mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
103 lines
3.3 KiB
Matlab
103 lines
3.3 KiB
Matlab
#! /usr/bin/env octave
|
|
## Tracking of rotating point.
|
|
## Rotation speed is constant.
|
|
## Both state and measurements vectors are 1D (a point angle),
|
|
## Measurement is the real point angle + gaussian noise.
|
|
## The real and the estimated points are connected with yellow line segment,
|
|
## the real and the measured points are connected with red line segment.
|
|
## (if Kalman filter works correctly,
|
|
## the yellow segment should be shorter than the red one).
|
|
## Pressing any key (except ESC) will reset the tracking with a different speed.
|
|
## Pressing ESC will stop the program.
|
|
|
|
cv;
|
|
highgui;
|
|
|
|
global img;
|
|
|
|
function ret=calc_point(angle)
|
|
global img;
|
|
ret=cvPoint( cvRound(img.width/2 + img.width/3*cos(angle)), \
|
|
cvRound(img.height/2 - img.width/3*sin(angle)));
|
|
endfunction
|
|
|
|
function draw_cross( center, color, d )
|
|
global img;
|
|
global CV_AA;
|
|
cvLine( img, cvPoint( center.x - d, center.y - d ),
|
|
cvPoint( center.x + d, center.y + d ), color, 1, CV_AA, 0);
|
|
cvLine( img, cvPoint( center.x + d, center.y - d ),
|
|
cvPoint( center.x - d, center.y + d ), \
|
|
color, 1, CV_AA, 0 );
|
|
endfunction
|
|
|
|
A = [ 1, 1; 0, 1 ];
|
|
|
|
img = cvCreateImage( cvSize(500,500), 8, 3 );
|
|
kalman = cvCreateKalman( 2, 1, 0 );
|
|
state = cvCreateMat( 2, 1, CV_32FC1 ); # (phi, delta_phi)
|
|
process_noise = cvCreateMat( 2, 1, CV_32FC1 );
|
|
measurement = cvCreateMat( 1, 1, CV_32FC1 );
|
|
rng = cvRNG(-1);
|
|
code = -1;
|
|
|
|
cvZero( measurement );
|
|
cvNamedWindow( "Kalman", 1 );
|
|
|
|
while (true),
|
|
cvRandArr( rng, state, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) );
|
|
|
|
kalman.transition_matrix = mat2cv(A, CV_32FC1);
|
|
cvSetIdentity( kalman.measurement_matrix, cvRealScalar(1) );
|
|
cvSetIdentity( kalman.process_noise_cov, cvRealScalar(1e-5) );
|
|
cvSetIdentity( kalman.measurement_noise_cov, cvRealScalar(1e-1) );
|
|
cvSetIdentity( kalman.error_cov_post, cvRealScalar(1));
|
|
cvRandArr( rng, kalman.state_post, CV_RAND_NORMAL, cvRealScalar(0), cvRealScalar(0.1) );
|
|
|
|
while (true),
|
|
|
|
state_angle = state(0);
|
|
state_pt = calc_point(state_angle);
|
|
|
|
prediction = cvKalmanPredict( kalman );
|
|
predict_angle = prediction(0);
|
|
predict_pt = calc_point(predict_angle);
|
|
|
|
cvRandArr( rng, measurement, CV_RAND_NORMAL, cvRealScalar(0), \
|
|
cvRealScalar(sqrt(kalman.measurement_noise_cov(0))) );
|
|
|
|
## generate measurement
|
|
cvMatMulAdd( kalman.measurement_matrix, state, measurement, measurement );
|
|
|
|
measurement_angle = measurement(0);
|
|
measurement_pt = calc_point(measurement_angle);
|
|
|
|
## plot points
|
|
cvZero( img );
|
|
draw_cross( state_pt, CV_RGB(255,255,255), 3 );
|
|
draw_cross( measurement_pt, CV_RGB(255,0,0), 3 );
|
|
draw_cross( predict_pt, CV_RGB(0,255,0), 3 );
|
|
cvLine( img, state_pt, measurement_pt, CV_RGB(255,0,0), 3, CV_AA, 0 );
|
|
cvLine( img, state_pt, predict_pt, CV_RGB(255,255,0), 3, CV_AA, 0 );
|
|
|
|
cvKalmanCorrect( kalman, measurement );
|
|
|
|
cvRandArr( rng, process_noise, CV_RAND_NORMAL, cvRealScalar(0), \
|
|
cvRealScalar(sqrt(kalman.process_noise_cov(0)(0))));
|
|
cvMatMulAdd( kalman.transition_matrix, state, process_noise, state );
|
|
|
|
cvShowImage( "Kalman", img );
|
|
code = cvWaitKey( 100 );
|
|
|
|
if( code > 0 )
|
|
break;
|
|
endif
|
|
endwhile
|
|
|
|
if( code == '\x1b' || code == 'q' || code == 'Q' )
|
|
break;
|
|
endif
|
|
endwhile
|
|
|
|
cvDestroyWindow("Kalman");
|