mirror of
https://github.com/opencv/opencv.git
synced 2025-06-10 19:24:07 +08:00

* Add Squeezenet support in ONNX * Add AlexNet support in ONNX * Add Googlenet support in ONNX * Add CaffeNet and RCNN support in ONNX * Add VGG16 and VGG16 with batch normalization support in ONNX * Add RCNN, ZFNet, ResNet18v1 and ResNet50v1 support in ONNX * Add ResNet101_DUC_HDC * Add Tiny Yolov2 * Add CNN_MNIST, MobileNetv2 and LResNet100 support in ONNX * Add ONNX models for emotion recognition * Add DenseNet121 support in ONNX * Add Inception v1 support in ONNX * Refactoring * Fix tests * Fix tests * Skip unstable test * Modify Reshape operation
586 lines
21 KiB
C++
586 lines
21 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#ifdef HAVE_PROTOBUF
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <limits>
|
|
#include <algorithm>
|
|
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 5
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wsuggest-override"
|
|
#endif
|
|
#include "opencv-onnx.pb.h"
|
|
#if defined(__GNUC__) && __GNUC__ >= 5
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
namespace cv {
|
|
namespace dnn {
|
|
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
|
|
|
|
|
class ONNXImporter
|
|
{
|
|
opencv_onnx::ModelProto model_proto;
|
|
struct LayerInfo {
|
|
int layerId;
|
|
int outputId;
|
|
LayerInfo(int _layerId, int _outputId) : layerId(_layerId), outputId(_outputId) {}
|
|
};
|
|
|
|
std::map<std::string, Mat> getGraphTensors(
|
|
const opencv_onnx::GraphProto& graph_proto);
|
|
Mat getBlob(const opencv_onnx::NodeProto& node_proto, const std::map<std::string, Mat>& constBlobs, int index);
|
|
|
|
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto);
|
|
bool isCeilMode(const LayerParams& layerParams);
|
|
|
|
public:
|
|
|
|
ONNXImporter(const char *onnxFile)
|
|
{
|
|
std::fstream input(onnxFile, std::ios::in | std::ios::binary);
|
|
|
|
if (!model_proto.ParseFromIstream(&input))
|
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model");
|
|
}
|
|
|
|
void populateNet(Net dstNet);
|
|
};
|
|
|
|
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey)
|
|
{
|
|
if (layerParams.has(oldKey)) {
|
|
layerParams.set(newKey, layerParams.get(oldKey));
|
|
layerParams.erase(oldKey);
|
|
}
|
|
}
|
|
|
|
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto)
|
|
{
|
|
if (!tensor_proto.raw_data().empty()) {
|
|
delete tensor_proto.release_raw_data();
|
|
}
|
|
}
|
|
|
|
template<typename T1, typename T2>
|
|
void convertInt64ToInt32(const T1& src, T2& dst, int size)
|
|
{
|
|
for (int i = 0; i < size; i++) {
|
|
if (src[i] < std::numeric_limits<int32_t>::min() || src[i] > std::numeric_limits<int32_t>::max()) {
|
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
|
|
}
|
|
dst[i] = saturate_cast<int32_t>(src[i]);
|
|
}
|
|
}
|
|
|
|
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
|
|
{
|
|
CV_Assert(!tensor_proto.raw_data().empty() || !tensor_proto.float_data().empty()
|
|
|| !tensor_proto.double_data().empty() || !tensor_proto.int64_data().empty());
|
|
|
|
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type();
|
|
Mat blob;
|
|
std::vector<int> sizes;
|
|
for (int i = 0; i < tensor_proto.dims_size(); i++) {
|
|
sizes.push_back(tensor_proto.dims(i));
|
|
}
|
|
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) {
|
|
|
|
if (!tensor_proto.float_data().empty()) {
|
|
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data();
|
|
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob);
|
|
}
|
|
else {
|
|
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
|
|
Mat(sizes, CV_32FC1, val).copyTo(blob);
|
|
}
|
|
}
|
|
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE)
|
|
{
|
|
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data();
|
|
CV_Assert(!field.empty());
|
|
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1);
|
|
}
|
|
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
|
|
{
|
|
blob.create(sizes, CV_32SC1);
|
|
int32_t* dst = reinterpret_cast<int32_t*>(blob.data);
|
|
|
|
if (!tensor_proto.int64_data().empty()) {
|
|
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data();
|
|
convertInt64ToInt32(src, dst, blob.total());
|
|
}
|
|
else
|
|
{
|
|
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
|
|
int64_t* src = reinterpret_cast<int64_t*>(val);
|
|
convertInt64ToInt32(src, dst, blob.total());
|
|
}
|
|
}
|
|
else
|
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported data type: " +
|
|
opencv_onnx::TensorProto_DataType_Name(datatype));
|
|
return blob;
|
|
}
|
|
|
|
std::map<std::string, Mat> ONNXImporter::getGraphTensors(
|
|
const opencv_onnx::GraphProto& graph_proto)
|
|
{
|
|
opencv_onnx::TensorProto tensor_proto;
|
|
std::map<std::string, Mat> layers_weights;
|
|
|
|
for (int i = 0; i < graph_proto.initializer_size(); i++)
|
|
{
|
|
tensor_proto = graph_proto.initializer(i);
|
|
Mat mat = getMatFromTensor(tensor_proto);
|
|
releaseONNXTensor(tensor_proto);
|
|
layers_weights.insert(std::make_pair(tensor_proto.name(), mat));
|
|
}
|
|
return layers_weights;
|
|
}
|
|
|
|
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto)
|
|
{
|
|
LayerParams lp;
|
|
for(int i = 0; i < node_proto.attribute_size(); i++)
|
|
{
|
|
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i);
|
|
std::string attribute_name = attribute_proto.name();
|
|
|
|
if(attribute_name == "kernel_shape")
|
|
{
|
|
CV_Assert(attribute_proto.ints_size() == 2);
|
|
lp.set("kernel_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
|
|
lp.set("kernel_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
|
|
}
|
|
else if(attribute_name == "strides")
|
|
{
|
|
CV_Assert(attribute_proto.ints_size() == 2);
|
|
lp.set("stride_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
|
|
lp.set("stride_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
|
|
}
|
|
else if(attribute_name == "pads")
|
|
{
|
|
CV_Assert(attribute_proto.ints_size() == 4);
|
|
lp.set("pad_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
|
|
lp.set("pad_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
|
|
// push pad_b and pad_r for compute ceil_mode
|
|
lp.set("pad_b", saturate_cast<int32_t>(attribute_proto.ints(2)));
|
|
lp.set("pad_r", saturate_cast<int32_t>(attribute_proto.ints(3)));
|
|
}
|
|
else if(attribute_name == "auto_pad")
|
|
{
|
|
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") {
|
|
lp.set("pad_mode", "SAME");
|
|
}
|
|
else if (attribute_proto.s() == "VALID") {
|
|
lp.set("pad_mode", "VALID");
|
|
}
|
|
}
|
|
else if(attribute_name == "dilations")
|
|
{
|
|
CV_Assert(attribute_proto.ints_size() == 2);
|
|
lp.set("dilation_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
|
|
lp.set("dilation_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
|
|
}
|
|
else if (attribute_proto.has_i())
|
|
{
|
|
::google::protobuf::int64 src = attribute_proto.i();
|
|
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max())
|
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
|
|
else
|
|
lp.set(attribute_name, saturate_cast<int32_t>(src));
|
|
}
|
|
else if (attribute_proto.has_f())
|
|
{
|
|
lp.set(attribute_name, attribute_proto.f());
|
|
}
|
|
else if (attribute_proto.has_s())
|
|
{
|
|
lp.set(attribute_name, attribute_proto.s());
|
|
}
|
|
else if (attribute_proto.floats_size() > 0)
|
|
{
|
|
lp.set(attribute_name, DictValue::arrayReal(
|
|
(float*)attribute_proto.mutable_floats(), attribute_proto.floats_size()));
|
|
}
|
|
else if (attribute_proto.ints_size() > 0)
|
|
{
|
|
const ::google::protobuf::RepeatedField< ::google::protobuf::int64> src = attribute_proto.ints();
|
|
std::vector<int32_t> dst(attribute_proto.ints_size());
|
|
convertInt64ToInt32(src, dst, attribute_proto.ints_size());
|
|
lp.set(attribute_proto.name(), DictValue::arrayInt(&dst[0], attribute_proto.ints_size()));
|
|
}
|
|
else if (attribute_proto.has_t())
|
|
{
|
|
opencv_onnx::TensorProto tensor = attribute_proto.t();
|
|
Mat blob = getMatFromTensor(tensor);
|
|
lp.blobs.push_back(blob);
|
|
}
|
|
else if (attribute_proto.has_g() || attribute_proto.strings_size() > 0 ||
|
|
attribute_proto.tensors_size() > 0 || attribute_proto.graphs_size() > 0)
|
|
{
|
|
CV_Error(Error::StsNotImplemented, "Unexpected attribute type");
|
|
}
|
|
else
|
|
CV_Error(Error::StsNotImplemented, "Unsupported attribute type");
|
|
}
|
|
return lp;
|
|
}
|
|
|
|
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto,
|
|
const std::map<std::string, Mat>& constBlobs, int index)
|
|
{
|
|
CV_Assert(index < node_proto.input_size());
|
|
std::map<std::string, Mat>::const_iterator constBlob;
|
|
constBlob = constBlobs.find(node_proto.input(index));
|
|
if (constBlob == constBlobs.end()) {
|
|
CV_Error(Error::StsObjectNotFound,
|
|
"Blob " + node_proto.input(index) + " not found in const blobs");
|
|
}
|
|
return constBlob->second;
|
|
}
|
|
|
|
|
|
bool ONNXImporter::isCeilMode(const LayerParams& layerParams) {
|
|
if (!layerParams.has("pad_mode")) {
|
|
if (layerParams.has("pad_h")) {
|
|
return layerParams.get<int>("pad_h") != layerParams.get<int>("pad_b") ||
|
|
layerParams.get<int>("pad_w") != layerParams.get<int>("pad_r");
|
|
}
|
|
else
|
|
return false; // all pads == 0
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ONNXImporter::populateNet(Net dstNet)
|
|
{
|
|
CV_Assert(model_proto.has_graph());
|
|
opencv_onnx::GraphProto graph_proto = model_proto.graph();
|
|
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
|
|
|
|
std::string framework_name;
|
|
if (model_proto.has_producer_name()) {
|
|
framework_name = model_proto.producer_name();
|
|
}
|
|
|
|
// create map with network inputs (without const blobs)
|
|
std::map<std::string, LayerInfo> layer_id;
|
|
std::map<std::string, LayerInfo>::iterator layerId;
|
|
// fill map: push layer name, layer id and output id
|
|
std::vector<String> netInputs;
|
|
for (int j = 0; j < graph_proto.input_size(); j++)
|
|
{
|
|
const std::string& name = graph_proto.input(j).name();
|
|
if (constBlobs.find(name) == constBlobs.end()) {
|
|
netInputs.push_back(name);
|
|
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1)));
|
|
}
|
|
}
|
|
dstNet.setInputsNames(netInputs);
|
|
|
|
int layersSize = graph_proto.node_size();
|
|
LayerParams layerParams;
|
|
opencv_onnx::NodeProto node_proto;
|
|
|
|
for(int i = 0; i < layersSize; i++)
|
|
{
|
|
node_proto = graph_proto.node(i);
|
|
layerParams = getLayerParams(node_proto);
|
|
CV_Assert(node_proto.output_size() >= 1);
|
|
layerParams.name = node_proto.output(0);
|
|
|
|
std::string layer_type = node_proto.op_type();
|
|
layerParams.type = layer_type;
|
|
|
|
if (layer_type == "MaxPool")
|
|
{
|
|
layerParams.type = "Pooling";
|
|
layerParams.set("pool", "MAX");
|
|
layerParams.set("ceil_mode", isCeilMode(layerParams));
|
|
}
|
|
else if (layer_type == "AveragePool")
|
|
{
|
|
layerParams.type = "Pooling";
|
|
layerParams.set("pool", "AVE");
|
|
layerParams.set("ceil_mode", isCeilMode(layerParams));
|
|
layerParams.set("ave_pool_padded_area", framework_name == "pytorch");
|
|
}
|
|
else if (layer_type == "GlobalAveragePool")
|
|
{
|
|
layerParams.type = "Pooling";
|
|
layerParams.set("pool", "AVE");
|
|
layerParams.set("global_pooling", true);
|
|
}
|
|
else if (layer_type == "Add" || layer_type == "Sum")
|
|
{
|
|
if (layer_id.find(node_proto.input(1)) == layer_id.end())
|
|
{
|
|
Mat blob = getBlob(node_proto, constBlobs, 1);
|
|
blob = blob.reshape(1, 1);
|
|
if (blob.total() == 1) {
|
|
layerParams.type = "Power";
|
|
layerParams.set("shift", blob.at<float>(0));
|
|
}
|
|
else {
|
|
layerParams.type = "Shift";
|
|
layerParams.blobs.push_back(blob);
|
|
}
|
|
}
|
|
else {
|
|
layerParams.type = "Eltwise";
|
|
}
|
|
}
|
|
else if (layer_type == "Sub")
|
|
{
|
|
Mat blob = (-1.0f) * getBlob(node_proto, constBlobs, 1);
|
|
blob = blob.reshape(1, 1);
|
|
if (blob.total() == 1) {
|
|
layerParams.type = "Power";
|
|
layerParams.set("shift", blob.at<float>(0));
|
|
}
|
|
else {
|
|
layerParams.type = "Shift";
|
|
layerParams.blobs.push_back(blob);
|
|
}
|
|
}
|
|
else if (layer_type == "Constant")
|
|
{
|
|
CV_Assert(node_proto.input_size() == 0);
|
|
CV_Assert(layerParams.blobs.size() == 1);
|
|
constBlobs.insert(std::make_pair(layerParams.name, layerParams.blobs[0]));
|
|
continue;
|
|
}
|
|
else if (layer_type == "ImageScaler")
|
|
{
|
|
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f;
|
|
layerParams.erase("scale");
|
|
|
|
if (layerParams.has("bias"))
|
|
{
|
|
layerParams.type = "Scale";
|
|
layerParams.blobs.push_back(
|
|
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale));
|
|
|
|
layerParams.set("bias_term", true);
|
|
Mat bias(1, layerParams.get("bias").size(), CV_32FC1);
|
|
for (int j = 0; j < bias.total(); j++) {
|
|
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j);
|
|
}
|
|
layerParams.blobs.push_back(bias);
|
|
layerParams.erase("bias");
|
|
}
|
|
else {
|
|
layerParams.set("scale", scale);
|
|
layerParams.type = "Power";
|
|
}
|
|
}
|
|
else if (layer_type == "LeakyRelu")
|
|
{
|
|
layerParams.type = "ReLU";
|
|
replaceLayerParam(layerParams, "alpha", "negative_slope");
|
|
}
|
|
else if (layer_type == "LRN")
|
|
{
|
|
replaceLayerParam(layerParams, "size", "local_size");
|
|
}
|
|
else if (layer_type == "BatchNormalization")
|
|
{
|
|
if (node_proto.input_size() != 5)
|
|
CV_Error(Error::StsNotImplemented,
|
|
"Expected input, scale, bias, mean and var");
|
|
|
|
layerParams.type = "BatchNorm";
|
|
replaceLayerParam(layerParams, "epsilon", "eps");
|
|
replaceLayerParam(layerParams, "spatial", "use_global_stats");
|
|
|
|
Mat meanData = getBlob(node_proto, constBlobs, 3);
|
|
Mat stdData = getBlob(node_proto, constBlobs, 4);
|
|
|
|
layerParams.blobs.push_back(meanData);
|
|
layerParams.blobs.push_back(stdData);
|
|
|
|
if (!node_proto.input(1).empty()) {
|
|
layerParams.set("has_weight", true);
|
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 1)); // weightData
|
|
} else {
|
|
layerParams.set("has_weight", false);
|
|
}
|
|
|
|
if (!node_proto.input(2).empty()) {
|
|
layerParams.set("has_bias", true);
|
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 2)); // biasData
|
|
} else {
|
|
layerParams.set("has_bias", false);
|
|
}
|
|
}
|
|
else if (layer_type == "Gemm")
|
|
{
|
|
CV_Assert(node_proto.input_size() >= 2);
|
|
layerParams.type = "InnerProduct";
|
|
Mat weights = getBlob(node_proto, constBlobs, 1);
|
|
int ind_num_out = 0;
|
|
if (layerParams.has("transB") && !layerParams.get<int>("transB")) {
|
|
transpose(weights, weights);
|
|
ind_num_out = 1;
|
|
}
|
|
layerParams.blobs.push_back(weights);
|
|
|
|
if (node_proto.input_size() == 3) {
|
|
Mat bias = getBlob(node_proto, constBlobs, 2);
|
|
layerParams.blobs.push_back(bias);
|
|
}
|
|
|
|
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]);
|
|
layerParams.set("bias_term", node_proto.input_size() == 3);
|
|
}
|
|
else if (layer_type == "MatMul")
|
|
{
|
|
CV_Assert(node_proto.input_size() == 2);
|
|
layerParams.type = "InnerProduct";
|
|
Mat blob = getBlob(node_proto, constBlobs, 1);
|
|
layerParams.blobs.push_back(blob.t());
|
|
layerParams.set("bias_term", false);
|
|
layerParams.set("num_output", layerParams.blobs[0].size[0]);
|
|
}
|
|
else if (layer_type == "Mul")
|
|
{
|
|
CV_Assert(node_proto.input_size() == 2);
|
|
if (layer_id.find(node_proto.input(1)) == layer_id.end()) {
|
|
Mat blob = getBlob(node_proto, constBlobs, 1);
|
|
blob = blob.reshape(1, 1);
|
|
if (blob.total() == 1) {
|
|
layerParams.set("scale", blob.at<float>(0));
|
|
layerParams.type = "Power";
|
|
}
|
|
else {
|
|
layerParams.blobs.push_back(blob);
|
|
layerParams.type = "Scale";
|
|
}
|
|
}
|
|
else {
|
|
layerParams.type = "Eltwise";
|
|
layerParams.set("operation", "prod");
|
|
}
|
|
}
|
|
else if (layer_type == "Conv")
|
|
{
|
|
CV_Assert(node_proto.input_size() >= 2);
|
|
layerParams.type = "Convolution";
|
|
for (int j = 1; j < node_proto.input_size(); j++) {
|
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
|
|
}
|
|
layerParams.set("num_output", layerParams.blobs[0].size[0]);
|
|
layerParams.set("bias_term", node_proto.input_size() == 3);
|
|
}
|
|
else if (layer_type == "Unsqueeze")
|
|
{
|
|
CV_Assert(node_proto.input_size() == 1);
|
|
Mat input = getBlob(node_proto, constBlobs, 0);
|
|
|
|
DictValue axes = layerParams.get("axes");
|
|
std::vector<int> dims;
|
|
for (int j = 0; j < input.dims; j++) {
|
|
dims.push_back(input.size[j]);
|
|
}
|
|
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size());
|
|
for (int j = 0; j < axes.size(); j++) {
|
|
dims.insert(dims.begin() + axes.getIntValue(j), 1);
|
|
}
|
|
|
|
Mat out = input.reshape(0, dims);
|
|
constBlobs.insert(std::make_pair(layerParams.name, out));
|
|
continue;
|
|
}
|
|
else if (layer_type == "Reshape")
|
|
{
|
|
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape"));
|
|
|
|
if (node_proto.input_size() == 2) {
|
|
Mat blob = getBlob(node_proto, constBlobs, 1);
|
|
CV_Assert(blob.type() == CV_32SC1);
|
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
|
|
Mat input = getBlob(node_proto, constBlobs, 0);
|
|
Mat out = input.reshape(0, static_cast<std::vector<int> >(blob));
|
|
constBlobs.insert(std::make_pair(layerParams.name, out));
|
|
continue;
|
|
}
|
|
layerParams.set("dim", DictValue::arrayInt<int*>(
|
|
blob.ptr<int>(), blob.total() ));
|
|
}
|
|
else {
|
|
DictValue shape = layerParams.get("shape");
|
|
std::vector<int> dim;
|
|
for (int j = 0; j < shape.size(); j++) {
|
|
dim.push_back(shape.getIntValue(j));
|
|
}
|
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
|
|
Mat input = getBlob(node_proto, constBlobs, 0);
|
|
Mat out = input.reshape(0, dim);
|
|
constBlobs.insert(std::make_pair(layerParams.name, out));
|
|
continue;
|
|
}
|
|
replaceLayerParam(layerParams, "shape", "dim");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int j = 0; j < node_proto.input_size(); j++) {
|
|
if (layer_id.find(node_proto.input(j)) == layer_id.end())
|
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
|
|
}
|
|
}
|
|
|
|
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams);
|
|
layer_id.insert(std::make_pair(layerParams.name, LayerInfo(id, 0)));
|
|
|
|
for (int j = 0; j < node_proto.input_size(); j++) {
|
|
layerId = layer_id.find(node_proto.input(j));
|
|
|
|
if (layerId != layer_id.end()) {
|
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Net readNetFromONNX(const String& onnxFile)
|
|
{
|
|
ONNXImporter onnxImporter(onnxFile.c_str());
|
|
Net net;
|
|
onnxImporter.populateNet(net);
|
|
return net;
|
|
}
|
|
|
|
Mat readTensorFromONNX(const String& path)
|
|
{
|
|
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto();
|
|
std::fstream input(path.c_str(), std::ios::in | std::ios::binary);
|
|
if (!tensor_proto.ParseFromIstream(&input)) {
|
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse data");
|
|
}
|
|
Mat mat = getMatFromTensor(tensor_proto);
|
|
releaseONNXTensor(tensor_proto);
|
|
return mat;
|
|
}
|
|
|
|
CV__DNN_EXPERIMENTAL_NS_END
|
|
}} // namespace
|
|
|
|
#endif
|