mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
206 lines
5.5 KiB
C
206 lines
5.5 KiB
C
#include "clapack.h"
|
|
|
|
integer dlaneg_(integer *n, doublereal *d__, doublereal *lld, doublereal *
|
|
sigma, doublereal *pivmin, integer *r__)
|
|
{
|
|
/* System generated locals */
|
|
integer ret_val, i__1, i__2, i__3, i__4;
|
|
|
|
/* Local variables */
|
|
integer j;
|
|
doublereal p, t;
|
|
integer bj;
|
|
doublereal tmp;
|
|
integer neg1, neg2;
|
|
doublereal bsav, gamma, dplus;
|
|
extern logical disnan_(doublereal *);
|
|
integer negcnt;
|
|
logical sawnan;
|
|
doublereal dminus;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* DLANEG computes the Sturm count, the number of negative pivots */
|
|
/* encountered while factoring tridiagonal T - sigma I = L D L^T. */
|
|
/* This implementation works directly on the factors without forming */
|
|
/* the tridiagonal matrix T. The Sturm count is also the number of */
|
|
/* eigenvalues of T less than sigma. */
|
|
|
|
/* This routine is called from DLARRB. */
|
|
|
|
/* The current routine does not use the PIVMIN parameter but rather */
|
|
/* requires IEEE-754 propagation of Infinities and NaNs. This */
|
|
/* routine also has no input range restrictions but does require */
|
|
/* default exception handling such that x/0 produces Inf when x is */
|
|
/* non-zero, and Inf/Inf produces NaN. For more information, see: */
|
|
|
|
/* Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in */
|
|
/* Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on */
|
|
/* Scientific Computing, v28, n5, 2006. DOI 10.1137/050641624 */
|
|
/* (Tech report version in LAWN 172 with the same title.) */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix. */
|
|
|
|
/* D (input) DOUBLE PRECISION array, dimension (N) */
|
|
/* The N diagonal elements of the diagonal matrix D. */
|
|
|
|
/* LLD (input) DOUBLE PRECISION array, dimension (N-1) */
|
|
/* The (N-1) elements L(i)*L(i)*D(i). */
|
|
|
|
/* SIGMA (input) DOUBLE PRECISION */
|
|
/* Shift amount in T - sigma I = L D L^T. */
|
|
|
|
/* PIVMIN (input) DOUBLE PRECISION */
|
|
/* The minimum pivot in the Sturm sequence. May be used */
|
|
/* when zero pivots are encountered on non-IEEE-754 */
|
|
/* architectures. */
|
|
|
|
/* R (input) INTEGER */
|
|
/* The twist index for the twisted factorization that is used */
|
|
/* for the negcount. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Osni Marques, LBNL/NERSC, USA */
|
|
/* Christof Voemel, University of California, Berkeley, USA */
|
|
/* Jason Riedy, University of California, Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* Some architectures propagate Infinities and NaNs very slowly, so */
|
|
/* the code computes counts in BLKLEN chunks. Then a NaN can */
|
|
/* propagate at most BLKLEN columns before being detected. This is */
|
|
/* not a general tuning parameter; it needs only to be just large */
|
|
/* enough that the overhead is tiny in common cases. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
/* Parameter adjustments */
|
|
--lld;
|
|
--d__;
|
|
|
|
/* Function Body */
|
|
negcnt = 0;
|
|
/* I) upper part: L D L^T - SIGMA I = L+ D+ L+^T */
|
|
t = -(*sigma);
|
|
i__1 = *r__ - 1;
|
|
for (bj = 1; bj <= i__1; bj += 128) {
|
|
neg1 = 0;
|
|
bsav = t;
|
|
/* Computing MIN */
|
|
i__3 = bj + 127, i__4 = *r__ - 1;
|
|
i__2 = min(i__3,i__4);
|
|
for (j = bj; j <= i__2; ++j) {
|
|
dplus = d__[j] + t;
|
|
if (dplus < 0.) {
|
|
++neg1;
|
|
}
|
|
tmp = t / dplus;
|
|
t = tmp * lld[j] - *sigma;
|
|
/* L21: */
|
|
}
|
|
sawnan = disnan_(&t);
|
|
/* Run a slower version of the above loop if a NaN is detected. */
|
|
/* A NaN should occur only with a zero pivot after an infinite */
|
|
/* pivot. In that case, substituting 1 for T/DPLUS is the */
|
|
/* correct limit. */
|
|
if (sawnan) {
|
|
neg1 = 0;
|
|
t = bsav;
|
|
/* Computing MIN */
|
|
i__3 = bj + 127, i__4 = *r__ - 1;
|
|
i__2 = min(i__3,i__4);
|
|
for (j = bj; j <= i__2; ++j) {
|
|
dplus = d__[j] + t;
|
|
if (dplus < 0.) {
|
|
++neg1;
|
|
}
|
|
tmp = t / dplus;
|
|
if (disnan_(&tmp)) {
|
|
tmp = 1.;
|
|
}
|
|
t = tmp * lld[j] - *sigma;
|
|
/* L22: */
|
|
}
|
|
}
|
|
negcnt += neg1;
|
|
/* L210: */
|
|
}
|
|
|
|
/* II) lower part: L D L^T - SIGMA I = U- D- U-^T */
|
|
p = d__[*n] - *sigma;
|
|
i__1 = *r__;
|
|
for (bj = *n - 1; bj >= i__1; bj += -128) {
|
|
neg2 = 0;
|
|
bsav = p;
|
|
/* Computing MAX */
|
|
i__3 = bj - 127;
|
|
i__2 = max(i__3,*r__);
|
|
for (j = bj; j >= i__2; --j) {
|
|
dminus = lld[j] + p;
|
|
if (dminus < 0.) {
|
|
++neg2;
|
|
}
|
|
tmp = p / dminus;
|
|
p = tmp * d__[j] - *sigma;
|
|
/* L23: */
|
|
}
|
|
sawnan = disnan_(&p);
|
|
/* As above, run a slower version that substitutes 1 for Inf/Inf. */
|
|
|
|
if (sawnan) {
|
|
neg2 = 0;
|
|
p = bsav;
|
|
/* Computing MAX */
|
|
i__3 = bj - 127;
|
|
i__2 = max(i__3,*r__);
|
|
for (j = bj; j >= i__2; --j) {
|
|
dminus = lld[j] + p;
|
|
if (dminus < 0.) {
|
|
++neg2;
|
|
}
|
|
tmp = p / dminus;
|
|
if (disnan_(&tmp)) {
|
|
tmp = 1.;
|
|
}
|
|
p = tmp * d__[j] - *sigma;
|
|
/* L24: */
|
|
}
|
|
}
|
|
negcnt += neg2;
|
|
/* L230: */
|
|
}
|
|
|
|
/* III) Twist index */
|
|
/* T was shifted by SIGMA initially. */
|
|
gamma = t + *sigma + p;
|
|
if (gamma < 0.) {
|
|
++negcnt;
|
|
}
|
|
ret_val = negcnt;
|
|
return ret_val;
|
|
} /* dlaneg_ */
|