opencv/modules/objdetect/src/dotdetector.cpp
2011-04-26 13:57:55 +00:00

856 lines
28 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <iostream>
#include <fstream>
using namespace std;
namespace cv
{
/*
* Functions
*/
static void readDirContent( const string& descrFilename, vector<string>& names )
{
names.clear();
ifstream file( descrFilename.c_str() );
if ( !file.is_open() )
return;
while( !file.eof() )
{
string str; getline( file, str );
if( str.empty() ) break;
if( str[0] == '#' ) continue; // comment
names.push_back(str);
}
file.close();
}
static void computeGradients( const Mat& image, Mat& magnitudes, Mat& angles )
{
Mat dx, dy;
cv::Sobel( image, dx, CV_32F, 1, 0, 3 );
cv::Sobel( image, dy, CV_32F, 0, 1, 3 );
cv::cartToPolar( dx, dy, magnitudes, angles, true );
CV_Assert( magnitudes.type() == CV_32FC1 );
CV_Assert( angles.type() == CV_32FC1 );
}
static void computeWinData( const Mat& image, const Mat& mask, const Size& winSize,
Mat& winImage, Mat& winMask,
Mat& winMagnitudes, Mat& winAngles, int border=0 )
{
CV_Assert( border >= 0 );
Size extSize;
extSize.width = winSize.width + 2*border;
extSize.height = winSize.height + 2*border;
if( mask.empty() )
{
image.copyTo( winImage );
winMask.release();
}
else
{
vector<Point> points;
points.reserve( image.rows * image.cols );
for( int y = 0; y < mask.rows; y++ )
{
for( int x = 0; x < mask.cols; x++ )
{
if( mask.at<uchar>(y,x) )
points.push_back( cv::Point(x,y) );
}
}
cv::Rect_<float> brect = cv::boundingRect( cv::Mat(points) );
float ratio = std::min( (float)winSize.width/ brect.width, (float)winSize.height / brect.height );
float rectWidth = winSize.width / ratio;
float rectHeight = winSize.height / ratio;
float scaledBorder = border / ratio;
brect.x -= (rectWidth - brect.width) / 2.f + scaledBorder ;
brect.y -= (rectHeight - brect.height) / 2.f + scaledBorder;
brect.width = rectWidth + 2*scaledBorder;
brect.height = rectHeight + 2*scaledBorder;
// TODO the following cases:
assert( Rect(0, 0, image.cols, image.rows ).contains( brect.tl() ) );
assert( Rect(0, 0, image.cols, image.rows ).contains( brect.br() ) );
Mat subImage( image, brect );
Mat subMask( mask, brect );
cv::resize( subImage, winImage, extSize );
cv::resize( subMask, winMask, extSize );
CV_Assert( winImage.size() == extSize );
CV_Assert( winMask.size() == extSize );
}
computeGradients( winImage, winMagnitudes, winAngles );
// Mat bluredWinImage;
// cv::GaussianBlur( winImage, bluredWinImage, Size(), 0.5, 0.5 );
// computeGradients( bluredWinImage, magnitudes, angles );
}
inline int getBin( double angle )
{
double angle1 = angle >= 180 ? angle - 180 : angle;
int orientationBin = (int)(angle1 / DOTDetector::TrainParams::BIN_RANGE() );
assert( orientationBin < 7 );
return orientationBin;
}
static void copyTrainData( const Mat& magnitudesSrc, const Mat& anglesSrc, const Mat& mask,
Mat& magnitudesDst, Mat& anglesDst )
{
magnitudesDst = Mat( magnitudesSrc.size(), magnitudesSrc.type(), Scalar::all(-1) );
anglesDst = Mat( anglesSrc.size(), anglesSrc.type(), Scalar::all(-1) );
magnitudesSrc.copyTo( magnitudesDst, mask );
anglesSrc.copyTo( anglesDst, mask );
}
inline int countNonZeroBits( uchar val )
{
uchar v = val;
v = (v & 0x55) + ((v >> 1) & 0x55);
v = (v & 0x33) + ((v >> 2) & 0x33);
return (v & 0x0f) + ((v >> 4) & 0x0f);
}
inline void countNonZeroAndTexturelessBits( const Mat& mat, int& nonZeroBitsCount, int& texturelessBitsCount )
{
CV_Assert( mat.type() == CV_8UC1 );
nonZeroBitsCount = 0;
texturelessBitsCount = 0;
const uchar texturelessValue = 1 << DOTDetector::TrainParams::BIN_COUNT;
for( int y = 0; y < mat.rows; y++ )
{
for( int x = 0; x < mat.cols; x++ )
{
int curCount = countNonZeroBits( mat.at<uchar>(y,x) );
if( curCount )
{
nonZeroBitsCount += curCount;
if( mat.at<uchar>(y,x) == texturelessValue )
texturelessBitsCount++;
}
}
}
}
static void quantizeToTrain( const Mat& _magnitudesExt, const Mat& _anglesExt, const Mat& maskExt,
Mat& quantizedImage, const DOTDetector::TrainParams& params )
{
CV_DbgAssert( params.winSize.height % params.regionSize == 0 );
CV_DbgAssert( params.winSize.width % params.regionSize == 0 );
CV_DbgAssert( params.regionSize % 2 == 1 );
const int regionSize_2 = params.regionSize / 2;
Mat magnitudesExt, anglesExt;
copyTrainData( _magnitudesExt, _anglesExt, maskExt, magnitudesExt, anglesExt );
const int verticalRegionCount = params.winSize.height / params.regionSize;
const int horizontalRegionCount = params.winSize.width / params.regionSize;
quantizedImage = Mat( verticalRegionCount, horizontalRegionCount, CV_8UC1, Scalar::all(0) );
Rect curRect( regionSize_2, regionSize_2, params.regionSize, params.regionSize );
for( int vRegIdx = 0; vRegIdx < verticalRegionCount; vRegIdx++ )
{
for( int hRegIdx = 0; hRegIdx < horizontalRegionCount; hRegIdx++ )
{
uchar curRectBits = 0;
for( int yShift = -regionSize_2; yShift <= regionSize_2; yShift++ ) // TODO yShift += regionSize/2
{
Rect shiftedRect = curRect;
shiftedRect.y = curRect.y + yShift;
for( int xShift = -regionSize_2; xShift <= regionSize_2; xShift++ ) // TODO xShift += regionSize/2
{
shiftedRect.x = curRect.x + xShift;
Mat subMagnitudes( magnitudesExt, shiftedRect ), subMagnitudesCopy;
subMagnitudes.copyTo( subMagnitudesCopy );
Mat subAngles( anglesExt, shiftedRect );
double maxMagnitude;
int strongestCount = 0;
for( ; strongestCount < params.maxStrongestCount; strongestCount++ )
{
Point maxLoc;
cv::minMaxLoc( subMagnitudesCopy, 0, &maxMagnitude, 0, &maxLoc );
if( maxMagnitude < params.minMagnitude )
break;
subMagnitudesCopy.at<float>( maxLoc ) = -1;
double angle = subAngles.at<float>( maxLoc );
int orientationBin = getBin( angle );
curRectBits |= 1 << orientationBin;
}
if( strongestCount == 0 && maxMagnitude > 0 )
curRectBits |= 1 << DOTDetector::TrainParams::BIN_COUNT;
}
}
if( !( curRectBits == (1 << DOTDetector::TrainParams::BIN_COUNT) && cv::countNonZero(magnitudesExt(curRect) == -1) ) )
{
if( countNonZeroBits( curRectBits ) <= params.maxNonzeroBits )
quantizedImage.at<uchar>(vRegIdx, hRegIdx) = curRectBits;
}
curRect.x += params.regionSize;
}
curRect.x = regionSize_2;
curRect.y += params.regionSize;
}
}
static void quantizeToDetect( const Mat& _magnitudes, const Mat& angles, Mat& quantizedImage, const DOTDetector::TrainParams& params )
{
Mat magnitudes; _magnitudes.copyTo( magnitudes );
const int verticalRegionCount = magnitudes.rows / params.regionSize;
const int horizontalRegionCount = magnitudes.cols / params.regionSize;
quantizedImage = Mat( verticalRegionCount, horizontalRegionCount, CV_8UC1, Scalar::all(0) );
Rect curRect(0, 0, params.regionSize, params.regionSize);
const int maxStrongestCount = 1;
for( int vRegIdx = 0; vRegIdx < verticalRegionCount; vRegIdx++ )
{
for( int hRegIdx = 0; hRegIdx < horizontalRegionCount; hRegIdx++ )
{
uchar curRectBits = 0;
Mat subMagnitudes( magnitudes, curRect ), subMagnitudesCopy;
subMagnitudes.copyTo( subMagnitudesCopy );
Mat subAngles( angles, curRect );
double maxMagnitude = -1;
int strongestCount = 0;
for( ; strongestCount < maxStrongestCount; strongestCount++ )
{
Point maxLoc;
cv::minMaxLoc( subMagnitudesCopy, 0, &maxMagnitude, 0, &maxLoc );
if( maxMagnitude < params.minMagnitude )
break;
subMagnitudesCopy.at<float>( maxLoc ) = -1;
double angle = subAngles.at<float>( maxLoc );
int orientationBin = getBin( angle );
curRectBits |= 1 << orientationBin;
}
if( strongestCount == 0 && maxMagnitude > 0 )
curRectBits |= 1 << DOTDetector::TrainParams::BIN_COUNT;
quantizedImage.at<uchar>(vRegIdx, hRegIdx) = curRectBits;
curRect.x += params.regionSize;
}
curRect.x = 0;
curRect.y += params.regionSize;
}
}
inline void andQuantizedImages( const Mat& queryQuantizedImage, const Mat& trainQuantizedImage, float& ratio, float& texturelessRatio )
{
int nonZeroCount = 0, texturelessCount = 0;
countNonZeroAndTexturelessBits( trainQuantizedImage & queryQuantizedImage, nonZeroCount, texturelessCount );
CV_Assert( nonZeroCount > 0 );
int area = cv::countNonZero( trainQuantizedImage );
ratio = (float)nonZeroCount / area;
texturelessRatio = texturelessCount / nonZeroCount;
}
static void computeTrainUsedStrongestMask( const Mat& _magnitudesExt, const Mat& _anglesExt, const Mat& maskExt, const Mat& quantizedImage,
Mat& winUsedStrongestMask, int regionSize, int minMagnitude )
{
const int usedLabel = 255;
const int regionSize_2 = regionSize / 2;
Mat magnitudesExt, anglesExt;
copyTrainData( _magnitudesExt, _anglesExt, maskExt, magnitudesExt, anglesExt );
const int verticalRegionCount = quantizedImage.rows;
const int horizontalRegionCount = quantizedImage.cols;
Mat binsExt( anglesExt.size(), CV_32SC1, Scalar::all(-1) );
for( int y = 0; y < binsExt.rows; y++ )
{
for( int x = 0; x < binsExt.cols; x++ )
{
if( magnitudesExt.at<float>(y,x) >= minMagnitude )
{
binsExt.at<int>(y,x) = getBin( anglesExt.at<float>(y,x) );
}
}
}
Rect curRect( 0, 0, regionSize + 2*regionSize_2, regionSize + 2*regionSize_2 );
Mat colorsExt( anglesExt.size(), CV_8UC1, Scalar::all(0) );
for( int vRegIdx = 0; vRegIdx < verticalRegionCount; vRegIdx++ )
{
for( int hRegIdx = 0; hRegIdx < horizontalRegionCount; hRegIdx++ )
{
Mat subColors = colorsExt( curRect );
Mat subBins = binsExt( curRect );
uchar bits = quantizedImage.at<uchar>(vRegIdx, hRegIdx);
for( int binIdx = 0; binIdx < DOTDetector::TrainParams::BIN_COUNT; binIdx++ )
{
if( bits & (1 << binIdx) )
{
float gray = usedLabel/* * weights[vRegIdx*horizontalRegionCount+hRegIdx][binIdx]*/;
subColors.setTo( Scalar((uchar)cvRound(gray)), subBins == binIdx );
}
}
curRect.x += regionSize;
}
curRect.x = 0;
curRect.y += regionSize;
}
Mat colors = colorsExt( Rect(regionSize_2, regionSize_2, binsExt.cols - 2*regionSize_2, binsExt.rows - 2*regionSize_2) );
colors.convertTo( winUsedStrongestMask, CV_8UC1 );
}
/*
* DOTDetector::Params
*/
DOTDetector::TrainParams::TrainParams() : winSize(Size(84,84)), regionSize(7),
minMagnitude(60), maxStrongestCount(7), maxNonzeroBits(6),
minRatio(0.85f) {}
DOTDetector::TrainParams::TrainParams( const Size& _winSize, int _regionSize, int _minMagnitude,
int _maxStrongestCount, int _maxNonzeroBits,
float _minRatio ) :
winSize(_winSize), regionSize(_regionSize), minMagnitude(_minMagnitude),
maxStrongestCount(_maxStrongestCount), maxNonzeroBits(_maxNonzeroBits),
minRatio(_minRatio)
{
asserts();
}
void DOTDetector::TrainParams::asserts() const
{
CV_Assert( winSize.width > 0 && winSize.height > 0 );
CV_Assert( regionSize > 0 && regionSize % 2 == 1);
CV_Assert( winSize.width % regionSize == 0 );
CV_Assert( winSize.height % regionSize == 0 );
CV_Assert( minMagnitude > 0 );
CV_Assert( maxStrongestCount > 0 && maxStrongestCount <= BIN_COUNT );
CV_Assert( maxNonzeroBits > 0 && maxNonzeroBits <= BIN_COUNT );
CV_Assert( minRatio > 0.f && minRatio < 1.f );
}
void DOTDetector::TrainParams::read( FileNode& fn )
{
winSize.width = fn["winSize.width"];
winSize.height = fn["winSize.height"];
regionSize = fn["regionSize"];
minMagnitude = fn["minMagnitude"];
maxStrongestCount = fn["maxStrongestCount"];
maxNonzeroBits = fn["maxNonzeroBits"];
minRatio = fn["minRatio"];
asserts();
}
void DOTDetector::TrainParams::write( FileStorage& fs ) const
{
CV_Assert( fs.isOpened() );
fs << "winSize.width" << winSize.width;
fs << "winSize.height" << winSize.height;
fs << "regionSize" << regionSize;
fs << "minMagnitude" << minMagnitude;
fs << "maxStrongestCount" << maxStrongestCount;
fs << "maxNonzeroBits" << maxNonzeroBits;
fs << "minRatio" << minRatio;
}
DOTDetector::DetectParams::DetectParams() : minRatio(0.8f), minRegionSize(7), maxRegionSize(9), regionSizeStep(2),
isGroup(true), groupThreshold(3), groupEps(0.2) {}
DOTDetector::DetectParams::DetectParams( float _minRatio, int _minRegionSize, int _maxRegionSize, int _regionSizeStep,
bool _isGroup, int _groupThreshold, double _groupEps ) :
minRatio(_minRatio), minRegionSize(_minRegionSize), maxRegionSize(_maxRegionSize), regionSizeStep(_regionSizeStep),
isGroup(_isGroup), groupThreshold(_groupThreshold), groupEps(_groupEps)
{
asserts();
}
void DOTDetector::DetectParams::asserts( float minTrainRatio ) const
{
CV_Assert( minRatio > 0 && minRatio < 1 );
CV_Assert( minRatio <= minTrainRatio );
CV_Assert( minRegionSize > 0 && minRegionSize % 2 == 1 );
CV_Assert( maxRegionSize > 0 && maxRegionSize % 2 == 1 );
CV_Assert( minRegionSize <= maxRegionSize );
CV_Assert( regionSizeStep % 2 == 0 );
if( isGroup )
{
CV_Assert( groupThreshold > 0 );
CV_Assert( groupEps > 0 && groupEps < 1 );
}
}
/*
* DOTDetector::DOTTemplate
*/
DOTDetector::DOTTemplate::DOTTemplate() : texturelessRatio(-1.f) {}
DOTDetector::DOTTemplate::DOTTemplate( const cv::Mat& _quantizedImage, int _classID, const cv::Mat& _maskedImage, const cv::Mat& _gradientMask ) :
quantizedImage(_quantizedImage), texturelessRatio(computeTexturelessRatio(_quantizedImage))
{
addClassID( _classID, _maskedImage, _gradientMask );
}
void DOTDetector::DOTTemplate::addClassID( int _classID, const cv::Mat& _maskedImage, const cv::Mat& _gradientMask )
{
CV_Assert( _classID >= 0 );
bool isFound = false;
for( size_t i = 0; i < classIDs.size(); i++ )
{
if( classIDs[i] == _classID )
{
isFound = true;
break;
}
}
if( !isFound )
{
classIDs.push_back( _classID );
if( !_maskedImage.empty() )
{
CV_Assert( !_gradientMask.empty() );
maskedImages.push_back( _maskedImage );
gradientMasks.push_back( _gradientMask );
}
}
}
float DOTDetector::DOTTemplate::computeTexturelessRatio( const cv::Mat& quantizedImage )
{
const uchar TEXTURELESS_VAL = 1 << DOTDetector::TrainParams::BIN_COUNT;
int texturelessCount = 0;
for( int y = 0; y < quantizedImage.rows; y++ )
{
for( int x = 0; x < quantizedImage.cols; x++ )
{
if( quantizedImage.at<uchar>(y,x) & TEXTURELESS_VAL )
texturelessCount++;
}
}
return (float)texturelessCount/ (float)(quantizedImage.cols * quantizedImage.rows);
}
void DOTDetector::DOTTemplate::read( FileNode& fn )
{
fn["template"] >> quantizedImage;
fn["classIDs"] >> classIDs;
texturelessRatio = fn["texturelessRatio"];
}
void DOTDetector::DOTTemplate::write( FileStorage& fs ) const
{
fs << "template" << quantizedImage;
fs << "classIDs" << classIDs;
fs << "texturelessRatio" << texturelessRatio;
}
/*
* DOTDetector
*/
DOTDetector::DOTDetector() : isAddImageAndGradientMask( false )
{
}
DOTDetector::DOTDetector( const std::string& filename ) : isAddImageAndGradientMask( false )
{
load( filename );
}
DOTDetector::~DOTDetector()
{
clear();
}
void DOTDetector::clear()
{
classNames.clear();
dotTemplates.clear();
}
void DOTDetector::read( FileNode& fn )
{
clear();
// read params
FileNode fn_params = fn["train_params"];
trainParams.read( fn_params );
// read class names
int classCount = fn["class_count"];
FileNodeIterator fni = fn["class_names"].begin();
for( int i = 0; i < classCount; i++ )
{
string name;
fni >> name;
classNames.push_back( name );
}
// read DOT templates
int templatesCount = fn["templates_count"];
fni = fn["templates"].begin();
for( int i = 0; i < templatesCount; i++ )
{
dotTemplates.push_back( DOTTemplate() );
FileNode cur_fn = *fni;
dotTemplates.rbegin()->read( cur_fn );
}
}
void DOTDetector::write( FileStorage& fs ) const
{
// write params
fs << "train_params" << "{";
trainParams.write( fs );
fs << "}"; //params
// write class names
fs << "class_count" << (int)classNames.size();
fs << "class_names" << "[";
for( size_t i = 0; i < classNames.size(); i++ )
{
fs << classNames[i];
}
fs << "]";
// write dot templates
fs << "templates_count" << (int)dotTemplates.size();
fs << "templates" << "[";
for( size_t i = 0; i < dotTemplates.size(); i++ )
{
dotTemplates[i].write( fs );
}
fs << "]";
}
void DOTDetector::load( const std::string& filename )
{
FileStorage fs( filename, FileStorage::READ );
if( fs.isOpened() )
{
FileNode fn = fs.getFirstTopLevelNode();
read( fn );
}
}
void DOTDetector::save( const std::string& filename ) const
{
FileStorage fs( filename, FileStorage::WRITE );
if( fs.isOpened() )
{
fs << "dot_detector" << "{";
write( fs );
fs << "}";
}
}
void DOTDetector::train( const string& _baseDirName, const TrainParams& _trainParams, bool _isAddImageAndGradientMask )
{
clear();
trainParams = _trainParams;
trainParams.asserts();
string baseDirName = _baseDirName + (*(_baseDirName.end()-1) == '/' ? "" : "/");
const int regionSize_2 = trainParams.regionSize / 2;
readDirContent( baseDirName+"objects.txt", classNames );
for( size_t objIdx = 0; objIdx < classNames.size(); objIdx++ )
{
string curObjDirName = baseDirName + classNames[objIdx] + "/";
cout << "===============" << classNames[objIdx] << "===============" << endl;
vector<string> imagesFilenames;
readDirContent( curObjDirName + "images.txt", imagesFilenames );
if( imagesFilenames.empty() )
continue;
int countSamples = 0;
for( size_t imgIdx = 0; imgIdx < imagesFilenames.size(); imgIdx++ )
{
cout << imagesFilenames[imgIdx] ;
Mat image = cv::imread( curObjDirName + imagesFilenames[imgIdx], 0 );
if( image.empty() )
continue;
Mat mask;
{
Mat _mask = cv::imread( curObjDirName + imagesFilenames[imgIdx] + ".mask.png", 0 );
if( _mask.empty() )
{
cout << " - FAIL" << endl;
continue;
}
mask = _mask;
}
cout << " - OK" << endl;
countSamples++;
Mat trainImageExt, trainMaskExt, trainQuantizedImage, detectQuantizedImage;
Mat trainMagnitudesExt, trainAnglesExt;
computeWinData( image, mask, trainParams.winSize,
trainImageExt, trainMaskExt,
trainMagnitudesExt, trainAnglesExt, regionSize_2 );
quantizeToTrain( trainMagnitudesExt, trainAnglesExt, trainMaskExt, trainQuantizedImage, trainParams );
quantizeToDetect( trainMagnitudesExt, trainAnglesExt, detectQuantizedImage, trainParams );
vector<vector<Rect> > rects;
vector<vector<float> > ratios;
vector<vector<int> > trainTemplatesIdxs;
detectQuantized( detectQuantizedImage, trainParams.minRatio, rects, ratios, trainTemplatesIdxs );
Mat maskedTrainImage, trainGradientMask;
if( isAddImageAndGradientMask )
{
trainImageExt.copyTo( maskedTrainImage, trainMaskExt);
computeTrainUsedStrongestMask( trainMagnitudesExt, trainAnglesExt, trainMaskExt, trainQuantizedImage,
trainGradientMask, trainParams.regionSize, trainParams.minMagnitude );
}
int classID = classNames.size()-1;
bool isFound = false;
for( size_t cIdx = 0; cIdx < trainTemplatesIdxs.size(); cIdx++ )
{
if( trainTemplatesIdxs[cIdx].size() )
{
for( size_t i = 0; i < trainTemplatesIdxs[cIdx].size(); i++ )
{
int tIdx = trainTemplatesIdxs[cIdx][i];
dotTemplates[tIdx].addClassID( classID, maskedTrainImage, trainGradientMask );
isFound = true;
}
}
}
if( !isFound )
{
dotTemplates.push_back( DOTTemplate(trainQuantizedImage, classID, maskedTrainImage, trainGradientMask) );
}
cout << "dot templates size = " << dotTemplates.size() << endl;
}
}
}
void DOTDetector::detectQuantized( const Mat& testQuantizedImage, float minRatio,
vector<vector<Rect> >& rects, vector<vector<float> >& ratios, vector<vector<int> >& trainTemlateIdxs ) const
{
if( dotTemplates.empty() )
return;
const int regionsPerRow = dotTemplates[0].quantizedImage.rows;
const int regionsPerCol = dotTemplates[0].quantizedImage.cols;
int classCount = classNames.size();
rects.resize( classCount );
ratios.resize( classCount );
trainTemlateIdxs.resize( classCount );
for( size_t tIdx = 0; tIdx < dotTemplates.size(); tIdx++ )
{
Rect r( 0, 0, regionsPerCol, regionsPerRow );
for( r.y = 0; r.y <= testQuantizedImage.rows-r.height; r.y++ )
{
for( r.x = 0; r.x <= testQuantizedImage.cols-r.width; r.x++ )
{
float ratio, texturelessRatio;
andQuantizedImages( testQuantizedImage(r), dotTemplates[tIdx].quantizedImage, ratio, texturelessRatio );
if( ratio > minRatio && texturelessRatio < dotTemplates[tIdx].texturelessRatio )
{
for( size_t cIdx = 0; cIdx < dotTemplates[tIdx].classIDs.size(); cIdx++ )
{
int classID = dotTemplates[tIdx].classIDs[cIdx];
rects[classID].push_back( r );
ratios[classID].push_back( ratio );
trainTemlateIdxs[classID].push_back( tIdx );
}
}
}
}
}
}
void DOTDetector::detectMultiScale( const Mat& image, vector<vector<Rect> >& rects,
const DetectParams& detectParams, vector<vector<float> >* ratios, vector<vector<int> >* trainTemplateIndices ) const
{
detectParams.asserts( trainParams.minRatio );
int classCount = classNames.size();
rects.resize( classCount );
if( ratios )
{
ratios->clear();
if( !detectParams.isGroup )
ratios->resize( classCount );
}
if( trainTemplateIndices )
{
trainTemplateIndices->clear();
if( !detectParams.isGroup )
trainTemplateIndices->resize( classCount );
}
Mat magnitudes, angles;
computeGradients( image, magnitudes, angles );
for( int regionSize = detectParams.minRegionSize; regionSize <= detectParams.maxRegionSize; regionSize += detectParams.regionSizeStep )
{
Mat quantizedImage;
vector<vector<Rect> > curRects;
vector<vector<float> > curRatios;
vector<vector<int> > curTrainTemlateIdxs;
quantizeToDetect( magnitudes, angles, quantizedImage, trainParams );
detectQuantized( quantizedImage, detectParams.minRatio, curRects, curRatios, curTrainTemlateIdxs );
for( int ci = 0; ci < classCount; ci++ )
{
for( size_t ri = 0; ri < curRects[ci].size(); ri++ )
{
Rect r = curRects[ci][ri];
r.x *= regionSize;
r.y *= regionSize;
r.width *= regionSize;
r.height *= regionSize;
rects[ci].push_back( r );
if( ratios && !detectParams.isGroup )
(*ratios)[ci].push_back( curRatios[ci][ri] );
if( trainTemplateIndices && !detectParams.isGroup )
(*trainTemplateIndices)[ci].push_back( curTrainTemlateIdxs[ci][ri] );
}
}
}
if( detectParams.isGroup )
groupRectanglesList( rects, detectParams.groupThreshold, detectParams.groupEps );
}
const vector<DOTDetector::DOTTemplate>& DOTDetector::getDOTTemplates() const
{
return dotTemplates;
}
const vector<string>& DOTDetector::getClassNames() const
{
return classNames;
}
void DOTDetector::groupRectanglesList( std::vector<std::vector<cv::Rect> >& rectList, int groupThreshold, double eps )
{
for( size_t i = 0; i < rectList.size(); i++ )
groupRectangles( rectList[i], groupThreshold, eps );
}
} // namespace cv
/* End of file. */