opencv/modules/core/src/copy.cpp
Alexander Alekhin cbfd38bd41 core: rework code locality
- to reduce binaries size of FFmpeg Windows wrapper
- MinGW linker doesn't support -ffunction-sections (used for FFmpeg Windows wrapper)
- move code to improve locality with its used dependencies
- move UMat::dot() to matmul.dispatch.cpp (Mat::dot() is already there)
- move UMat::inv() to lapack.cpp
- move UMat::mul() to arithm.cpp
- move UMat:eye() to matrix_operations.cpp (near setIdentity() implementation)
- move normalize(): convert_scale.cpp => norm.cpp
- move convertAndUnrollScalar(): arithm.cpp => copy.cpp
- move scalarToRawData(): array.cpp => copy.cpp
- move transpose(): matrix_operations.cpp => matrix_transform.cpp
- move flip(), rotate(): copy.cpp => matrix_transform.cpp (rotate90 uses flip and transpose)
- add 'OPENCV_CORE_EXCLUDE_C_API' CMake variable to exclude compilation of C-API functions from the core module
- matrix_wrap.cpp: add compile-time checks for CUDA/OpenGL calls
- the steps above allow to reduce FFmpeg wrapper size for ~1.5Mb (initial size of OpenCV part is about 3Mb)

backport is done to improve merge experience (less conflicts)
backport of commit: 65eb946756
2021-03-02 23:24:28 +00:00

1207 lines
36 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Mat basic operations: Copy, Set
//
// */
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
namespace cv
{
template <typename T> static inline
void scalarToRawData_(const Scalar& s, T * const buf, const int cn, const int unroll_to)
{
int i = 0;
for(; i < cn; i++)
buf[i] = saturate_cast<T>(s.val[i]);
for(; i < unroll_to; i++)
buf[i] = buf[i-cn];
}
void scalarToRawData(const Scalar& s, void* _buf, int type, int unroll_to)
{
CV_INSTRUMENT_REGION();
const int depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert(cn <= 4);
switch(depth)
{
case CV_8U:
scalarToRawData_<uchar>(s, (uchar*)_buf, cn, unroll_to);
break;
case CV_8S:
scalarToRawData_<schar>(s, (schar*)_buf, cn, unroll_to);
break;
case CV_16U:
scalarToRawData_<ushort>(s, (ushort*)_buf, cn, unroll_to);
break;
case CV_16S:
scalarToRawData_<short>(s, (short*)_buf, cn, unroll_to);
break;
case CV_32S:
scalarToRawData_<int>(s, (int*)_buf, cn, unroll_to);
break;
case CV_32F:
scalarToRawData_<float>(s, (float*)_buf, cn, unroll_to);
break;
case CV_64F:
scalarToRawData_<double>(s, (double*)_buf, cn, unroll_to);
break;
#if CV_VERSION_MAJOR >= 4
case CV_16F:
scalarToRawData_<float16_t>(s, (float16_t*)_buf, cn, unroll_to);
break;
#endif
default:
CV_Error(CV_StsUnsupportedFormat,"");
}
}
void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize )
{
int scn = (int)sc.total(), cn = CV_MAT_CN(buftype);
size_t esz = CV_ELEM_SIZE(buftype);
BinaryFunc cvtFn = getConvertFunc(sc.depth(), buftype);
CV_Assert(cvtFn);
cvtFn(sc.ptr(), 1, 0, 1, scbuf, 1, Size(std::min(cn, scn), 1), 0);
// unroll the scalar
if( scn < cn )
{
CV_Assert( scn == 1 );
size_t esz1 = CV_ELEM_SIZE1(buftype);
for( size_t i = esz1; i < esz; i++ )
scbuf[i] = scbuf[i - esz1];
}
for( size_t i = esz; i < blocksize*esz; i++ )
scbuf[i] = scbuf[i - esz];
}
template<typename T> static void
copyMask_(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size)
{
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const T* src = (const T*)_src;
T* dst = (T*)_dst;
int x = 0;
#if CV_ENABLE_UNROLLED
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
dst[x] = src[x];
if( mask[x+1] )
dst[x+1] = src[x+1];
if( mask[x+2] )
dst[x+2] = src[x+2];
if( mask[x+3] )
dst[x+3] = src[x+3];
}
#endif
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
template<> void
copyMask_<uchar>(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size)
{
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiCopy_8u_C1MR, _src, (int)sstep, _dst, (int)dstep, ippiSize(size), mask, (int)mstep) >= 0)
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const uchar* src = (const uchar*)_src;
uchar* dst = (uchar*)_dst;
int x = 0;
#if CV_SIMD
{
v_uint8 v_zero = vx_setzero_u8();
for( ; x <= size.width - v_uint8::nlanes; x += v_uint8::nlanes )
{
v_uint8 v_src = vx_load(src + x),
v_dst = vx_load(dst + x),
v_nmask = vx_load(mask + x) == v_zero;
v_dst = v_select(v_nmask, v_dst, v_src);
v_store(dst + x, v_dst);
}
}
vx_cleanup();
#endif
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
template<> void
copyMask_<ushort>(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size)
{
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiCopy_16u_C1MR, (const Ipp16u *)_src, (int)sstep, (Ipp16u *)_dst, (int)dstep, ippiSize(size), mask, (int)mstep) >= 0)
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const ushort* src = (const ushort*)_src;
ushort* dst = (ushort*)_dst;
int x = 0;
#if CV_SIMD
{
v_uint8 v_zero = vx_setzero_u8();
for( ; x <= size.width - v_uint8::nlanes; x += v_uint8::nlanes )
{
v_uint16 v_src1 = vx_load(src + x), v_src2 = vx_load(src + x + v_uint16::nlanes),
v_dst1 = vx_load(dst + x), v_dst2 = vx_load(dst + x + v_uint16::nlanes);
v_uint8 v_nmask1, v_nmask2;
v_uint8 v_nmask = vx_load(mask + x) == v_zero;
v_zip(v_nmask, v_nmask, v_nmask1, v_nmask2);
v_dst1 = v_select(v_reinterpret_as_u16(v_nmask1), v_dst1, v_src1);
v_dst2 = v_select(v_reinterpret_as_u16(v_nmask2), v_dst2, v_src2);
v_store(dst + x, v_dst1);
v_store(dst + x + v_uint16::nlanes, v_dst2);
}
}
vx_cleanup();
#endif
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
static void
copyMaskGeneric(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size, void* _esz)
{
size_t k, esz = *(size_t*)_esz;
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const uchar* src = _src;
uchar* dst = _dst;
int x = 0;
for( ; x < size.width; x++, src += esz, dst += esz )
{
if( !mask[x] )
continue;
for( k = 0; k < esz; k++ )
dst[k] = src[k];
}
}
}
#define DEF_COPY_MASK(suffix, type) \
static void copyMask##suffix(const uchar* src, size_t sstep, const uchar* mask, size_t mstep, \
uchar* dst, size_t dstep, Size size, void*) \
{ \
copyMask_<type>(src, sstep, mask, mstep, dst, dstep, size); \
}
#if defined HAVE_IPP
#define DEF_COPY_MASK_F(suffix, type, ippfavor, ipptype) \
static void copyMask##suffix(const uchar* src, size_t sstep, const uchar* mask, size_t mstep, \
uchar* dst, size_t dstep, Size size, void*) \
{ \
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiCopy_##ippfavor, (const ipptype *)src, (int)sstep, (ipptype *)dst, (int)dstep, ippiSize(size), (const Ipp8u *)mask, (int)mstep) >= 0)\
copyMask_<type>(src, sstep, mask, mstep, dst, dstep, size); \
}
#else
#define DEF_COPY_MASK_F(suffix, type, ippfavor, ipptype) \
static void copyMask##suffix(const uchar* src, size_t sstep, const uchar* mask, size_t mstep, \
uchar* dst, size_t dstep, Size size, void*) \
{ \
copyMask_<type>(src, sstep, mask, mstep, dst, dstep, size); \
}
#endif
#if IPP_VERSION_X100 == 901 // bug in IPP 9.0.1
DEF_COPY_MASK(32sC3, Vec3i)
DEF_COPY_MASK(8uC3, Vec3b)
#else
DEF_COPY_MASK_F(8uC3, Vec3b, 8u_C3MR, Ipp8u)
DEF_COPY_MASK_F(32sC3, Vec3i, 32s_C3MR, Ipp32s)
#endif
DEF_COPY_MASK(8u, uchar)
DEF_COPY_MASK(16u, ushort)
DEF_COPY_MASK_F(32s, int, 32s_C1MR, Ipp32s)
DEF_COPY_MASK_F(16uC3, Vec3s, 16u_C3MR, Ipp16u)
DEF_COPY_MASK(32sC2, Vec2i)
DEF_COPY_MASK_F(32sC4, Vec4i, 32s_C4MR, Ipp32s)
DEF_COPY_MASK(32sC6, Vec6i)
DEF_COPY_MASK(32sC8, Vec8i)
BinaryFunc copyMaskTab[] =
{
0,
copyMask8u,
copyMask16u,
copyMask8uC3,
copyMask32s,
0,
copyMask16uC3,
0,
copyMask32sC2,
0, 0, 0,
copyMask32sC3,
0, 0, 0,
copyMask32sC4,
0, 0, 0, 0, 0, 0, 0,
copyMask32sC6,
0, 0, 0, 0, 0, 0, 0,
copyMask32sC8
};
BinaryFunc getCopyMaskFunc(size_t esz)
{
return esz <= 32 && copyMaskTab[esz] ? copyMaskTab[esz] : copyMaskGeneric;
}
/* dst = src */
void Mat::copyTo( OutputArray _dst ) const
{
CV_INSTRUMENT_REGION();
#ifdef HAVE_CUDA
if (_dst.isGpuMat())
{
_dst.getGpuMat().upload(*this);
return;
}
#endif
int dtype = _dst.type();
if( _dst.fixedType() && dtype != type() )
{
CV_Assert( channels() == CV_MAT_CN(dtype) );
convertTo( _dst, dtype );
return;
}
if( empty() )
{
_dst.release();
return;
}
if( _dst.isUMat() )
{
_dst.create( dims, size.p, type() );
UMat dst = _dst.getUMat();
CV_Assert(dst.u != NULL);
size_t i, sz[CV_MAX_DIM] = {0}, dstofs[CV_MAX_DIM], esz = elemSize();
CV_Assert(dims > 0 && dims < CV_MAX_DIM);
for( i = 0; i < (size_t)dims; i++ )
sz[i] = size.p[i];
sz[dims-1] *= esz;
dst.ndoffset(dstofs);
dstofs[dims-1] *= esz;
dst.u->currAllocator->upload(dst.u, data, dims, sz, dstofs, dst.step.p, step.p);
return;
}
if( dims <= 2 )
{
_dst.create( rows, cols, type() );
Mat dst = _dst.getMat();
if( data == dst.data )
return;
if( rows > 0 && cols > 0 )
{
Mat src = *this;
Size sz = getContinuousSize2D(src, dst, (int)elemSize());
CV_CheckGE(sz.width, 0, "");
const uchar* sptr = src.data;
uchar* dptr = dst.data;
#if IPP_VERSION_X100 >= 201700
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiCopy_8u_C1R_L, sptr, (int)src.step, dptr, (int)dst.step, ippiSizeL(sz.width, sz.height)) >= 0)
#endif
for (; sz.height--; sptr += src.step, dptr += dst.step)
memcpy(dptr, sptr, sz.width);
}
return;
}
_dst.create( dims, size, type() );
Mat dst = _dst.getMat();
if( data == dst.data )
return;
if( total() != 0 )
{
const Mat* arrays[] = { this, &dst };
uchar* ptrs[2] = {};
NAryMatIterator it(arrays, ptrs, 2);
size_t sz = it.size*elemSize();
for( size_t i = 0; i < it.nplanes; i++, ++it )
memcpy(ptrs[1], ptrs[0], sz);
}
}
#ifdef HAVE_IPP
static bool ipp_copyTo(const Mat &src, Mat &dst, const Mat &mask)
{
#ifdef HAVE_IPP_IW_LL
CV_INSTRUMENT_REGION_IPP();
if(mask.channels() > 1 || mask.depth() != CV_8U)
return false;
if (src.dims <= 2)
{
IppiSize size = ippiSize(src.size());
return CV_INSTRUMENT_FUN_IPP(llwiCopyMask, src.ptr(), (int)src.step, dst.ptr(), (int)dst.step, size, (int)src.elemSize1(), src.channels(), mask.ptr(), (int)mask.step) >= 0;
}
else
{
const Mat *arrays[] = {&src, &dst, &mask, NULL};
uchar *ptrs[3] = {NULL};
NAryMatIterator it(arrays, ptrs);
IppiSize size = ippiSize(it.size, 1);
for (size_t i = 0; i < it.nplanes; i++, ++it)
{
if(CV_INSTRUMENT_FUN_IPP(llwiCopyMask, ptrs[0], 0, ptrs[1], 0, size, (int)src.elemSize1(), src.channels(), ptrs[2], 0) < 0)
return false;
}
return true;
}
#else
CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(mask);
return false;
#endif
}
#endif
void Mat::copyTo( OutputArray _dst, InputArray _mask ) const
{
CV_INSTRUMENT_REGION();
Mat mask = _mask.getMat();
if( !mask.data )
{
copyTo(_dst);
return;
}
int cn = channels(), mcn = mask.channels();
CV_Assert( mask.depth() == CV_8U && (mcn == 1 || mcn == cn) );
bool colorMask = mcn > 1;
if( dims <= 2 )
{
CV_Assert( size() == mask.size() );
}
Mat dst;
{
Mat dst0 = _dst.getMat();
_dst.create(dims, size, type()); // TODO Prohibit 'dst' re-creation, user should pass it explicitly with correct size/type or empty
dst = _dst.getMat();
if (dst.data != dst0.data) // re-allocation happened
{
#ifdef OPENCV_FUTURE
CV_Assert(dst0.empty() &&
"copyTo(): dst size/type mismatch (looks like a bug) - use dst.release() before copyTo() call to suppress this message");
#endif
dst = Scalar(0); // do not leave dst uninitialized
}
}
CV_IPP_RUN_FAST(ipp_copyTo(*this, dst, mask))
size_t esz = colorMask ? elemSize1() : elemSize();
BinaryFunc copymask = getCopyMaskFunc(esz);
if( dims <= 2 )
{
Mat src = *this;
Size sz = getContinuousSize2D(src, dst, mask, mcn);
copymask(src.data, src.step, mask.data, mask.step, dst.data, dst.step, sz, &esz);
return;
}
const Mat* arrays[] = { this, &dst, &mask, 0 };
uchar* ptrs[3] = {};
NAryMatIterator it(arrays, ptrs);
Size sz((int)(it.size*mcn), 1);
for( size_t i = 0; i < it.nplanes; i++, ++it )
copymask(ptrs[0], 0, ptrs[2], 0, ptrs[1], 0, sz, &esz);
}
static bool can_apply_memset(const Mat &mat, const Scalar &s, int &fill_value)
{
// check if depth is 1 byte.
switch (mat.depth())
{
case CV_8U: fill_value = saturate_cast<uchar>( s.val[0] ); break;
case CV_8S: fill_value = saturate_cast<schar>( s.val[0] ); break;
default: return false;
}
// check if all element is same.
const int64* is = (const int64*)&s.val[0];
switch (mat.channels())
{
case 1: return true;
case 2: return (is[0] == is[1]);
case 3: return (is[0] == is[1] && is[1] == is[2]);
case 4: return (is[0] == is[1] && is[1] == is[2] && is[2] == is[3]);
default: return false;
}
}
Mat& Mat::operator = (const Scalar& s)
{
CV_INSTRUMENT_REGION();
if (this->empty())
return *this;
const Mat* arrays[] = { this };
uchar* dptr;
NAryMatIterator it(arrays, &dptr, 1);
size_t elsize = it.size*elemSize();
const int64* is = (const int64*)&s.val[0];
if( is[0] == 0 && is[1] == 0 && is[2] == 0 && is[3] == 0 )
{
for( size_t i = 0; i < it.nplanes; i++, ++it )
memset( dptr, 0, elsize );
}
else
{
int fill_value = 0;
if ( can_apply_memset(*this, s, fill_value) )
{
for (size_t i = 0; i < it.nplanes; i++, ++it)
memset(dptr, fill_value, elsize);
return *this;
}
if( it.nplanes > 0 )
{
double scalar[12];
scalarToRawData(s, scalar, type(), 12);
size_t blockSize = 12*elemSize1();
for( size_t j = 0; j < elsize; j += blockSize )
{
size_t sz = MIN(blockSize, elsize - j);
CV_Assert(sz <= sizeof(scalar));
memcpy( dptr + j, scalar, sz );
}
}
for( size_t i = 1; i < it.nplanes; i++ )
{
++it;
memcpy( dptr, data, elsize );
}
}
return *this;
}
#ifdef HAVE_IPP
static bool ipp_Mat_setTo_Mat(Mat &dst, Mat &_val, Mat &mask)
{
#ifdef HAVE_IPP_IW_LL
CV_INSTRUMENT_REGION_IPP();
if(mask.empty())
return false;
if(mask.depth() != CV_8U || mask.channels() > 1)
return false;
if(dst.channels() > 4)
return false;
if (dst.depth() == CV_32F)
{
for (int i = 0; i < (int)(_val.total()); i++)
{
float v = (float)(_val.at<double>(i)); // cast to float
if (cvIsNaN(v) || cvIsInf(v)) // accept finite numbers only
return false;
}
}
if(dst.dims <= 2)
{
IppiSize size = ippiSize(dst.size());
IppDataType dataType = ippiGetDataType(dst.depth());
::ipp::IwValueFloat s;
convertAndUnrollScalar(_val, CV_MAKETYPE(CV_64F, dst.channels()), (uchar*)((Ipp64f*)s), 1);
return CV_INSTRUMENT_FUN_IPP(llwiSetMask, s, dst.ptr(), (int)dst.step, size, dataType, dst.channels(), mask.ptr(), (int)mask.step) >= 0;
}
else
{
const Mat *arrays[] = {&dst, mask.empty()?NULL:&mask, NULL};
uchar *ptrs[2] = {NULL};
NAryMatIterator it(arrays, ptrs);
IppiSize size = {(int)it.size, 1};
IppDataType dataType = ippiGetDataType(dst.depth());
::ipp::IwValueFloat s;
convertAndUnrollScalar(_val, CV_MAKETYPE(CV_64F, dst.channels()), (uchar*)((Ipp64f*)s), 1);
for( size_t i = 0; i < it.nplanes; i++, ++it)
{
if(CV_INSTRUMENT_FUN_IPP(llwiSetMask, s, ptrs[0], 0, size, dataType, dst.channels(), ptrs[1], 0) < 0)
return false;
}
return true;
}
#else
CV_UNUSED(dst); CV_UNUSED(_val); CV_UNUSED(mask);
return false;
#endif
}
#endif
Mat& Mat::setTo(InputArray _value, InputArray _mask)
{
CV_INSTRUMENT_REGION();
if( empty() )
return *this;
Mat value = _value.getMat(), mask = _mask.getMat();
CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::MAT ));
int cn = channels(), mcn = mask.channels();
CV_Assert( mask.empty() || (mask.depth() == CV_8U && (mcn == 1 || mcn == cn) && size == mask.size) );
CV_IPP_RUN_FAST(ipp_Mat_setTo_Mat(*this, value, mask), *this)
size_t esz = mcn > 1 ? elemSize1() : elemSize();
BinaryFunc copymask = getCopyMaskFunc(esz);
const Mat* arrays[] = { this, !mask.empty() ? &mask : 0, 0 };
uchar* ptrs[2]={0,0};
NAryMatIterator it(arrays, ptrs);
int totalsz = (int)it.size*mcn;
int blockSize0 = std::min(totalsz, (int)((BLOCK_SIZE + esz-1)/esz));
blockSize0 -= blockSize0 % mcn; // must be divisible without remainder for unrolling and advancing
AutoBuffer<uchar> _scbuf(blockSize0*esz + 32);
uchar* scbuf = alignPtr((uchar*)_scbuf.data(), (int)sizeof(double));
convertAndUnrollScalar( value, type(), scbuf, blockSize0/mcn );
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( int j = 0; j < totalsz; j += blockSize0 )
{
Size sz(std::min(blockSize0, totalsz - j), 1);
size_t blockSize = sz.width*esz;
if( ptrs[1] )
{
copymask(scbuf, 0, ptrs[1], 0, ptrs[0], 0, sz, &esz);
ptrs[1] += sz.width;
}
else
memcpy(ptrs[0], scbuf, blockSize);
ptrs[0] += blockSize;
}
}
return *this;
}
#if defined HAVE_OPENCL && !defined __APPLE__
static bool ocl_repeat(InputArray _src, int ny, int nx, OutputArray _dst)
{
if (ny == 1 && nx == 1)
{
_src.copyTo(_dst);
return true;
}
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1,
kercn = ocl::predictOptimalVectorWidth(_src, _dst);
ocl::Kernel k("repeat", ocl::core::repeat_oclsrc,
format("-D T=%s -D nx=%d -D ny=%d -D rowsPerWI=%d -D cn=%d",
ocl::memopTypeToStr(CV_MAKE_TYPE(depth, kercn)),
nx, ny, rowsPerWI, kercn));
if (k.empty())
return false;
UMat src = _src.getUMat(), dst = _dst.getUMat();
k.args(ocl::KernelArg::ReadOnly(src, cn, kercn), ocl::KernelArg::WriteOnlyNoSize(dst));
size_t globalsize[] = { (size_t)src.cols * cn / kercn, ((size_t)src.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
#endif
void repeat(InputArray _src, int ny, int nx, OutputArray _dst)
{
CV_INSTRUMENT_REGION();
CV_Assert(_src.getObj() != _dst.getObj());
CV_Assert( _src.dims() <= 2 );
CV_Assert( ny > 0 && nx > 0 );
Size ssize = _src.size();
_dst.create(ssize.height*ny, ssize.width*nx, _src.type());
#if !defined __APPLE__
CV_OCL_RUN(_dst.isUMat(),
ocl_repeat(_src, ny, nx, _dst))
#endif
Mat src = _src.getMat(), dst = _dst.getMat();
Size dsize = dst.size();
int esz = (int)src.elemSize();
int x, y;
ssize.width *= esz; dsize.width *= esz;
for( y = 0; y < ssize.height; y++ )
{
for( x = 0; x < dsize.width; x += ssize.width )
memcpy( dst.ptr(y) + x, src.ptr(y), ssize.width );
}
for( ; y < dsize.height; y++ )
memcpy( dst.ptr(y), dst.ptr(y - ssize.height), dsize.width );
}
Mat repeat(const Mat& src, int ny, int nx)
{
if( nx == 1 && ny == 1 )
return src;
Mat dst;
repeat(src, ny, nx, dst);
return dst;
}
} // cv
/*
Various border types, image boundaries are denoted with '|'
* BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
* BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
* BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
* BORDER_WRAP: cdefgh|abcdefgh|abcdefg
* BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii with some specified 'i'
*/
int cv::borderInterpolate( int p, int len, int borderType )
{
CV_TRACE_FUNCTION_VERBOSE();
CV_DbgAssert(len > 0);
#ifdef CV_STATIC_ANALYSIS
if(p >= 0 && p < len)
#else
if( (unsigned)p < (unsigned)len )
#endif
;
else if( borderType == BORDER_REPLICATE )
p = p < 0 ? 0 : len - 1;
else if( borderType == BORDER_REFLECT || borderType == BORDER_REFLECT_101 )
{
int delta = borderType == BORDER_REFLECT_101;
if( len == 1 )
return 0;
do
{
if( p < 0 )
p = -p - 1 + delta;
else
p = len - 1 - (p - len) - delta;
}
#ifdef CV_STATIC_ANALYSIS
while(p < 0 || p >= len);
#else
while( (unsigned)p >= (unsigned)len );
#endif
}
else if( borderType == BORDER_WRAP )
{
CV_Assert(len > 0);
if( p < 0 )
p -= ((p-len+1)/len)*len;
if( p >= len )
p %= len;
}
else if( borderType == BORDER_CONSTANT )
p = -1;
else
CV_Error( CV_StsBadArg, "Unknown/unsupported border type" );
return p;
}
namespace
{
void copyMakeBorder_8u( const uchar* src, size_t srcstep, cv::Size srcroi,
uchar* dst, size_t dststep, cv::Size dstroi,
int top, int left, int cn, int borderType )
{
const int isz = (int)sizeof(int);
int i, j, k, elemSize = 1;
bool intMode = false;
if( (cn | srcstep | dststep | (size_t)src | (size_t)dst) % isz == 0 )
{
cn /= isz;
elemSize = isz;
intMode = true;
}
cv::AutoBuffer<int> _tab((dstroi.width - srcroi.width)*cn);
int* tab = _tab.data();
int right = dstroi.width - srcroi.width - left;
int bottom = dstroi.height - srcroi.height - top;
for( i = 0; i < left; i++ )
{
j = cv::borderInterpolate(i - left, srcroi.width, borderType)*cn;
for( k = 0; k < cn; k++ )
tab[i*cn + k] = j + k;
}
for( i = 0; i < right; i++ )
{
j = cv::borderInterpolate(srcroi.width + i, srcroi.width, borderType)*cn;
for( k = 0; k < cn; k++ )
tab[(i+left)*cn + k] = j + k;
}
srcroi.width *= cn;
dstroi.width *= cn;
left *= cn;
right *= cn;
uchar* dstInner = dst + dststep*top + left*elemSize;
for( i = 0; i < srcroi.height; i++, dstInner += dststep, src += srcstep )
{
if( dstInner != src )
memcpy(dstInner, src, srcroi.width*elemSize);
if( intMode )
{
const int* isrc = (int*)src;
int* idstInner = (int*)dstInner;
for( j = 0; j < left; j++ )
idstInner[j - left] = isrc[tab[j]];
for( j = 0; j < right; j++ )
idstInner[j + srcroi.width] = isrc[tab[j + left]];
}
else
{
for( j = 0; j < left; j++ )
dstInner[j - left] = src[tab[j]];
for( j = 0; j < right; j++ )
dstInner[j + srcroi.width] = src[tab[j + left]];
}
}
dstroi.width *= elemSize;
dst += dststep*top;
for( i = 0; i < top; i++ )
{
j = cv::borderInterpolate(i - top, srcroi.height, borderType);
memcpy(dst + (i - top)*dststep, dst + j*dststep, dstroi.width);
}
for( i = 0; i < bottom; i++ )
{
j = cv::borderInterpolate(i + srcroi.height, srcroi.height, borderType);
memcpy(dst + (i + srcroi.height)*dststep, dst + j*dststep, dstroi.width);
}
}
void copyMakeConstBorder_8u( const uchar* src, size_t srcstep, cv::Size srcroi,
uchar* dst, size_t dststep, cv::Size dstroi,
int top, int left, int cn, const uchar* value )
{
int i, j;
cv::AutoBuffer<uchar> _constBuf(dstroi.width*cn);
uchar* constBuf = _constBuf.data();
int right = dstroi.width - srcroi.width - left;
int bottom = dstroi.height - srcroi.height - top;
for( i = 0; i < dstroi.width; i++ )
{
for( j = 0; j < cn; j++ )
constBuf[i*cn + j] = value[j];
}
srcroi.width *= cn;
dstroi.width *= cn;
left *= cn;
right *= cn;
uchar* dstInner = dst + dststep*top + left;
for( i = 0; i < srcroi.height; i++, dstInner += dststep, src += srcstep )
{
if( dstInner != src )
memcpy( dstInner, src, srcroi.width );
memcpy( dstInner - left, constBuf, left );
memcpy( dstInner + srcroi.width, constBuf, right );
}
for( i = 0; i < top; i++ )
memcpy(dst + i * dststep, constBuf, dstroi.width);
dst += (top + srcroi.height) * dststep;
for( i = 0; i < bottom; i++ )
memcpy(dst + i * dststep, constBuf, dstroi.width);
}
}
#ifdef HAVE_OPENCL
namespace cv {
static bool ocl_copyMakeBorder( InputArray _src, OutputArray _dst, int top, int bottom,
int left, int right, int borderType, const Scalar& value )
{
int type = _src.type(), cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type),
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
bool isolated = (borderType & BORDER_ISOLATED) != 0;
borderType &= ~cv::BORDER_ISOLATED;
if ( !(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE || borderType == BORDER_REFLECT ||
borderType == BORDER_WRAP || borderType == BORDER_REFLECT_101) ||
cn > 4)
return false;
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101" };
int scalarcn = cn == 3 ? 4 : cn;
int sctype = CV_MAKETYPE(depth, scalarcn);
String buildOptions = format("-D T=%s -D %s -D T1=%s -D cn=%d -D ST=%s -D rowsPerWI=%d",
ocl::memopTypeToStr(type), borderMap[borderType],
ocl::memopTypeToStr(depth), cn,
ocl::memopTypeToStr(sctype), rowsPerWI);
ocl::Kernel k("copyMakeBorder", ocl::core::copymakeborder_oclsrc, buildOptions);
if (k.empty())
return false;
UMat src = _src.getUMat();
if( src.isSubmatrix() && !isolated )
{
Size wholeSize;
Point ofs;
src.locateROI(wholeSize, ofs);
int dtop = std::min(ofs.y, top);
int dbottom = std::min(wholeSize.height - src.rows - ofs.y, bottom);
int dleft = std::min(ofs.x, left);
int dright = std::min(wholeSize.width - src.cols - ofs.x, right);
src.adjustROI(dtop, dbottom, dleft, dright);
top -= dtop;
left -= dleft;
bottom -= dbottom;
right -= dright;
}
_dst.create(src.rows + top + bottom, src.cols + left + right, type);
UMat dst = _dst.getUMat();
if (top == 0 && left == 0 && bottom == 0 && right == 0)
{
if(src.u != dst.u || src.step != dst.step)
src.copyTo(dst);
return true;
}
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst),
top, left, ocl::KernelArg::Constant(Mat(1, 1, sctype, value)));
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
}
#endif
#ifdef HAVE_IPP
namespace cv {
static bool ipp_copyMakeBorder( Mat &_src, Mat &_dst, int top, int bottom,
int left, int right, int _borderType, const Scalar& value )
{
#if defined HAVE_IPP_IW_LL && !IPP_DISABLE_PERF_COPYMAKE
CV_INSTRUMENT_REGION_IPP();
::ipp::IwiBorderSize borderSize(left, top, right, bottom);
::ipp::IwiSize size(_src.cols, _src.rows);
IppDataType dataType = ippiGetDataType(_src.depth());
IppiBorderType borderType = ippiGetBorderType(_borderType);
if((int)borderType == -1)
return false;
if(_src.dims > 2)
return false;
Rect dstRect(borderSize.left, borderSize.top,
_dst.cols - borderSize.right - borderSize.left,
_dst.rows - borderSize.bottom - borderSize.top);
Mat subDst = Mat(_dst, dstRect);
Mat *pSrc = &_src;
return CV_INSTRUMENT_FUN_IPP(llwiCopyMakeBorder, pSrc->ptr(), pSrc->step, subDst.ptr(), subDst.step, size, dataType, _src.channels(), borderSize, borderType, &value[0]) >= 0;
#else
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(top); CV_UNUSED(bottom); CV_UNUSED(left); CV_UNUSED(right);
CV_UNUSED(_borderType); CV_UNUSED(value);
return false;
#endif
}
}
#endif
void cv::copyMakeBorder( InputArray _src, OutputArray _dst, int top, int bottom,
int left, int right, int borderType, const Scalar& value )
{
CV_INSTRUMENT_REGION();
CV_Assert( top >= 0 && bottom >= 0 && left >= 0 && right >= 0 && _src.dims() <= 2);
CV_OCL_RUN(_dst.isUMat(),
ocl_copyMakeBorder(_src, _dst, top, bottom, left, right, borderType, value))
Mat src = _src.getMat();
int type = src.type();
if( src.isSubmatrix() && (borderType & BORDER_ISOLATED) == 0 )
{
Size wholeSize;
Point ofs;
src.locateROI(wholeSize, ofs);
int dtop = std::min(ofs.y, top);
int dbottom = std::min(wholeSize.height - src.rows - ofs.y, bottom);
int dleft = std::min(ofs.x, left);
int dright = std::min(wholeSize.width - src.cols - ofs.x, right);
src.adjustROI(dtop, dbottom, dleft, dright);
top -= dtop;
left -= dleft;
bottom -= dbottom;
right -= dright;
}
_dst.create( src.rows + top + bottom, src.cols + left + right, type );
Mat dst = _dst.getMat();
if(top == 0 && left == 0 && bottom == 0 && right == 0)
{
if(src.data != dst.data || src.step != dst.step)
src.copyTo(dst);
return;
}
borderType &= ~BORDER_ISOLATED;
CV_IPP_RUN_FAST(ipp_copyMakeBorder(src, dst, top, bottom, left, right, borderType, value))
if( borderType != BORDER_CONSTANT )
copyMakeBorder_8u( src.ptr(), src.step, src.size(),
dst.ptr(), dst.step, dst.size(),
top, left, (int)src.elemSize(), borderType );
else
{
int cn = src.channels(), cn1 = cn;
AutoBuffer<double> buf(cn);
if( cn > 4 )
{
CV_Assert( value[0] == value[1] && value[0] == value[2] && value[0] == value[3] );
cn1 = 1;
}
scalarToRawData(value, buf.data(), CV_MAKETYPE(src.depth(), cn1), cn);
copyMakeConstBorder_8u( src.ptr(), src.step, src.size(),
dst.ptr(), dst.step, dst.size(),
top, left, (int)src.elemSize(), (uchar*)buf.data() );
}
}
#ifndef OPENCV_EXCLUDE_C_API
/* dst = src */
CV_IMPL void
cvCopy( const void* srcarr, void* dstarr, const void* maskarr )
{
if( CV_IS_SPARSE_MAT(srcarr) && CV_IS_SPARSE_MAT(dstarr))
{
CV_Assert( maskarr == 0 );
CvSparseMat* src1 = (CvSparseMat*)srcarr;
CvSparseMat* dst1 = (CvSparseMat*)dstarr;
CvSparseMatIterator iterator;
CvSparseNode* node;
dst1->dims = src1->dims;
memcpy( dst1->size, src1->size, src1->dims*sizeof(src1->size[0]));
dst1->valoffset = src1->valoffset;
dst1->idxoffset = src1->idxoffset;
cvClearSet( dst1->heap );
if( src1->heap->active_count >= dst1->hashsize*CV_SPARSE_HASH_RATIO )
{
cvFree( &dst1->hashtable );
dst1->hashsize = src1->hashsize;
dst1->hashtable =
(void**)cvAlloc( dst1->hashsize*sizeof(dst1->hashtable[0]));
}
memset( dst1->hashtable, 0, dst1->hashsize*sizeof(dst1->hashtable[0]));
for( node = cvInitSparseMatIterator( src1, &iterator );
node != 0; node = cvGetNextSparseNode( &iterator ))
{
CvSparseNode* node_copy = (CvSparseNode*)cvSetNew( dst1->heap );
int tabidx = node->hashval & (dst1->hashsize - 1);
memcpy( node_copy, node, dst1->heap->elem_size );
node_copy->next = (CvSparseNode*)dst1->hashtable[tabidx];
dst1->hashtable[tabidx] = node_copy;
}
return;
}
cv::Mat src = cv::cvarrToMat(srcarr, false, true, 1), dst = cv::cvarrToMat(dstarr, false, true, 1);
CV_Assert( src.depth() == dst.depth() && src.size == dst.size );
int coi1 = 0, coi2 = 0;
if( CV_IS_IMAGE(srcarr) )
coi1 = cvGetImageCOI((const IplImage*)srcarr);
if( CV_IS_IMAGE(dstarr) )
coi2 = cvGetImageCOI((const IplImage*)dstarr);
if( coi1 || coi2 )
{
CV_Assert( (coi1 != 0 || src.channels() == 1) &&
(coi2 != 0 || dst.channels() == 1) );
int pair[] = { std::max(coi1-1, 0), std::max(coi2-1, 0) };
cv::mixChannels( &src, 1, &dst, 1, pair, 1 );
return;
}
else
CV_Assert( src.channels() == dst.channels() );
if( !maskarr )
src.copyTo(dst);
else
src.copyTo(dst, cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSet( void* arr, CvScalar value, const void* maskarr )
{
cv::Mat m = cv::cvarrToMat(arr);
if( !maskarr )
m = value;
else
m.setTo(cv::Scalar(value), cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSetZero( CvArr* arr )
{
if( CV_IS_SPARSE_MAT(arr) )
{
CvSparseMat* mat1 = (CvSparseMat*)arr;
cvClearSet( mat1->heap );
if( mat1->hashtable )
memset( mat1->hashtable, 0, mat1->hashsize*sizeof(mat1->hashtable[0]));
return;
}
cv::Mat m = cv::cvarrToMat(arr);
m = cv::Scalar(0);
}
CV_IMPL void
cvFlip( const CvArr* srcarr, CvArr* dstarr, int flip_mode )
{
cv::Mat src = cv::cvarrToMat(srcarr);
cv::Mat dst;
if (!dstarr)
dst = src;
else
dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() && src.size() == dst.size() );
cv::flip( src, dst, flip_mode );
}
CV_IMPL void
cvRepeat( const CvArr* srcarr, CvArr* dstarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() &&
dst.rows % src.rows == 0 && dst.cols % src.cols == 0 );
cv::repeat(src, dst.rows/src.rows, dst.cols/src.cols, dst);
}
#endif // OPENCV_EXCLUDE_C_API
/* End of file. */