data_size > (SIZE_MAX - 5U)) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
l_data_size += 5U;
|
|
/* overflow check */
|
|
if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
|
|
if (!h.wavelet) {
|
|
/* FIXME event manager error callback */
|
|
return OPJ_FALSE;
|
|
}
|
|
v.wavelet = h.wavelet;
|
|
|
|
while (--numres) {
|
|
OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data;
|
|
OPJ_UINT32 j;
|
|
|
|
h.sn = (OPJ_INT32)rw;
|
|
v.sn = (OPJ_INT32)rh;
|
|
|
|
++res;
|
|
|
|
rw = (OPJ_UINT32)(res->x1 -
|
|
res->x0); /* width of the resolution level computed */
|
|
rh = (OPJ_UINT32)(res->y1 -
|
|
res->y0); /* height of the resolution level computed */
|
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
|
|
h.cas = res->x0 % 2;
|
|
|
|
h.win_l_x0 = 0;
|
|
h.win_l_x1 = (OPJ_UINT32)h.sn;
|
|
h.win_h_x0 = 0;
|
|
h.win_h_x1 = (OPJ_UINT32)h.dn;
|
|
for (j = 0; j + 3 < rh; j += 4) {
|
|
OPJ_UINT32 k;
|
|
opj_v4dwt_interleave_h(&h, aj, w, rh - j);
|
|
opj_v4dwt_decode(&h);
|
|
|
|
for (k = 0; k < rw; k++) {
|
|
aj[k ] = h.wavelet[k].f[0];
|
|
aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1];
|
|
aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
|
|
aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3];
|
|
}
|
|
|
|
aj += w * 4;
|
|
}
|
|
|
|
if (j < rh) {
|
|
OPJ_UINT32 k;
|
|
opj_v4dwt_interleave_h(&h, aj, w, rh - j);
|
|
opj_v4dwt_decode(&h);
|
|
for (k = 0; k < rw; k++) {
|
|
switch (rh - j) {
|
|
case 3:
|
|
aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
|
|
/* FALLTHRU */
|
|
case 2:
|
|
aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1];
|
|
/* FALLTHRU */
|
|
case 1:
|
|
aj[k] = h.wavelet[k].f[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
|
|
v.cas = res->y0 % 2;
|
|
v.win_l_x0 = 0;
|
|
v.win_l_x1 = (OPJ_UINT32)v.sn;
|
|
v.win_h_x0 = 0;
|
|
v.win_h_x1 = (OPJ_UINT32)v.dn;
|
|
|
|
aj = (OPJ_FLOAT32*) tilec->data;
|
|
for (j = rw; j > 3; j -= 4) {
|
|
OPJ_UINT32 k;
|
|
|
|
opj_v4dwt_interleave_v(&v, aj, w, 4);
|
|
opj_v4dwt_decode(&v);
|
|
|
|
for (k = 0; k < rh; ++k) {
|
|
memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
|
|
}
|
|
aj += 4;
|
|
}
|
|
|
|
if (rw & 0x03) {
|
|
OPJ_UINT32 k;
|
|
|
|
j = rw & 0x03;
|
|
|
|
opj_v4dwt_interleave_v(&v, aj, w, j);
|
|
opj_v4dwt_decode(&v);
|
|
|
|
for (k = 0; k < rh; ++k) {
|
|
memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k],
|
|
(OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32));
|
|
}
|
|
}
|
|
}
|
|
|
|
opj_aligned_free(h.wavelet);
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
static
|
|
OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
|
OPJ_UINT32 numres)
|
|
{
|
|
opj_sparse_array_int32_t* sa;
|
|
opj_v4dwt_t h;
|
|
opj_v4dwt_t v;
|
|
OPJ_UINT32 resno;
|
|
/* This value matches the maximum left/right extension given in tables */
|
|
/* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */
|
|
/* we currently use 3. */
|
|
const OPJ_UINT32 filter_width = 4U;
|
|
|
|
opj_tcd_resolution_t* tr = tilec->resolutions;
|
|
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
|
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
|
|
tr->x0); /* width of the resolution level computed */
|
|
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
|
|
tr->y0); /* height of the resolution level computed */
|
|
|
|
OPJ_SIZE_T l_data_size;
|
|
|
|
/* Compute the intersection of the area of interest, expressed in tile coordinates */
|
|
/* with the tile coordinates */
|
|
OPJ_UINT32 win_tcx0 = tilec->win_x0;
|
|
OPJ_UINT32 win_tcy0 = tilec->win_y0;
|
|
OPJ_UINT32 win_tcx1 = tilec->win_x1;
|
|
OPJ_UINT32 win_tcy1 = tilec->win_y1;
|
|
|
|
if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
sa = opj_dwt_init_sparse_array(tilec, numres);
|
|
if (sa == NULL) {
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
if (numres == 1U) {
|
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
|
tilec->data_win,
|
|
1, tr_max->win_x1 - tr_max->win_x0,
|
|
OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
l_data_size = opj_dwt_max_resolution(tr, numres);
|
|
/* overflow check */
|
|
if (l_data_size > (SIZE_MAX - 5U)) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_FALSE;
|
|
}
|
|
l_data_size += 5U;
|
|
/* overflow check */
|
|
if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_FALSE;
|
|
}
|
|
h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
|
|
if (!h.wavelet) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
return OPJ_FALSE;
|
|
}
|
|
v.wavelet = h.wavelet;
|
|
|
|
for (resno = 1; resno < numres; resno ++) {
|
|
OPJ_UINT32 j;
|
|
/* Window of interest subband-based coordinates */
|
|
OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
|
|
OPJ_UINT32 win_hl_x0, win_hl_x1;
|
|
OPJ_UINT32 win_lh_y0, win_lh_y1;
|
|
/* Window of interest tile-resolution-based coordinates */
|
|
OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
|
|
/* Tile-resolution subband-based coordinates */
|
|
OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
|
|
|
|
++tr;
|
|
|
|
h.sn = (OPJ_INT32)rw;
|
|
v.sn = (OPJ_INT32)rh;
|
|
|
|
rw = (OPJ_UINT32)(tr->x1 - tr->x0);
|
|
rh = (OPJ_UINT32)(tr->y1 - tr->y0);
|
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
|
|
h.cas = tr->x0 % 2;
|
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
|
|
v.cas = tr->y0 % 2;
|
|
|
|
/* Get the subband coordinates for the window of interest */
|
|
/* LL band */
|
|
opj_dwt_get_band_coordinates(tilec, resno, 0,
|
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1,
|
|
&win_ll_x0, &win_ll_y0,
|
|
&win_ll_x1, &win_ll_y1);
|
|
|
|
/* HL band */
|
|
opj_dwt_get_band_coordinates(tilec, resno, 1,
|
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1,
|
|
&win_hl_x0, NULL, &win_hl_x1, NULL);
|
|
|
|
/* LH band */
|
|
opj_dwt_get_band_coordinates(tilec, resno, 2,
|
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1,
|
|
NULL, &win_lh_y0, NULL, &win_lh_y1);
|
|
|
|
/* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
|
|
tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
|
|
tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
|
|
tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
|
|
tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
|
|
|
|
/* Subtract the origin of the bands for this tile, to the subwindow */
|
|
/* of interest band coordinates, so as to get them relative to the */
|
|
/* tile */
|
|
win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
|
|
win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
|
|
win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
|
|
win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
|
|
win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
|
|
win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
|
|
win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
|
|
win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
|
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
|
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
|
|
|
|
/* Compute the tile-resolution-based coordinates for the window of interest */
|
|
if (h.cas == 0) {
|
|
win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
|
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
|
|
} else {
|
|
win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
|
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
|
|
}
|
|
|
|
if (v.cas == 0) {
|
|
win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
|
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
|
|
} else {
|
|
win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
|
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
|
|
}
|
|
|
|
h.win_l_x0 = win_ll_x0;
|
|
h.win_l_x1 = win_ll_x1;
|
|
h.win_h_x0 = win_hl_x0;
|
|
h.win_h_x1 = win_hl_x1;
|
|
for (j = 0; j + 3 < rh; j += 4) {
|
|
if ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
|
|
(j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
|
|
j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
|
|
opj_v4dwt_interleave_partial_h(&h, sa, j, opj_uint_min(4U, rh - j));
|
|
opj_v4dwt_decode(&h);
|
|
if (!opj_sparse_array_int32_write(sa,
|
|
win_tr_x0, j,
|
|
win_tr_x1, j + 4,
|
|
(OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
|
|
4, 1, OPJ_TRUE)) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
opj_aligned_free(h.wavelet);
|
|
return OPJ_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (j < rh &&
|
|
((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
|
|
(j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
|
|
j < win_lh_y1 + (OPJ_UINT32)v.sn))) {
|
|
opj_v4dwt_interleave_partial_h(&h, sa, j, rh - j);
|
|
opj_v4dwt_decode(&h);
|
|
if (!opj_sparse_array_int32_write(sa,
|
|
win_tr_x0, j,
|
|
win_tr_x1, rh,
|
|
(OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
|
|
4, 1, OPJ_TRUE)) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
opj_aligned_free(h.wavelet);
|
|
return OPJ_FALSE;
|
|
}
|
|
}
|
|
|
|
v.win_l_x0 = win_ll_y0;
|
|
v.win_l_x1 = win_ll_y1;
|
|
v.win_h_x0 = win_lh_y0;
|
|
v.win_h_x1 = win_lh_y1;
|
|
for (j = win_tr_x0; j < win_tr_x1; j += 4) {
|
|
OPJ_UINT32 nb_elts = opj_uint_min(4U, win_tr_x1 - j);
|
|
|
|
opj_v4dwt_interleave_partial_v(&v, sa, j, nb_elts);
|
|
opj_v4dwt_decode(&v);
|
|
|
|
if (!opj_sparse_array_int32_write(sa,
|
|
j, win_tr_y0,
|
|
j + nb_elts, win_tr_y1,
|
|
(OPJ_INT32*)&h.wavelet[win_tr_y0].f[0],
|
|
1, 4, OPJ_TRUE)) {
|
|
/* FIXME event manager error callback */
|
|
opj_sparse_array_int32_free(sa);
|
|
opj_aligned_free(h.wavelet);
|
|
return OPJ_FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
|
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
|
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
|
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
|
|
tilec->data_win,
|
|
1, tr_max->win_x1 - tr_max->win_x0,
|
|
OPJ_TRUE);
|
|
assert(ret);
|
|
OPJ_UNUSED(ret);
|
|
}
|
|
opj_sparse_array_int32_free(sa);
|
|
|
|
opj_aligned_free(h.wavelet);
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
|
|
OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd,
|
|
opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
|
|
OPJ_UINT32 numres)
|
|
{
|
|
if (p_tcd->whole_tile_decoding) {
|
|
return opj_dwt_decode_tile_97(tilec, numres);
|
|
} else {
|
|
return opj_dwt_decode_partial_97(tilec, numres);
|
|
}
|
|
}
|