mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
704 lines
21 KiB
C++
704 lines
21 KiB
C++
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/imgproc/imgproc_c.h> // cvFindContours
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#include <opencv2/objdetect/objdetect.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <iterator>
|
|
#include <set>
|
|
#include <cstdio>
|
|
#include <iostream>
|
|
|
|
// Function prototypes
|
|
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f);
|
|
|
|
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
|
|
int num_modalities, cv::Point offset, cv::Size size,
|
|
cv::Mat& mask, cv::Mat& dst);
|
|
|
|
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
|
|
int num_modalities, cv::Point offset, cv::Size size,
|
|
cv::Mat& dst);
|
|
|
|
void drawResponse(const std::vector<cv::linemod::Template>& templates,
|
|
int num_modalities, cv::Mat& dst, cv::Point offset, int T);
|
|
|
|
cv::Mat displayQuantized(const cv::Mat& quantized);
|
|
|
|
// Copy of cv_mouse from cv_utilities
|
|
class Mouse
|
|
{
|
|
public:
|
|
static void start(const std::string& a_img_name)
|
|
{
|
|
cvSetMouseCallback(a_img_name.c_str(), Mouse::cv_on_mouse, 0);
|
|
}
|
|
static int event(void)
|
|
{
|
|
int l_event = m_event;
|
|
m_event = -1;
|
|
return l_event;
|
|
}
|
|
static int x(void)
|
|
{
|
|
return m_x;
|
|
}
|
|
static int y(void)
|
|
{
|
|
return m_y;
|
|
}
|
|
|
|
private:
|
|
static void cv_on_mouse(int a_event, int a_x, int a_y, int, void *)
|
|
{
|
|
m_event = a_event;
|
|
m_x = a_x;
|
|
m_y = a_y;
|
|
}
|
|
|
|
static int m_event;
|
|
static int m_x;
|
|
static int m_y;
|
|
};
|
|
int Mouse::m_event;
|
|
int Mouse::m_x;
|
|
int Mouse::m_y;
|
|
|
|
static void help()
|
|
{
|
|
printf("Usage: openni_demo [templates.yml]\n\n"
|
|
"Place your object on a planar, featureless surface. With the mouse,\n"
|
|
"frame it in the 'color' window and right click to learn a first template.\n"
|
|
"Then press 'l' to enter online learning mode, and move the camera around.\n"
|
|
"When the match score falls between 90-95%% the demo will add a new template.\n\n"
|
|
"Keys:\n"
|
|
"\t h -- This help page\n"
|
|
"\t l -- Toggle online learning\n"
|
|
"\t m -- Toggle printing match result\n"
|
|
"\t t -- Toggle printing timings\n"
|
|
"\t w -- Write learned templates to disk\n"
|
|
"\t [ ] -- Adjust matching threshold: '[' down, ']' up\n"
|
|
"\t q -- Quit\n\n");
|
|
}
|
|
|
|
// Adapted from cv_timer in cv_utilities
|
|
class Timer
|
|
{
|
|
public:
|
|
Timer() : start_(0), time_(0) {}
|
|
|
|
void start()
|
|
{
|
|
start_ = cv::getTickCount();
|
|
}
|
|
|
|
void stop()
|
|
{
|
|
CV_Assert(start_ != 0);
|
|
int64 end = cv::getTickCount();
|
|
time_ += end - start_;
|
|
start_ = 0;
|
|
}
|
|
|
|
double time()
|
|
{
|
|
double ret = time_ / cv::getTickFrequency();
|
|
time_ = 0;
|
|
return ret;
|
|
}
|
|
|
|
private:
|
|
int64 start_, time_;
|
|
};
|
|
|
|
// Functions to store detector and templates in single XML/YAML file
|
|
static cv::Ptr<cv::linemod::Detector> readLinemod(const std::string& filename)
|
|
{
|
|
cv::Ptr<cv::linemod::Detector> detector = new cv::linemod::Detector;
|
|
cv::FileStorage fs(filename, cv::FileStorage::READ);
|
|
detector->read(fs.root());
|
|
|
|
cv::FileNode fn = fs["classes"];
|
|
for (cv::FileNodeIterator i = fn.begin(), iend = fn.end(); i != iend; ++i)
|
|
detector->readClass(*i);
|
|
|
|
return detector;
|
|
}
|
|
|
|
static void writeLinemod(const cv::Ptr<cv::linemod::Detector>& detector, const std::string& filename)
|
|
{
|
|
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
|
|
detector->write(fs);
|
|
|
|
std::vector<std::string> ids = detector->classIds();
|
|
fs << "classes" << "[";
|
|
for (int i = 0; i < (int)ids.size(); ++i)
|
|
{
|
|
fs << "{";
|
|
detector->writeClass(ids[i], fs);
|
|
fs << "}"; // current class
|
|
}
|
|
fs << "]"; // classes
|
|
}
|
|
|
|
|
|
int main(int argc, char * argv[])
|
|
{
|
|
// Various settings and flags
|
|
bool show_match_result = true;
|
|
bool show_timings = false;
|
|
bool learn_online = false;
|
|
int num_classes = 0;
|
|
int matching_threshold = 80;
|
|
/// @todo Keys for changing these?
|
|
cv::Size roi_size(200, 200);
|
|
int learning_lower_bound = 90;
|
|
int learning_upper_bound = 95;
|
|
|
|
// Timers
|
|
Timer extract_timer;
|
|
Timer match_timer;
|
|
|
|
// Initialize HighGUI
|
|
help();
|
|
cv::namedWindow("color");
|
|
cv::namedWindow("normals");
|
|
Mouse::start("color");
|
|
|
|
// Initialize LINEMOD data structures
|
|
cv::Ptr<cv::linemod::Detector> detector;
|
|
std::string filename;
|
|
if (argc == 1)
|
|
{
|
|
filename = "linemod_templates.yml";
|
|
detector = cv::linemod::getDefaultLINEMOD();
|
|
}
|
|
else
|
|
{
|
|
detector = readLinemod(argv[1]);
|
|
|
|
std::vector<std::string> ids = detector->classIds();
|
|
num_classes = detector->numClasses();
|
|
printf("Loaded %s with %d classes and %d templates\n",
|
|
argv[1], num_classes, detector->numTemplates());
|
|
if (!ids.empty())
|
|
{
|
|
printf("Class ids:\n");
|
|
std::copy(ids.begin(), ids.end(), std::ostream_iterator<std::string>(std::cout, "\n"));
|
|
}
|
|
}
|
|
int num_modalities = (int)detector->getModalities().size();
|
|
|
|
// Open Kinect sensor
|
|
cv::VideoCapture capture( CV_CAP_OPENNI );
|
|
if (!capture.isOpened())
|
|
{
|
|
printf("Could not open OpenNI-capable sensor\n");
|
|
return -1;
|
|
}
|
|
capture.set(CV_CAP_PROP_OPENNI_REGISTRATION, 1);
|
|
double focal_length = capture.get(CV_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH);
|
|
//printf("Focal length = %f\n", focal_length);
|
|
|
|
// Main loop
|
|
cv::Mat color, depth;
|
|
for(;;)
|
|
{
|
|
// Capture next color/depth pair
|
|
capture.grab();
|
|
capture.retrieve(depth, CV_CAP_OPENNI_DEPTH_MAP);
|
|
capture.retrieve(color, CV_CAP_OPENNI_BGR_IMAGE);
|
|
|
|
std::vector<cv::Mat> sources;
|
|
sources.push_back(color);
|
|
sources.push_back(depth);
|
|
cv::Mat display = color.clone();
|
|
|
|
if (!learn_online)
|
|
{
|
|
cv::Point mouse(Mouse::x(), Mouse::y());
|
|
int event = Mouse::event();
|
|
|
|
// Compute ROI centered on current mouse location
|
|
cv::Point roi_offset(roi_size.width / 2, roi_size.height / 2);
|
|
cv::Point pt1 = mouse - roi_offset; // top left
|
|
cv::Point pt2 = mouse + roi_offset; // bottom right
|
|
|
|
if (event == CV_EVENT_RBUTTONDOWN)
|
|
{
|
|
// Compute object mask by subtracting the plane within the ROI
|
|
std::vector<CvPoint> chain(4);
|
|
chain[0] = pt1;
|
|
chain[1] = cv::Point(pt2.x, pt1.y);
|
|
chain[2] = pt2;
|
|
chain[3] = cv::Point(pt1.x, pt2.y);
|
|
cv::Mat mask;
|
|
subtractPlane(depth, mask, chain, focal_length);
|
|
|
|
cv::imshow("mask", mask);
|
|
|
|
// Extract template
|
|
std::string class_id = cv::format("class%d", num_classes);
|
|
cv::Rect bb;
|
|
extract_timer.start();
|
|
int template_id = detector->addTemplate(sources, class_id, mask, &bb);
|
|
extract_timer.stop();
|
|
if (template_id != -1)
|
|
{
|
|
printf("*** Added template (id %d) for new object class %d***\n",
|
|
template_id, num_classes);
|
|
//printf("Extracted at (%d, %d) size %dx%d\n", bb.x, bb.y, bb.width, bb.height);
|
|
}
|
|
|
|
++num_classes;
|
|
}
|
|
|
|
// Draw ROI for display
|
|
cv::rectangle(display, pt1, pt2, CV_RGB(0,0,0), 3);
|
|
cv::rectangle(display, pt1, pt2, CV_RGB(255,255,0), 1);
|
|
}
|
|
|
|
// Perform matching
|
|
std::vector<cv::linemod::Match> matches;
|
|
std::vector<std::string> class_ids;
|
|
std::vector<cv::Mat> quantized_images;
|
|
match_timer.start();
|
|
detector->match(sources, (float)matching_threshold, matches, class_ids, quantized_images);
|
|
match_timer.stop();
|
|
|
|
int classes_visited = 0;
|
|
std::set<std::string> visited;
|
|
|
|
for (int i = 0; (i < (int)matches.size()) && (classes_visited < num_classes); ++i)
|
|
{
|
|
cv::linemod::Match m = matches[i];
|
|
|
|
if (visited.insert(m.class_id).second)
|
|
{
|
|
++classes_visited;
|
|
|
|
if (show_match_result)
|
|
{
|
|
printf("Similarity: %5.1f%%; x: %3d; y: %3d; class: %s; template: %3d\n",
|
|
m.similarity, m.x, m.y, m.class_id.c_str(), m.template_id);
|
|
}
|
|
|
|
// Draw matching template
|
|
const std::vector<cv::linemod::Template>& templates = detector->getTemplates(m.class_id, m.template_id);
|
|
drawResponse(templates, num_modalities, display, cv::Point(m.x, m.y), detector->getT(0));
|
|
|
|
if (learn_online == true)
|
|
{
|
|
/// @todo Online learning possibly broken by new gradient feature extraction,
|
|
/// which assumes an accurate object outline.
|
|
|
|
// Compute masks based on convex hull of matched template
|
|
cv::Mat color_mask, depth_mask;
|
|
std::vector<CvPoint> chain = maskFromTemplate(templates, num_modalities,
|
|
cv::Point(m.x, m.y), color.size(),
|
|
color_mask, display);
|
|
subtractPlane(depth, depth_mask, chain, focal_length);
|
|
|
|
cv::imshow("mask", depth_mask);
|
|
|
|
// If pretty sure (but not TOO sure), add new template
|
|
if (learning_lower_bound < m.similarity && m.similarity < learning_upper_bound)
|
|
{
|
|
extract_timer.start();
|
|
int template_id = detector->addTemplate(sources, m.class_id, depth_mask);
|
|
extract_timer.stop();
|
|
if (template_id != -1)
|
|
{
|
|
printf("*** Added template (id %d) for existing object class %s***\n",
|
|
template_id, m.class_id.c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (show_match_result && matches.empty())
|
|
printf("No matches found...\n");
|
|
if (show_timings)
|
|
{
|
|
printf("Training: %.2fs\n", extract_timer.time());
|
|
printf("Matching: %.2fs\n", match_timer.time());
|
|
}
|
|
if (show_match_result || show_timings)
|
|
printf("------------------------------------------------------------\n");
|
|
|
|
cv::imshow("color", display);
|
|
cv::imshow("normals", quantized_images[1]);
|
|
|
|
cv::FileStorage fs;
|
|
char key = (char)cvWaitKey(10);
|
|
if( key == 'q' )
|
|
break;
|
|
|
|
switch (key)
|
|
{
|
|
case 'h':
|
|
help();
|
|
break;
|
|
case 'm':
|
|
// toggle printing match result
|
|
show_match_result = !show_match_result;
|
|
printf("Show match result %s\n", show_match_result ? "ON" : "OFF");
|
|
break;
|
|
case 't':
|
|
// toggle printing timings
|
|
show_timings = !show_timings;
|
|
printf("Show timings %s\n", show_timings ? "ON" : "OFF");
|
|
break;
|
|
case 'l':
|
|
// toggle online learning
|
|
learn_online = !learn_online;
|
|
printf("Online learning %s\n", learn_online ? "ON" : "OFF");
|
|
break;
|
|
case '[':
|
|
// decrement threshold
|
|
matching_threshold = std::max(matching_threshold - 1, -100);
|
|
printf("New threshold: %d\n", matching_threshold);
|
|
break;
|
|
case ']':
|
|
// increment threshold
|
|
matching_threshold = std::min(matching_threshold + 1, +100);
|
|
printf("New threshold: %d\n", matching_threshold);
|
|
break;
|
|
case 'w':
|
|
// write model to disk
|
|
writeLinemod(detector, filename);
|
|
printf("Wrote detector and templates to %s\n", filename.c_str());
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void reprojectPoints(const std::vector<cv::Point3d>& proj, std::vector<cv::Point3d>& real, double f)
|
|
{
|
|
real.resize(proj.size());
|
|
double f_inv = 1.0 / f;
|
|
|
|
for (int i = 0; i < (int)proj.size(); ++i)
|
|
{
|
|
double Z = proj[i].z;
|
|
real[i].x = (proj[i].x - 320.) * (f_inv * Z);
|
|
real[i].y = (proj[i].y - 240.) * (f_inv * Z);
|
|
real[i].z = Z;
|
|
}
|
|
}
|
|
|
|
static void filterPlane(IplImage * ap_depth, std::vector<IplImage *> & a_masks, std::vector<CvPoint> & a_chain, double f)
|
|
{
|
|
const int l_num_cost_pts = 200;
|
|
|
|
float l_thres = 4;
|
|
|
|
IplImage * lp_mask = cvCreateImage(cvGetSize(ap_depth), IPL_DEPTH_8U, 1);
|
|
cvSet(lp_mask, cvRealScalar(0));
|
|
|
|
std::vector<CvPoint> l_chain_vector;
|
|
|
|
float l_chain_length = 0;
|
|
float * lp_seg_length = new float[a_chain.size()];
|
|
|
|
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
|
|
{
|
|
float x_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x);
|
|
float y_diff = (float)(a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y);
|
|
lp_seg_length[l_i] = sqrt(x_diff*x_diff + y_diff*y_diff);
|
|
l_chain_length += lp_seg_length[l_i];
|
|
}
|
|
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
|
|
{
|
|
if (lp_seg_length[l_i] > 0)
|
|
{
|
|
int l_cur_num = cvRound(l_num_cost_pts * lp_seg_length[l_i] / l_chain_length);
|
|
float l_cur_len = lp_seg_length[l_i] / l_cur_num;
|
|
|
|
for (int l_j = 0; l_j < l_cur_num; ++l_j)
|
|
{
|
|
float l_ratio = (l_cur_len * l_j / lp_seg_length[l_i]);
|
|
|
|
CvPoint l_pts;
|
|
|
|
l_pts.x = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].x - a_chain[l_i].x) + a_chain[l_i].x);
|
|
l_pts.y = cvRound(l_ratio * (a_chain[(l_i + 1) % a_chain.size()].y - a_chain[l_i].y) + a_chain[l_i].y);
|
|
|
|
l_chain_vector.push_back(l_pts);
|
|
}
|
|
}
|
|
}
|
|
std::vector<cv::Point3d> lp_src_3Dpts(l_chain_vector.size());
|
|
|
|
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
|
|
{
|
|
lp_src_3Dpts[l_i].x = l_chain_vector[l_i].x;
|
|
lp_src_3Dpts[l_i].y = l_chain_vector[l_i].y;
|
|
lp_src_3Dpts[l_i].z = CV_IMAGE_ELEM(ap_depth, unsigned short, cvRound(lp_src_3Dpts[l_i].y), cvRound(lp_src_3Dpts[l_i].x));
|
|
//CV_IMAGE_ELEM(lp_mask,unsigned char,(int)lp_src_3Dpts[l_i].Y,(int)lp_src_3Dpts[l_i].X)=255;
|
|
}
|
|
//cv_show_image(lp_mask,"hallo2");
|
|
|
|
reprojectPoints(lp_src_3Dpts, lp_src_3Dpts, f);
|
|
|
|
CvMat * lp_pts = cvCreateMat((int)l_chain_vector.size(), 4, CV_32F);
|
|
CvMat * lp_v = cvCreateMat(4, 4, CV_32F);
|
|
CvMat * lp_w = cvCreateMat(4, 1, CV_32F);
|
|
|
|
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
|
|
{
|
|
CV_MAT_ELEM(*lp_pts, float, l_i, 0) = (float)lp_src_3Dpts[l_i].x;
|
|
CV_MAT_ELEM(*lp_pts, float, l_i, 1) = (float)lp_src_3Dpts[l_i].y;
|
|
CV_MAT_ELEM(*lp_pts, float, l_i, 2) = (float)lp_src_3Dpts[l_i].z;
|
|
CV_MAT_ELEM(*lp_pts, float, l_i, 3) = 1.0f;
|
|
}
|
|
cvSVD(lp_pts, lp_w, 0, lp_v);
|
|
|
|
float l_n[4] = {CV_MAT_ELEM(*lp_v, float, 0, 3),
|
|
CV_MAT_ELEM(*lp_v, float, 1, 3),
|
|
CV_MAT_ELEM(*lp_v, float, 2, 3),
|
|
CV_MAT_ELEM(*lp_v, float, 3, 3)};
|
|
|
|
float l_norm = sqrt(l_n[0] * l_n[0] + l_n[1] * l_n[1] + l_n[2] * l_n[2]);
|
|
|
|
l_n[0] /= l_norm;
|
|
l_n[1] /= l_norm;
|
|
l_n[2] /= l_norm;
|
|
l_n[3] /= l_norm;
|
|
|
|
float l_max_dist = 0;
|
|
|
|
for (int l_i = 0; l_i < (int)l_chain_vector.size(); ++l_i)
|
|
{
|
|
float l_dist = l_n[0] * CV_MAT_ELEM(*lp_pts, float, l_i, 0) +
|
|
l_n[1] * CV_MAT_ELEM(*lp_pts, float, l_i, 1) +
|
|
l_n[2] * CV_MAT_ELEM(*lp_pts, float, l_i, 2) +
|
|
l_n[3] * CV_MAT_ELEM(*lp_pts, float, l_i, 3);
|
|
|
|
if (fabs(l_dist) > l_max_dist)
|
|
l_max_dist = l_dist;
|
|
}
|
|
//std::cerr << "plane: " << l_n[0] << ";" << l_n[1] << ";" << l_n[2] << ";" << l_n[3] << " maxdist: " << l_max_dist << " end" << std::endl;
|
|
int l_minx = ap_depth->width;
|
|
int l_miny = ap_depth->height;
|
|
int l_maxx = 0;
|
|
int l_maxy = 0;
|
|
|
|
for (int l_i = 0; l_i < (int)a_chain.size(); ++l_i)
|
|
{
|
|
l_minx = std::min(l_minx, a_chain[l_i].x);
|
|
l_miny = std::min(l_miny, a_chain[l_i].y);
|
|
l_maxx = std::max(l_maxx, a_chain[l_i].x);
|
|
l_maxy = std::max(l_maxy, a_chain[l_i].y);
|
|
}
|
|
int l_w = l_maxx - l_minx + 1;
|
|
int l_h = l_maxy - l_miny + 1;
|
|
int l_nn = (int)a_chain.size();
|
|
|
|
CvPoint * lp_chain = new CvPoint[l_nn];
|
|
|
|
for (int l_i = 0; l_i < l_nn; ++l_i)
|
|
lp_chain[l_i] = a_chain[l_i];
|
|
|
|
cvFillPoly(lp_mask, &lp_chain, &l_nn, 1, cvScalar(255, 255, 255));
|
|
|
|
delete[] lp_chain;
|
|
|
|
//cv_show_image(lp_mask,"hallo1");
|
|
|
|
std::vector<cv::Point3d> lp_dst_3Dpts(l_h * l_w);
|
|
|
|
int l_ind = 0;
|
|
|
|
for (int l_r = 0; l_r < l_h; ++l_r)
|
|
{
|
|
for (int l_c = 0; l_c < l_w; ++l_c)
|
|
{
|
|
lp_dst_3Dpts[l_ind].x = l_c + l_minx;
|
|
lp_dst_3Dpts[l_ind].y = l_r + l_miny;
|
|
lp_dst_3Dpts[l_ind].z = CV_IMAGE_ELEM(ap_depth, unsigned short, l_r + l_miny, l_c + l_minx);
|
|
++l_ind;
|
|
}
|
|
}
|
|
reprojectPoints(lp_dst_3Dpts, lp_dst_3Dpts, f);
|
|
|
|
l_ind = 0;
|
|
|
|
for (int l_r = 0; l_r < l_h; ++l_r)
|
|
{
|
|
for (int l_c = 0; l_c < l_w; ++l_c)
|
|
{
|
|
float l_dist = (float)(l_n[0] * lp_dst_3Dpts[l_ind].x + l_n[1] * lp_dst_3Dpts[l_ind].y + lp_dst_3Dpts[l_ind].z * l_n[2] + l_n[3]);
|
|
|
|
++l_ind;
|
|
|
|
if (CV_IMAGE_ELEM(lp_mask, unsigned char, l_r + l_miny, l_c + l_minx) != 0)
|
|
{
|
|
if (fabs(l_dist) < std::max(l_thres, (l_max_dist * 2.0f)))
|
|
{
|
|
for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
|
|
{
|
|
int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
|
|
int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
|
|
|
|
CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int l_p = 0; l_p < (int)a_masks.size(); ++l_p)
|
|
{
|
|
int l_col = cvRound((l_c + l_minx) / (l_p + 1.0));
|
|
int l_row = cvRound((l_r + l_miny) / (l_p + 1.0));
|
|
|
|
CV_IMAGE_ELEM(a_masks[l_p], unsigned char, l_row, l_col) = 255;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
cvReleaseImage(&lp_mask);
|
|
cvReleaseMat(&lp_pts);
|
|
cvReleaseMat(&lp_w);
|
|
cvReleaseMat(&lp_v);
|
|
}
|
|
|
|
void subtractPlane(const cv::Mat& depth, cv::Mat& mask, std::vector<CvPoint>& chain, double f)
|
|
{
|
|
mask = cv::Mat::zeros(depth.size(), CV_8U);
|
|
std::vector<IplImage*> tmp;
|
|
IplImage mask_ipl = mask;
|
|
tmp.push_back(&mask_ipl);
|
|
IplImage depth_ipl = depth;
|
|
filterPlane(&depth_ipl, tmp, chain, f);
|
|
}
|
|
|
|
std::vector<CvPoint> maskFromTemplate(const std::vector<cv::linemod::Template>& templates,
|
|
int num_modalities, cv::Point offset, cv::Size size,
|
|
cv::Mat& mask, cv::Mat& dst)
|
|
{
|
|
templateConvexHull(templates, num_modalities, offset, size, mask);
|
|
|
|
const int OFFSET = 30;
|
|
cv::dilate(mask, mask, cv::Mat(), cv::Point(-1,-1), OFFSET);
|
|
|
|
CvMemStorage * lp_storage = cvCreateMemStorage(0);
|
|
CvTreeNodeIterator l_iterator;
|
|
CvSeqReader l_reader;
|
|
CvSeq * lp_contour = 0;
|
|
|
|
cv::Mat mask_copy = mask.clone();
|
|
IplImage mask_copy_ipl = mask_copy;
|
|
cvFindContours(&mask_copy_ipl, lp_storage, &lp_contour, sizeof(CvContour),
|
|
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
|
|
|
|
std::vector<CvPoint> l_pts1; // to use as input to cv_primesensor::filter_plane
|
|
|
|
cvInitTreeNodeIterator(&l_iterator, lp_contour, 1);
|
|
while ((lp_contour = (CvSeq *)cvNextTreeNode(&l_iterator)) != 0)
|
|
{
|
|
CvPoint l_pt0;
|
|
cvStartReadSeq(lp_contour, &l_reader, 0);
|
|
CV_READ_SEQ_ELEM(l_pt0, l_reader);
|
|
l_pts1.push_back(l_pt0);
|
|
|
|
for (int i = 0; i < lp_contour->total; ++i)
|
|
{
|
|
CvPoint l_pt1;
|
|
CV_READ_SEQ_ELEM(l_pt1, l_reader);
|
|
/// @todo Really need dst at all? Can just as well do this outside
|
|
cv::line(dst, l_pt0, l_pt1, CV_RGB(0, 255, 0), 2);
|
|
|
|
l_pt0 = l_pt1;
|
|
l_pts1.push_back(l_pt0);
|
|
}
|
|
}
|
|
cvReleaseMemStorage(&lp_storage);
|
|
|
|
return l_pts1;
|
|
}
|
|
|
|
// Adapted from cv_show_angles
|
|
cv::Mat displayQuantized(const cv::Mat& quantized)
|
|
{
|
|
cv::Mat color(quantized.size(), CV_8UC3);
|
|
for (int r = 0; r < quantized.rows; ++r)
|
|
{
|
|
const uchar* quant_r = quantized.ptr(r);
|
|
cv::Vec3b* color_r = color.ptr<cv::Vec3b>(r);
|
|
|
|
for (int c = 0; c < quantized.cols; ++c)
|
|
{
|
|
cv::Vec3b& bgr = color_r[c];
|
|
switch (quant_r[c])
|
|
{
|
|
case 0: bgr[0]= 0; bgr[1]= 0; bgr[2]= 0; break;
|
|
case 1: bgr[0]= 55; bgr[1]= 55; bgr[2]= 55; break;
|
|
case 2: bgr[0]= 80; bgr[1]= 80; bgr[2]= 80; break;
|
|
case 4: bgr[0]=105; bgr[1]=105; bgr[2]=105; break;
|
|
case 8: bgr[0]=130; bgr[1]=130; bgr[2]=130; break;
|
|
case 16: bgr[0]=155; bgr[1]=155; bgr[2]=155; break;
|
|
case 32: bgr[0]=180; bgr[1]=180; bgr[2]=180; break;
|
|
case 64: bgr[0]=205; bgr[1]=205; bgr[2]=205; break;
|
|
case 128: bgr[0]=230; bgr[1]=230; bgr[2]=230; break;
|
|
case 255: bgr[0]= 0; bgr[1]= 0; bgr[2]=255; break;
|
|
default: bgr[0]= 0; bgr[1]=255; bgr[2]= 0; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return color;
|
|
}
|
|
|
|
// Adapted from cv_line_template::convex_hull
|
|
void templateConvexHull(const std::vector<cv::linemod::Template>& templates,
|
|
int num_modalities, cv::Point offset, cv::Size size,
|
|
cv::Mat& dst)
|
|
{
|
|
std::vector<cv::Point> points;
|
|
for (int m = 0; m < num_modalities; ++m)
|
|
{
|
|
for (int i = 0; i < (int)templates[m].features.size(); ++i)
|
|
{
|
|
cv::linemod::Feature f = templates[m].features[i];
|
|
points.push_back(cv::Point(f.x, f.y) + offset);
|
|
}
|
|
}
|
|
|
|
std::vector<cv::Point> hull;
|
|
cv::convexHull(points, hull);
|
|
|
|
dst = cv::Mat::zeros(size, CV_8U);
|
|
const int hull_count = (int)hull.size();
|
|
const cv::Point* hull_pts = &hull[0];
|
|
cv::fillPoly(dst, &hull_pts, &hull_count, 1, cv::Scalar(255));
|
|
}
|
|
|
|
void drawResponse(const std::vector<cv::linemod::Template>& templates,
|
|
int num_modalities, cv::Mat& dst, cv::Point offset, int T)
|
|
{
|
|
static const cv::Scalar COLORS[5] = { CV_RGB(0, 0, 255),
|
|
CV_RGB(0, 255, 0),
|
|
CV_RGB(255, 255, 0),
|
|
CV_RGB(255, 140, 0),
|
|
CV_RGB(255, 0, 0) };
|
|
|
|
for (int m = 0; m < num_modalities; ++m)
|
|
{
|
|
// NOTE: Original demo recalculated max response for each feature in the TxT
|
|
// box around it and chose the display color based on that response. Here
|
|
// the display color just depends on the modality.
|
|
cv::Scalar color = COLORS[m];
|
|
|
|
for (int i = 0; i < (int)templates[m].features.size(); ++i)
|
|
{
|
|
cv::linemod::Feature f = templates[m].features[i];
|
|
cv::Point pt(f.x + offset.x, f.y + offset.y);
|
|
cv::circle(dst, pt, T / 2, color);
|
|
}
|
|
}
|
|
}
|