mirror of
https://github.com/opencv/opencv.git
synced 2025-01-23 10:03:11 +08:00
325 lines
8.1 KiB
Plaintext
325 lines
8.1 KiB
Plaintext
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
using namespace cv::cudev;
|
|
using namespace cvtest;
|
|
|
|
TEST(Sum, GpuMat)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<float> dst = sum_(d_src);
|
|
float res;
|
|
dst.download(_OutputArray(&res, 1));
|
|
|
|
Scalar dst_gold = cv::sum(src);
|
|
|
|
ASSERT_FLOAT_EQ(static_cast<float>(dst_gold[0]), res);
|
|
}
|
|
|
|
TEST(Sum, Expr)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src1 = randomMat(size, CV_32FC1, 0, 1);
|
|
Mat src2 = randomMat(size, CV_32FC1, 0, 1);
|
|
|
|
GpuMat_<float> d_src1(src1), d_src2(src2);
|
|
|
|
GpuMat_<float> dst = sum_(abs_(d_src1 - d_src2));
|
|
float res;
|
|
dst.download(_OutputArray(&res, 1));
|
|
|
|
Scalar dst_gold = cv::norm(src1, src2, NORM_L1);
|
|
|
|
ASSERT_FLOAT_EQ(static_cast<float>(dst_gold[0]), res);
|
|
}
|
|
|
|
TEST(MinVal, GpuMat)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<float> dst = minVal_(d_src);
|
|
float res;
|
|
dst.download(_OutputArray(&res, 1));
|
|
|
|
double res_gold;
|
|
cv::minMaxLoc(src, &res_gold, 0);
|
|
|
|
ASSERT_FLOAT_EQ(static_cast<float>(res_gold), res);
|
|
}
|
|
|
|
TEST(MaxVal, Expr)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src1 = randomMat(size, CV_32SC1);
|
|
Mat src2 = randomMat(size, CV_32SC1);
|
|
|
|
GpuMat_<int> d_src1(src1), d_src2(src2);
|
|
|
|
GpuMat_<float> dst = maxVal_(abs_(d_src1 - d_src2));
|
|
float res;
|
|
dst.download(_OutputArray(&res, 1));
|
|
|
|
double res_gold = cv::norm(src1, src2, NORM_INF);
|
|
|
|
ASSERT_FLOAT_EQ(static_cast<float>(res_gold), res);
|
|
}
|
|
|
|
TEST(MinMaxVal, GpuMat)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<float> dst = minMaxVal_(d_src);
|
|
float res[2];
|
|
dst.download(Mat(1, 2, CV_32FC1, res));
|
|
|
|
double res_gold[2];
|
|
cv::minMaxLoc(src, &res_gold[0], &res_gold[1]);
|
|
|
|
ASSERT_FLOAT_EQ(static_cast<float>(res_gold[0]), res[0]);
|
|
ASSERT_FLOAT_EQ(static_cast<float>(res_gold[1]), res[1]);
|
|
}
|
|
|
|
TEST(NonZeroCount, Accuracy)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1, 0, 5);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<int> dst1 = countNonZero_(d_src);
|
|
GpuMat_<int> dst2 = sum_(cvt_<int>(d_src) != 0);
|
|
|
|
EXPECT_MAT_NEAR(dst1, dst2, 0.0);
|
|
}
|
|
|
|
TEST(ReduceToRow, Sum)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<int> dst = reduceToRow_<Sum<int> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 0, REDUCE_SUM, CV_32S);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
TEST(ReduceToRow, Avg)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<float> dst = reduceToRow_<Avg<float> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 0, REDUCE_AVG, CV_32F);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-4);
|
|
}
|
|
|
|
TEST(ReduceToRow, Min)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<uchar> dst = reduceToRow_<Min<uchar> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 0, REDUCE_MIN);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
TEST(ReduceToRow, Max)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<uchar> dst = reduceToRow_<Max<uchar> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 0, REDUCE_MAX);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
TEST(ReduceToColumn, Sum)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<int> dst = reduceToColumn_<Sum<int> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 1, REDUCE_SUM, CV_32S);
|
|
dst_gold.cols = dst_gold.rows;
|
|
dst_gold.rows = 1;
|
|
dst_gold.step = dst_gold.cols * dst_gold.elemSize();
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
TEST(ReduceToColumn, Avg)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<float> dst = reduceToColumn_<Avg<float> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 1, REDUCE_AVG, CV_32F);
|
|
dst_gold.cols = dst_gold.rows;
|
|
dst_gold.rows = 1;
|
|
dst_gold.step = dst_gold.cols * dst_gold.elemSize();
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 1e-4);
|
|
}
|
|
|
|
TEST(ReduceToColumn, Min)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<uchar> dst = reduceToColumn_<Min<uchar> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 1, REDUCE_MIN);
|
|
dst_gold.cols = dst_gold.rows;
|
|
dst_gold.rows = 1;
|
|
dst_gold.step = dst_gold.cols * dst_gold.elemSize();
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
TEST(ReduceToColumn, Max)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<uchar> dst = reduceToColumn_<Max<uchar> >(d_src);
|
|
|
|
Mat dst_gold;
|
|
cv::reduce(src, dst_gold, 1, REDUCE_MAX);
|
|
dst_gold.cols = dst_gold.rows;
|
|
dst_gold.rows = 1;
|
|
dst_gold.step = dst_gold.cols * dst_gold.elemSize();
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|
|
|
|
static void calcHistGold(const cv::Mat& src, cv::Mat& hist)
|
|
{
|
|
hist.create(1, 256, CV_32SC1);
|
|
hist.setTo(cv::Scalar::all(0));
|
|
|
|
int* hist_row = hist.ptr<int>();
|
|
for (int y = 0; y < src.rows; ++y)
|
|
{
|
|
const uchar* src_row = src.ptr(y);
|
|
|
|
for (int x = 0; x < src.cols; ++x)
|
|
++hist_row[src_row[x]];
|
|
}
|
|
}
|
|
|
|
TEST(Histogram, GpuMat)
|
|
{
|
|
const Size size = randomSize(100, 400);
|
|
|
|
Mat src = randomMat(size, CV_8UC1);
|
|
|
|
GpuMat_<uchar> d_src(src);
|
|
|
|
GpuMat_<int> dst = histogram_<256>(d_src);
|
|
|
|
Mat dst_gold;
|
|
calcHistGold(src, dst_gold);
|
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
|
|
}
|