mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
208 lines
5.4 KiB
C
208 lines
5.4 KiB
C
#include "clapack.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static real c_b10 = -1.f;
|
|
static real c_b12 = 1.f;
|
|
|
|
/* Subroutine */ int spotf2_(char *uplo, integer *n, real *a, integer *lda,
|
|
integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
real r__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
integer j;
|
|
real ajj;
|
|
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
|
|
sgemv_(char *, integer *, integer *, real *, real *, integer *,
|
|
real *, integer *, real *, real *, integer *);
|
|
logical upper;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SPOTF2 computes the Cholesky factorization of a real symmetric */
|
|
/* positive definite matrix A. */
|
|
|
|
/* The factorization has the form */
|
|
/* A = U' * U , if UPLO = 'U', or */
|
|
/* A = L * L', if UPLO = 'L', */
|
|
/* where U is an upper triangular matrix and L is lower triangular. */
|
|
|
|
/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
/* Specifies whether the upper or lower triangular part of the */
|
|
/* symmetric matrix A is stored. */
|
|
/* = 'U': Upper triangular */
|
|
/* = 'L': Lower triangular */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
|
/* n by n upper triangular part of A contains the upper */
|
|
/* triangular part of the matrix A, and the strictly lower */
|
|
/* triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* leading n by n lower triangular part of A contains the lower */
|
|
/* triangular part of the matrix A, and the strictly upper */
|
|
/* triangular part of A is not referenced. */
|
|
|
|
/* On exit, if INFO = 0, the factor U or L from the Cholesky */
|
|
/* factorization A = U'*U or A = L*L'. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit */
|
|
/* < 0: if INFO = -k, the k-th argument had an illegal value */
|
|
/* > 0: if INFO = k, the leading minor of order k is not */
|
|
/* positive definite, and the factorization could not be */
|
|
/* completed. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SPOTF2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Compute the Cholesky factorization A = U'*U. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Compute U(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = j - 1;
|
|
ajj = a[j + j * a_dim1] - sdot_(&i__2, &a[j * a_dim1 + 1], &c__1,
|
|
&a[j * a_dim1 + 1], &c__1);
|
|
if (ajj <= 0.f) {
|
|
a[j + j * a_dim1] = ajj;
|
|
goto L30;
|
|
}
|
|
ajj = sqrt(ajj);
|
|
a[j + j * a_dim1] = ajj;
|
|
|
|
/* Compute elements J+1:N of row J. */
|
|
|
|
if (j < *n) {
|
|
i__2 = j - 1;
|
|
i__3 = *n - j;
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b10, &a[(j + 1) * a_dim1
|
|
+ 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b12, &a[j + (
|
|
j + 1) * a_dim1], lda);
|
|
i__2 = *n - j;
|
|
r__1 = 1.f / ajj;
|
|
sscal_(&i__2, &r__1, &a[j + (j + 1) * a_dim1], lda);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Compute the Cholesky factorization A = L*L'. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Compute L(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = j - 1;
|
|
ajj = a[j + j * a_dim1] - sdot_(&i__2, &a[j + a_dim1], lda, &a[j
|
|
+ a_dim1], lda);
|
|
if (ajj <= 0.f) {
|
|
a[j + j * a_dim1] = ajj;
|
|
goto L30;
|
|
}
|
|
ajj = sqrt(ajj);
|
|
a[j + j * a_dim1] = ajj;
|
|
|
|
/* Compute elements J+1:N of column J. */
|
|
|
|
if (j < *n) {
|
|
i__2 = *n - j;
|
|
i__3 = j - 1;
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b10, &a[j + 1 +
|
|
a_dim1], lda, &a[j + a_dim1], lda, &c_b12, &a[j + 1 +
|
|
j * a_dim1], &c__1);
|
|
i__2 = *n - j;
|
|
r__1 = 1.f / ajj;
|
|
sscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
goto L40;
|
|
|
|
L30:
|
|
*info = j;
|
|
|
|
L40:
|
|
return 0;
|
|
|
|
/* End of SPOTF2 */
|
|
|
|
} /* spotf2_ */
|