opencv/samples/python/snippets/kmeans.py
Gursimar Singh 3dcc8c38b4
Merge pull request #25268 from gursimarsingh:samples_cleanup_python
Removed obsolete python samples #25268

Clean Samples #25006 
This PR removes 36 obsolete python samples from the project, as part of an effort to keep the codebase clean and focused on current best practices. Some of these samples will be updated with latest algorithms or will be combined with other existing samples. 

Removed Samples:

> browse.py
camshift.py
coherence.py
color_histogram.py
contours.py
deconvolution.py
dft.py
dis_opt_flow.py
distrans.py
edge.py
feature_homography.py
find_obj.py
fitline.py
gabor_threads.py
hist.py
houghcircles.py
houghlines.py
inpaint.py
kalman.py
kmeans.py
laplace.py
lk_homography.py
lk_track.py
logpolar.py
mosse.py
mser.py
opt_flow.py
plane_ar.py
squares.py
stitching.py
text_skewness_correction.py
texture_flow.py
turing.py
video_threaded.py
video_v4l2.py
watershed.py

These changes aim to improve the repository's clarity and usability by removing examples that are no longer relevant or have been superseded by more up-to-date techniques.
2024-07-31 16:11:00 +03:00

56 lines
1.2 KiB
Python
Executable File

#!/usr/bin/env python
'''
K-means clusterization sample.
Usage:
kmeans.py
Keyboard shortcuts:
ESC - exit
space - generate new distribution
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
from gaussian_mix import make_gaussians
def main():
cluster_n = 5
img_size = 512
# generating bright palette
colors = np.zeros((1, cluster_n, 3), np.uint8)
colors[0,:] = 255
colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n)
colors = cv.cvtColor(colors, cv.COLOR_HSV2BGR)[0]
while True:
print('sampling distributions...')
points, _ = make_gaussians(cluster_n, img_size)
term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1)
_ret, labels, _centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0)
img = np.zeros((img_size, img_size, 3), np.uint8)
for (x, y), label in zip(np.int32(points), labels.ravel()):
c = list(map(int, colors[label]))
cv.circle(img, (x, y), 1, c, -1)
cv.imshow('kmeans', img)
ch = cv.waitKey(0)
if ch == 27:
break
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()