mirror of
https://github.com/opencv/opencv.git
synced 2025-08-03 04:36:33 +08:00
159 lines
5.0 KiB
C++
159 lines
5.0 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
|
|
namespace cv {
|
|
namespace dnn {
|
|
CV__DNN_INLINE_NS_BEGIN
|
|
|
|
|
|
Mat blobFromImage(InputArray image, double scalefactor, const Size& size,
|
|
const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
Mat blob;
|
|
blobFromImage(image, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
return blob;
|
|
}
|
|
|
|
void blobFromImage(InputArray image, OutputArray blob, double scalefactor,
|
|
const Size& size, const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
std::vector<Mat> images(1, image.getMat());
|
|
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
}
|
|
|
|
Mat blobFromImages(InputArrayOfArrays images, double scalefactor, Size size,
|
|
const Scalar& mean, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
Mat blob;
|
|
blobFromImages(images, blob, scalefactor, size, mean, swapRB, crop, ddepth);
|
|
return blob;
|
|
}
|
|
|
|
void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalefactor,
|
|
Size size, const Scalar& mean_, bool swapRB, bool crop, int ddepth)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_CheckType(ddepth, ddepth == CV_32F || ddepth == CV_8U, "Blob depth should be CV_32F or CV_8U");
|
|
if (ddepth == CV_8U)
|
|
{
|
|
CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth");
|
|
CV_Assert(mean_ == Scalar() && "Mean subtraction is not supported for CV_8U blob depth");
|
|
}
|
|
|
|
std::vector<Mat> images;
|
|
images_.getMatVector(images);
|
|
CV_Assert(!images.empty());
|
|
for (size_t i = 0; i < images.size(); i++)
|
|
{
|
|
Size imgSize = images[i].size();
|
|
if (size == Size())
|
|
size = imgSize;
|
|
if (size != imgSize)
|
|
{
|
|
if (crop)
|
|
{
|
|
float resizeFactor = std::max(size.width / (float)imgSize.width,
|
|
size.height / (float)imgSize.height);
|
|
resize(images[i], images[i], Size(), resizeFactor, resizeFactor, INTER_LINEAR);
|
|
Rect crop(Point(0.5 * (images[i].cols - size.width),
|
|
0.5 * (images[i].rows - size.height)),
|
|
size);
|
|
images[i] = images[i](crop);
|
|
}
|
|
else
|
|
resize(images[i], images[i], size, 0, 0, INTER_LINEAR);
|
|
}
|
|
if (images[i].depth() == CV_8U && ddepth == CV_32F)
|
|
images[i].convertTo(images[i], CV_32F);
|
|
Scalar mean = mean_;
|
|
if (swapRB)
|
|
std::swap(mean[0], mean[2]);
|
|
|
|
images[i] -= mean;
|
|
images[i] *= scalefactor;
|
|
}
|
|
|
|
size_t nimages = images.size();
|
|
Mat image0 = images[0];
|
|
int nch = image0.channels();
|
|
CV_Assert(image0.dims == 2);
|
|
if (nch == 3 || nch == 4)
|
|
{
|
|
int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
|
|
blob_.create(4, sz, ddepth);
|
|
Mat blob = blob_.getMat();
|
|
Mat ch[4];
|
|
|
|
for (size_t i = 0; i < nimages; i++)
|
|
{
|
|
const Mat& image = images[i];
|
|
CV_Assert(image.depth() == blob_.depth());
|
|
nch = image.channels();
|
|
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
for (int j = 0; j < nch; j++)
|
|
ch[j] = Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, j));
|
|
if (swapRB)
|
|
std::swap(ch[0], ch[2]);
|
|
split(image, ch);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CV_Assert(nch == 1);
|
|
int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
|
|
blob_.create(4, sz, ddepth);
|
|
Mat blob = blob_.getMat();
|
|
|
|
for (size_t i = 0; i < nimages; i++)
|
|
{
|
|
const Mat& image = images[i];
|
|
CV_Assert(image.depth() == blob_.depth());
|
|
nch = image.channels();
|
|
CV_Assert(image.dims == 2 && (nch == 1));
|
|
CV_Assert(image.size() == image0.size());
|
|
|
|
image.copyTo(Mat(image.rows, image.cols, ddepth, blob.ptr((int)i, 0)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
|
|
// A blob is a 4 dimensional matrix in floating point precision
|
|
// blob_[0] = batchSize = nbOfImages
|
|
// blob_[1] = nbOfChannels
|
|
// blob_[2] = height
|
|
// blob_[3] = width
|
|
CV_Assert(blob_.depth() == CV_32F);
|
|
CV_Assert(blob_.dims == 4);
|
|
|
|
images_.create(cv::Size(1, blob_.size[0]), blob_.depth());
|
|
|
|
std::vector<Mat> vectorOfChannels(blob_.size[1]);
|
|
for (int n = 0; n < blob_.size[0]; ++n)
|
|
{
|
|
for (int c = 0; c < blob_.size[1]; ++c)
|
|
{
|
|
vectorOfChannels[c] = getPlane(blob_, n, c);
|
|
}
|
|
cv::merge(vectorOfChannels, images_.getMatRef(n));
|
|
}
|
|
}
|
|
|
|
|
|
CV__DNN_INLINE_NS_END
|
|
}} // namespace cv::dnn
|