mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 07:42:32 +08:00
1436 lines
38 KiB
C++
1436 lines
38 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
#ifndef INCLUDED_IMATHMATRIXALGO_H
|
|
#define INCLUDED_IMATHMATRIXALGO_H
|
|
|
|
//-------------------------------------------------------------------------
|
|
//
|
|
// This file contains algorithms applied to or in conjunction with
|
|
// transformation matrices (Imath::Matrix33 and Imath::Matrix44).
|
|
// The assumption made is that these functions are called much less
|
|
// often than the basic point functions or these functions require
|
|
// more support classes.
|
|
//
|
|
// This file also defines a few predefined constant matrices.
|
|
//
|
|
//-------------------------------------------------------------------------
|
|
|
|
#include "ImathMatrix.h"
|
|
#include "ImathQuat.h"
|
|
#include "ImathEuler.h"
|
|
#include "ImathExc.h"
|
|
#include "ImathVec.h"
|
|
#include "ImathLimits.h"
|
|
#include <math.h>
|
|
|
|
|
|
#ifdef OPENEXR_DLL
|
|
#ifdef IMATH_EXPORTS
|
|
#define IMATH_EXPORT_CONST extern __declspec(dllexport)
|
|
#else
|
|
#define IMATH_EXPORT_CONST extern __declspec(dllimport)
|
|
#endif
|
|
#else
|
|
#define IMATH_EXPORT_CONST extern const
|
|
#endif
|
|
|
|
|
|
namespace Imath {
|
|
|
|
//------------------
|
|
// Identity matrices
|
|
//------------------
|
|
|
|
IMATH_EXPORT_CONST M33f identity33f;
|
|
IMATH_EXPORT_CONST M44f identity44f;
|
|
IMATH_EXPORT_CONST M33d identity33d;
|
|
IMATH_EXPORT_CONST M44d identity44d;
|
|
|
|
//----------------------------------------------------------------------
|
|
// Extract scale, shear, rotation, and translation values from a matrix:
|
|
//
|
|
// Notes:
|
|
//
|
|
// This implementation follows the technique described in the paper by
|
|
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
|
|
// Matrix into Simple Transformations", p. 320.
|
|
//
|
|
// - Some of the functions below have an optional exc parameter
|
|
// that determines the functions' behavior when the matrix'
|
|
// scaling is very close to zero:
|
|
//
|
|
// If exc is true, the functions throw an Imath::ZeroScale exception.
|
|
//
|
|
// If exc is false:
|
|
//
|
|
// extractScaling (m, s) returns false, s is invalid
|
|
// sansScaling (m) returns m
|
|
// removeScaling (m) returns false, m is unchanged
|
|
// sansScalingAndShear (m) returns m
|
|
// removeScalingAndShear (m) returns false, m is unchanged
|
|
// extractAndRemoveScalingAndShear (m, s, h)
|
|
// returns false, m is unchanged,
|
|
// (sh) are invalid
|
|
// checkForZeroScaleInRow () returns false
|
|
// extractSHRT (m, s, h, r, t) returns false, (shrt) are invalid
|
|
//
|
|
// - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX()
|
|
// assume that the matrix does not include shear or non-uniform scaling,
|
|
// but they do not examine the matrix to verify this assumption.
|
|
// Matrices with shear or non-uniform scaling are likely to produce
|
|
// meaningless results. Therefore, you should use the
|
|
// removeScalingAndShear() routine, if necessary, prior to calling
|
|
// extractEuler...() .
|
|
//
|
|
// - All functions assume that the matrix does not include perspective
|
|
// transformation(s), but they do not examine the matrix to verify
|
|
// this assumption. Matrices with perspective transformations are
|
|
// likely to produce meaningless results.
|
|
//
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
//
|
|
// Declarations for 4x4 matrix.
|
|
//
|
|
|
|
template <class T> bool extractScaling
|
|
(const Matrix44<T> &mat,
|
|
Vec3<T> &scl,
|
|
bool exc = true);
|
|
|
|
template <class T> Matrix44<T> sansScaling (const Matrix44<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool removeScaling
|
|
(Matrix44<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool extractScalingAndShear
|
|
(const Matrix44<T> &mat,
|
|
Vec3<T> &scl,
|
|
Vec3<T> &shr,
|
|
bool exc = true);
|
|
|
|
template <class T> Matrix44<T> sansScalingAndShear
|
|
(const Matrix44<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> void sansScalingAndShear
|
|
(Matrix44<T> &result,
|
|
const Matrix44<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool removeScalingAndShear
|
|
(Matrix44<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool extractAndRemoveScalingAndShear
|
|
(Matrix44<T> &mat,
|
|
Vec3<T> &scl,
|
|
Vec3<T> &shr,
|
|
bool exc = true);
|
|
|
|
template <class T> void extractEulerXYZ
|
|
(const Matrix44<T> &mat,
|
|
Vec3<T> &rot);
|
|
|
|
template <class T> void extractEulerZYX
|
|
(const Matrix44<T> &mat,
|
|
Vec3<T> &rot);
|
|
|
|
template <class T> Quat<T> extractQuat (const Matrix44<T> &mat);
|
|
|
|
template <class T> bool extractSHRT
|
|
(const Matrix44<T> &mat,
|
|
Vec3<T> &s,
|
|
Vec3<T> &h,
|
|
Vec3<T> &r,
|
|
Vec3<T> &t,
|
|
bool exc /*= true*/,
|
|
typename Euler<T>::Order rOrder);
|
|
|
|
template <class T> bool extractSHRT
|
|
(const Matrix44<T> &mat,
|
|
Vec3<T> &s,
|
|
Vec3<T> &h,
|
|
Vec3<T> &r,
|
|
Vec3<T> &t,
|
|
bool exc = true);
|
|
|
|
template <class T> bool extractSHRT
|
|
(const Matrix44<T> &mat,
|
|
Vec3<T> &s,
|
|
Vec3<T> &h,
|
|
Euler<T> &r,
|
|
Vec3<T> &t,
|
|
bool exc = true);
|
|
|
|
//
|
|
// Internal utility function.
|
|
//
|
|
|
|
template <class T> bool checkForZeroScaleInRow
|
|
(const T &scl,
|
|
const Vec3<T> &row,
|
|
bool exc = true);
|
|
|
|
template <class T> Matrix44<T> outerProduct
|
|
( const Vec4<T> &a,
|
|
const Vec4<T> &b);
|
|
|
|
|
|
//
|
|
// Returns a matrix that rotates "fromDirection" vector to "toDirection"
|
|
// vector.
|
|
//
|
|
|
|
template <class T> Matrix44<T> rotationMatrix (const Vec3<T> &fromDirection,
|
|
const Vec3<T> &toDirection);
|
|
|
|
|
|
|
|
//
|
|
// Returns a matrix that rotates the "fromDir" vector
|
|
// so that it points towards "toDir". You may also
|
|
// specify that you want the up vector to be pointing
|
|
// in a certain direction "upDir".
|
|
//
|
|
|
|
template <class T> Matrix44<T> rotationMatrixWithUpDir
|
|
(const Vec3<T> &fromDir,
|
|
const Vec3<T> &toDir,
|
|
const Vec3<T> &upDir);
|
|
|
|
|
|
//
|
|
// Constructs a matrix that rotates the z-axis so that it
|
|
// points towards "targetDir". You must also specify
|
|
// that you want the up vector to be pointing in a
|
|
// certain direction "upDir".
|
|
//
|
|
// Notes: The following degenerate cases are handled:
|
|
// (a) when the directions given by "toDir" and "upDir"
|
|
// are parallel or opposite;
|
|
// (the direction vectors must have a non-zero cross product)
|
|
// (b) when any of the given direction vectors have zero length
|
|
//
|
|
|
|
template <class T> void alignZAxisWithTargetDir
|
|
(Matrix44<T> &result,
|
|
Vec3<T> targetDir,
|
|
Vec3<T> upDir);
|
|
|
|
|
|
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
|
|
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
|
|
// Inputs are :
|
|
// -the position of the frame
|
|
// -the x axis direction of the frame
|
|
// -a normal to the y axis of the frame
|
|
// Return is the orthonormal frame
|
|
template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
|
|
const Vec3<T>& xDir,
|
|
const Vec3<T>& normal);
|
|
|
|
// Add a translate/rotate/scale offset to an input frame
|
|
// and put it in another frame of reference
|
|
// Inputs are :
|
|
// - input frame
|
|
// - translate offset
|
|
// - rotate offset in degrees
|
|
// - scale offset
|
|
// - frame of reference
|
|
// Output is the offsetted frame
|
|
template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
|
|
const Vec3<T>& tOffset,
|
|
const Vec3<T>& rOffset,
|
|
const Vec3<T>& sOffset,
|
|
const Vec3<T>& ref);
|
|
|
|
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
|
|
// Inputs are :
|
|
// -keepRotateA : if true keep rotate from matrix A, use B otherwise
|
|
// -keepScaleA : if true keep scale from matrix A, use B otherwise
|
|
// -Matrix A
|
|
// -Matrix B
|
|
// Return Matrix A with tweaked rotation/scale
|
|
template <class T> Matrix44<T> computeRSMatrix( bool keepRotateA,
|
|
bool keepScaleA,
|
|
const Matrix44<T>& A,
|
|
const Matrix44<T>& B);
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
|
|
|
|
//
|
|
// Declarations for 3x3 matrix.
|
|
//
|
|
|
|
|
|
template <class T> bool extractScaling
|
|
(const Matrix33<T> &mat,
|
|
Vec2<T> &scl,
|
|
bool exc = true);
|
|
|
|
template <class T> Matrix33<T> sansScaling (const Matrix33<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool removeScaling
|
|
(Matrix33<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool extractScalingAndShear
|
|
(const Matrix33<T> &mat,
|
|
Vec2<T> &scl,
|
|
T &h,
|
|
bool exc = true);
|
|
|
|
template <class T> Matrix33<T> sansScalingAndShear
|
|
(const Matrix33<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool removeScalingAndShear
|
|
(Matrix33<T> &mat,
|
|
bool exc = true);
|
|
|
|
template <class T> bool extractAndRemoveScalingAndShear
|
|
(Matrix33<T> &mat,
|
|
Vec2<T> &scl,
|
|
T &shr,
|
|
bool exc = true);
|
|
|
|
template <class T> void extractEuler
|
|
(const Matrix33<T> &mat,
|
|
T &rot);
|
|
|
|
template <class T> bool extractSHRT (const Matrix33<T> &mat,
|
|
Vec2<T> &s,
|
|
T &h,
|
|
T &r,
|
|
Vec2<T> &t,
|
|
bool exc = true);
|
|
|
|
template <class T> bool checkForZeroScaleInRow
|
|
(const T &scl,
|
|
const Vec2<T> &row,
|
|
bool exc = true);
|
|
|
|
template <class T> Matrix33<T> outerProduct
|
|
( const Vec3<T> &a,
|
|
const Vec3<T> &b);
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Implementation for 4x4 Matrix
|
|
//------------------------------
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
|
|
{
|
|
Vec3<T> shr;
|
|
Matrix44<T> M (mat);
|
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
sansScaling (const Matrix44<T> &mat, bool exc)
|
|
{
|
|
Vec3<T> scl;
|
|
Vec3<T> shr;
|
|
Vec3<T> rot;
|
|
Vec3<T> tran;
|
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc))
|
|
return mat;
|
|
|
|
Matrix44<T> M;
|
|
|
|
M.translate (tran);
|
|
M.rotate (rot);
|
|
M.shear (shr);
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
removeScaling (Matrix44<T> &mat, bool exc)
|
|
{
|
|
Vec3<T> scl;
|
|
Vec3<T> shr;
|
|
Vec3<T> rot;
|
|
Vec3<T> tran;
|
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc))
|
|
return false;
|
|
|
|
mat.makeIdentity ();
|
|
mat.translate (tran);
|
|
mat.rotate (rot);
|
|
mat.shear (shr);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
extractScalingAndShear (const Matrix44<T> &mat,
|
|
Vec3<T> &scl, Vec3<T> &shr, bool exc)
|
|
{
|
|
Matrix44<T> M (mat);
|
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
sansScalingAndShear (const Matrix44<T> &mat, bool exc)
|
|
{
|
|
Vec3<T> scl;
|
|
Vec3<T> shr;
|
|
Matrix44<T> M (mat);
|
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
|
|
return mat;
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void
|
|
sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
|
|
{
|
|
Vec3<T> scl;
|
|
Vec3<T> shr;
|
|
|
|
if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
|
|
result = mat;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
removeScalingAndShear (Matrix44<T> &mat, bool exc)
|
|
{
|
|
Vec3<T> scl;
|
|
Vec3<T> shr;
|
|
|
|
if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
extractAndRemoveScalingAndShear (Matrix44<T> &mat,
|
|
Vec3<T> &scl, Vec3<T> &shr, bool exc)
|
|
{
|
|
//
|
|
// This implementation follows the technique described in the paper by
|
|
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
|
|
// Matrix into Simple Transformations", p. 320.
|
|
//
|
|
|
|
Vec3<T> row[3];
|
|
|
|
row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
|
|
row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
|
|
row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
|
|
|
|
T maxVal = 0;
|
|
for (int i=0; i < 3; i++)
|
|
for (int j=0; j < 3; j++)
|
|
if (Imath::abs (row[i][j]) > maxVal)
|
|
maxVal = Imath::abs (row[i][j]);
|
|
|
|
//
|
|
// We normalize the 3x3 matrix here.
|
|
// It was noticed that this can improve numerical stability significantly,
|
|
// especially when many of the upper 3x3 matrix's coefficients are very
|
|
// close to zero; we correct for this step at the end by multiplying the
|
|
// scaling factors by maxVal at the end (shear and rotation are not
|
|
// affected by the normalization).
|
|
|
|
if (maxVal != 0)
|
|
{
|
|
for (int i=0; i < 3; i++)
|
|
if (! checkForZeroScaleInRow (maxVal, row[i], exc))
|
|
return false;
|
|
else
|
|
row[i] /= maxVal;
|
|
}
|
|
|
|
// Compute X scale factor.
|
|
scl.x = row[0].length ();
|
|
if (! checkForZeroScaleInRow (scl.x, row[0], exc))
|
|
return false;
|
|
|
|
// Normalize first row.
|
|
row[0] /= scl.x;
|
|
|
|
// An XY shear factor will shear the X coord. as the Y coord. changes.
|
|
// There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
|
|
// extract the first 3 because we can effect the last 3 by shearing in
|
|
// XY, XZ, YZ combined rotations and scales.
|
|
//
|
|
// shear matrix < 1, YX, ZX, 0,
|
|
// XY, 1, ZY, 0,
|
|
// XZ, YZ, 1, 0,
|
|
// 0, 0, 0, 1 >
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
shr[0] = row[0].dot (row[1]);
|
|
row[1] -= shr[0] * row[0];
|
|
|
|
// Now, compute Y scale.
|
|
scl.y = row[1].length ();
|
|
if (! checkForZeroScaleInRow (scl.y, row[1], exc))
|
|
return false;
|
|
|
|
// Normalize 2nd row and correct the XY shear factor for Y scaling.
|
|
row[1] /= scl.y;
|
|
shr[0] /= scl.y;
|
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row.
|
|
shr[1] = row[0].dot (row[2]);
|
|
row[2] -= shr[1] * row[0];
|
|
shr[2] = row[1].dot (row[2]);
|
|
row[2] -= shr[2] * row[1];
|
|
|
|
// Next, get Z scale.
|
|
scl.z = row[2].length ();
|
|
if (! checkForZeroScaleInRow (scl.z, row[2], exc))
|
|
return false;
|
|
|
|
// Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
|
|
row[2] /= scl.z;
|
|
shr[1] /= scl.z;
|
|
shr[2] /= scl.z;
|
|
|
|
// At this point, the upper 3x3 matrix in mat is orthonormal.
|
|
// Check for a coordinate system flip. If the determinant
|
|
// is less than zero, then negate the matrix and the scaling factors.
|
|
if (row[0].dot (row[1].cross (row[2])) < 0)
|
|
for (int i=0; i < 3; i++)
|
|
{
|
|
scl[i] *= -1;
|
|
row[i] *= -1;
|
|
}
|
|
|
|
// Copy over the orthonormal rows into the returned matrix.
|
|
// The upper 3x3 matrix in mat is now a rotation matrix.
|
|
for (int i=0; i < 3; i++)
|
|
{
|
|
mat[i][0] = row[i][0];
|
|
mat[i][1] = row[i][1];
|
|
mat[i][2] = row[i][2];
|
|
}
|
|
|
|
// Correct the scaling factors for the normalization step that we
|
|
// performed above; shear and rotation are not affected by the
|
|
// normalization.
|
|
scl *= maxVal;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void
|
|
extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
|
|
{
|
|
//
|
|
// Normalize the local x, y and z axes to remove scaling.
|
|
//
|
|
|
|
Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
|
|
Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
|
|
Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
|
|
|
|
i.normalize();
|
|
j.normalize();
|
|
k.normalize();
|
|
|
|
Matrix44<T> M (i[0], i[1], i[2], 0,
|
|
j[0], j[1], j[2], 0,
|
|
k[0], k[1], k[2], 0,
|
|
0, 0, 0, 1);
|
|
|
|
//
|
|
// Extract the first angle, rot.x.
|
|
//
|
|
|
|
rot.x = Math<T>::atan2 (M[1][2], M[2][2]);
|
|
|
|
//
|
|
// Remove the rot.x rotation from M, so that the remaining
|
|
// rotation, N, is only around two axes, and gimbal lock
|
|
// cannot occur.
|
|
//
|
|
|
|
Matrix44<T> N;
|
|
N.rotate (Vec3<T> (-rot.x, 0, 0));
|
|
N = N * M;
|
|
|
|
//
|
|
// Extract the other two angles, rot.y and rot.z, from N.
|
|
//
|
|
|
|
T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
|
|
rot.y = Math<T>::atan2 (-N[0][2], cy);
|
|
rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void
|
|
extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
|
|
{
|
|
//
|
|
// Normalize the local x, y and z axes to remove scaling.
|
|
//
|
|
|
|
Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
|
|
Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
|
|
Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
|
|
|
|
i.normalize();
|
|
j.normalize();
|
|
k.normalize();
|
|
|
|
Matrix44<T> M (i[0], i[1], i[2], 0,
|
|
j[0], j[1], j[2], 0,
|
|
k[0], k[1], k[2], 0,
|
|
0, 0, 0, 1);
|
|
|
|
//
|
|
// Extract the first angle, rot.x.
|
|
//
|
|
|
|
rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);
|
|
|
|
//
|
|
// Remove the x rotation from M, so that the remaining
|
|
// rotation, N, is only around two axes, and gimbal lock
|
|
// cannot occur.
|
|
//
|
|
|
|
Matrix44<T> N;
|
|
N.rotate (Vec3<T> (0, 0, -rot.x));
|
|
N = N * M;
|
|
|
|
//
|
|
// Extract the other two angles, rot.y and rot.z, from N.
|
|
//
|
|
|
|
T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
|
|
rot.y = -Math<T>::atan2 (-N[2][0], cy);
|
|
rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Quat<T>
|
|
extractQuat (const Matrix44<T> &mat)
|
|
{
|
|
Matrix44<T> rot;
|
|
|
|
T tr, s;
|
|
T q[4];
|
|
int i, j, k;
|
|
Quat<T> quat;
|
|
|
|
int nxt[3] = {1, 2, 0};
|
|
tr = mat[0][0] + mat[1][1] + mat[2][2];
|
|
|
|
// check the diagonal
|
|
if (tr > 0.0) {
|
|
s = Math<T>::sqrt (tr + T(1.0));
|
|
quat.r = s / T(2.0);
|
|
s = T(0.5) / s;
|
|
|
|
quat.v.x = (mat[1][2] - mat[2][1]) * s;
|
|
quat.v.y = (mat[2][0] - mat[0][2]) * s;
|
|
quat.v.z = (mat[0][1] - mat[1][0]) * s;
|
|
}
|
|
else {
|
|
// diagonal is negative
|
|
i = 0;
|
|
if (mat[1][1] > mat[0][0])
|
|
i=1;
|
|
if (mat[2][2] > mat[i][i])
|
|
i=2;
|
|
|
|
j = nxt[i];
|
|
k = nxt[j];
|
|
s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
|
|
|
|
q[i] = s * T(0.5);
|
|
if (s != T(0.0))
|
|
s = T(0.5) / s;
|
|
|
|
q[3] = (mat[j][k] - mat[k][j]) * s;
|
|
q[j] = (mat[i][j] + mat[j][i]) * s;
|
|
q[k] = (mat[i][k] + mat[k][i]) * s;
|
|
|
|
quat.v.x = q[0];
|
|
quat.v.y = q[1];
|
|
quat.v.z = q[2];
|
|
quat.r = q[3];
|
|
}
|
|
|
|
return quat;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
extractSHRT (const Matrix44<T> &mat,
|
|
Vec3<T> &s,
|
|
Vec3<T> &h,
|
|
Vec3<T> &r,
|
|
Vec3<T> &t,
|
|
bool exc /* = true */ ,
|
|
typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
|
|
{
|
|
Matrix44<T> rot;
|
|
|
|
rot = mat;
|
|
if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
|
|
return false;
|
|
|
|
extractEulerXYZ (rot, r);
|
|
|
|
t.x = mat[3][0];
|
|
t.y = mat[3][1];
|
|
t.z = mat[3][2];
|
|
|
|
if (rOrder != Euler<T>::XYZ)
|
|
{
|
|
Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ);
|
|
Imath::Euler<T> e (eXYZ, rOrder);
|
|
r = e.toXYZVector ();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
extractSHRT (const Matrix44<T> &mat,
|
|
Vec3<T> &s,
|
|
Vec3<T> &h,
|
|
Vec3<T> &r,
|
|
Vec3<T> &t,
|
|
bool exc)
|
|
{
|
|
return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ);
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
extractSHRT (const Matrix44<T> &mat,
|
|
Vec3<T> &s,
|
|
Vec3<T> &h,
|
|
Euler<T> &r,
|
|
Vec3<T> &t,
|
|
bool exc /* = true */)
|
|
{
|
|
return extractSHRT (mat, s, h, r, t, exc, r.order ());
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
checkForZeroScaleInRow (const T& scl,
|
|
const Vec3<T> &row,
|
|
bool exc /* = true */ )
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
|
|
{
|
|
if (exc)
|
|
throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
|
|
"from matrix.");
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
outerProduct (const Vec4<T> &a, const Vec4<T> &b )
|
|
{
|
|
return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
|
|
a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
|
|
a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
|
|
a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
|
|
}
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
|
|
{
|
|
Quat<T> q;
|
|
q.setRotation(from, to);
|
|
return q.toMatrix44();
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Matrix44<T>
|
|
rotationMatrixWithUpDir (const Vec3<T> &fromDir,
|
|
const Vec3<T> &toDir,
|
|
const Vec3<T> &upDir)
|
|
{
|
|
//
|
|
// The goal is to obtain a rotation matrix that takes
|
|
// "fromDir" to "toDir". We do this in two steps and
|
|
// compose the resulting rotation matrices;
|
|
// (a) rotate "fromDir" into the z-axis
|
|
// (b) rotate the z-axis into "toDir"
|
|
//
|
|
|
|
// The from direction must be non-zero; but we allow zero to and up dirs.
|
|
if (fromDir.length () == 0)
|
|
return Matrix44<T> ();
|
|
|
|
else
|
|
{
|
|
Matrix44<T> zAxis2FromDir( Imath::UNINITIALIZED );
|
|
alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
|
|
|
|
Matrix44<T> fromDir2zAxis = zAxis2FromDir.transposed ();
|
|
|
|
Matrix44<T> zAxis2ToDir( Imath::UNINITIALIZED );
|
|
alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);
|
|
|
|
return fromDir2zAxis * zAxis2ToDir;
|
|
}
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void
|
|
alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
|
|
{
|
|
//
|
|
// Ensure that the target direction is non-zero.
|
|
//
|
|
|
|
if ( targetDir.length () == 0 )
|
|
targetDir = Vec3<T> (0, 0, 1);
|
|
|
|
//
|
|
// Ensure that the up direction is non-zero.
|
|
//
|
|
|
|
if ( upDir.length () == 0 )
|
|
upDir = Vec3<T> (0, 1, 0);
|
|
|
|
//
|
|
// Check for degeneracies. If the upDir and targetDir are parallel
|
|
// or opposite, then compute a new, arbitrary up direction that is
|
|
// not parallel or opposite to the targetDir.
|
|
//
|
|
|
|
if (upDir.cross (targetDir).length () == 0)
|
|
{
|
|
upDir = targetDir.cross (Vec3<T> (1, 0, 0));
|
|
if (upDir.length() == 0)
|
|
upDir = targetDir.cross(Vec3<T> (0, 0, 1));
|
|
}
|
|
|
|
//
|
|
// Compute the x-, y-, and z-axis vectors of the new coordinate system.
|
|
//
|
|
|
|
Vec3<T> targetPerpDir = upDir.cross (targetDir);
|
|
Vec3<T> targetUpDir = targetDir.cross (targetPerpDir);
|
|
|
|
//
|
|
// Rotate the x-axis into targetPerpDir (row 0),
|
|
// rotate the y-axis into targetUpDir (row 1),
|
|
// rotate the z-axis into targetDir (row 2).
|
|
//
|
|
|
|
Vec3<T> row[3];
|
|
row[0] = targetPerpDir.normalized ();
|
|
row[1] = targetUpDir .normalized ();
|
|
row[2] = targetDir .normalized ();
|
|
|
|
result.x[0][0] = row[0][0];
|
|
result.x[0][1] = row[0][1];
|
|
result.x[0][2] = row[0][2];
|
|
result.x[0][3] = (T)0;
|
|
|
|
result.x[1][0] = row[1][0];
|
|
result.x[1][1] = row[1][1];
|
|
result.x[1][2] = row[1][2];
|
|
result.x[1][3] = (T)0;
|
|
|
|
result.x[2][0] = row[2][0];
|
|
result.x[2][1] = row[2][1];
|
|
result.x[2][2] = row[2][2];
|
|
result.x[2][3] = (T)0;
|
|
|
|
result.x[3][0] = (T)0;
|
|
result.x[3][1] = (T)0;
|
|
result.x[3][2] = (T)0;
|
|
result.x[3][3] = (T)1;
|
|
}
|
|
|
|
|
|
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
|
|
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
|
|
// Inputs are :
|
|
// -the position of the frame
|
|
// -the x axis direction of the frame
|
|
// -a normal to the y axis of the frame
|
|
// Return is the orthonormal frame
|
|
template <class T>
|
|
Matrix44<T>
|
|
computeLocalFrame( const Vec3<T>& p,
|
|
const Vec3<T>& xDir,
|
|
const Vec3<T>& normal)
|
|
{
|
|
Vec3<T> _xDir(xDir);
|
|
Vec3<T> x = _xDir.normalize();
|
|
Vec3<T> y = (normal % x).normalize();
|
|
Vec3<T> z = (x % y).normalize();
|
|
|
|
Matrix44<T> L;
|
|
L[0][0] = x[0];
|
|
L[0][1] = x[1];
|
|
L[0][2] = x[2];
|
|
L[0][3] = 0.0;
|
|
|
|
L[1][0] = y[0];
|
|
L[1][1] = y[1];
|
|
L[1][2] = y[2];
|
|
L[1][3] = 0.0;
|
|
|
|
L[2][0] = z[0];
|
|
L[2][1] = z[1];
|
|
L[2][2] = z[2];
|
|
L[2][3] = 0.0;
|
|
|
|
L[3][0] = p[0];
|
|
L[3][1] = p[1];
|
|
L[3][2] = p[2];
|
|
L[3][3] = 1.0;
|
|
|
|
return L;
|
|
}
|
|
|
|
// Add a translate/rotate/scale offset to an input frame
|
|
// and put it in another frame of reference
|
|
// Inputs are :
|
|
// - input frame
|
|
// - translate offset
|
|
// - rotate offset in degrees
|
|
// - scale offset
|
|
// - frame of reference
|
|
// Output is the offsetted frame
|
|
template <class T>
|
|
Matrix44<T>
|
|
addOffset( const Matrix44<T>& inMat,
|
|
const Vec3<T>& tOffset,
|
|
const Vec3<T>& rOffset,
|
|
const Vec3<T>& sOffset,
|
|
const Matrix44<T>& ref)
|
|
{
|
|
Matrix44<T> O;
|
|
|
|
Vec3<T> _rOffset(rOffset);
|
|
_rOffset *= M_PI / 180.0;
|
|
O.rotate (_rOffset);
|
|
|
|
O[3][0] = tOffset[0];
|
|
O[3][1] = tOffset[1];
|
|
O[3][2] = tOffset[2];
|
|
|
|
Matrix44<T> S;
|
|
S.scale (sOffset);
|
|
|
|
Matrix44<T> X = S * O * inMat * ref;
|
|
|
|
return X;
|
|
}
|
|
|
|
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
|
|
// Inputs are :
|
|
// -keepRotateA : if true keep rotate from matrix A, use B otherwise
|
|
// -keepScaleA : if true keep scale from matrix A, use B otherwise
|
|
// -Matrix A
|
|
// -Matrix B
|
|
// Return Matrix A with tweaked rotation/scale
|
|
template <class T>
|
|
Matrix44<T>
|
|
computeRSMatrix( bool keepRotateA,
|
|
bool keepScaleA,
|
|
const Matrix44<T>& A,
|
|
const Matrix44<T>& B)
|
|
{
|
|
Vec3<T> as, ah, ar, at;
|
|
extractSHRT (A, as, ah, ar, at);
|
|
|
|
Vec3<T> bs, bh, br, bt;
|
|
extractSHRT (B, bs, bh, br, bt);
|
|
|
|
if (!keepRotateA)
|
|
ar = br;
|
|
|
|
if (!keepScaleA)
|
|
as = bs;
|
|
|
|
Matrix44<T> mat;
|
|
mat.makeIdentity();
|
|
mat.translate (at);
|
|
mat.rotate (ar);
|
|
mat.scale (as);
|
|
|
|
return mat;
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Implementation for 3x3 Matrix
|
|
//------------------------------
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
|
|
{
|
|
T shr;
|
|
Matrix33<T> M (mat);
|
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
sansScaling (const Matrix33<T> &mat, bool exc)
|
|
{
|
|
Vec2<T> scl;
|
|
T shr;
|
|
T rot;
|
|
Vec2<T> tran;
|
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc))
|
|
return mat;
|
|
|
|
Matrix33<T> M;
|
|
|
|
M.translate (tran);
|
|
M.rotate (rot);
|
|
M.shear (shr);
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
removeScaling (Matrix33<T> &mat, bool exc)
|
|
{
|
|
Vec2<T> scl;
|
|
T shr;
|
|
T rot;
|
|
Vec2<T> tran;
|
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc))
|
|
return false;
|
|
|
|
mat.makeIdentity ();
|
|
mat.translate (tran);
|
|
mat.rotate (rot);
|
|
mat.shear (shr);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
|
|
{
|
|
Matrix33<T> M (mat);
|
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
sansScalingAndShear (const Matrix33<T> &mat, bool exc)
|
|
{
|
|
Vec2<T> scl;
|
|
T shr;
|
|
Matrix33<T> M (mat);
|
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
|
|
return mat;
|
|
|
|
return M;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
removeScalingAndShear (Matrix33<T> &mat, bool exc)
|
|
{
|
|
Vec2<T> scl;
|
|
T shr;
|
|
|
|
if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
extractAndRemoveScalingAndShear (Matrix33<T> &mat,
|
|
Vec2<T> &scl, T &shr, bool exc)
|
|
{
|
|
Vec2<T> row[2];
|
|
|
|
row[0] = Vec2<T> (mat[0][0], mat[0][1]);
|
|
row[1] = Vec2<T> (mat[1][0], mat[1][1]);
|
|
|
|
T maxVal = 0;
|
|
for (int i=0; i < 2; i++)
|
|
for (int j=0; j < 2; j++)
|
|
if (Imath::abs (row[i][j]) > maxVal)
|
|
maxVal = Imath::abs (row[i][j]);
|
|
|
|
//
|
|
// We normalize the 2x2 matrix here.
|
|
// It was noticed that this can improve numerical stability significantly,
|
|
// especially when many of the upper 2x2 matrix's coefficients are very
|
|
// close to zero; we correct for this step at the end by multiplying the
|
|
// scaling factors by maxVal at the end (shear and rotation are not
|
|
// affected by the normalization).
|
|
|
|
if (maxVal != 0)
|
|
{
|
|
for (int i=0; i < 2; i++)
|
|
if (! checkForZeroScaleInRow (maxVal, row[i], exc))
|
|
return false;
|
|
else
|
|
row[i] /= maxVal;
|
|
}
|
|
|
|
// Compute X scale factor.
|
|
scl.x = row[0].length ();
|
|
if (! checkForZeroScaleInRow (scl.x, row[0], exc))
|
|
return false;
|
|
|
|
// Normalize first row.
|
|
row[0] /= scl.x;
|
|
|
|
// An XY shear factor will shear the X coord. as the Y coord. changes.
|
|
// There are 2 combinations (XY, YX), although we only extract the XY
|
|
// shear factor because we can effect the an YX shear factor by
|
|
// shearing in XY combined with rotations and scales.
|
|
//
|
|
// shear matrix < 1, YX, 0,
|
|
// XY, 1, 0,
|
|
// 0, 0, 1 >
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
shr = row[0].dot (row[1]);
|
|
row[1] -= shr * row[0];
|
|
|
|
// Now, compute Y scale.
|
|
scl.y = row[1].length ();
|
|
if (! checkForZeroScaleInRow (scl.y, row[1], exc))
|
|
return false;
|
|
|
|
// Normalize 2nd row and correct the XY shear factor for Y scaling.
|
|
row[1] /= scl.y;
|
|
shr /= scl.y;
|
|
|
|
// At this point, the upper 2x2 matrix in mat is orthonormal.
|
|
// Check for a coordinate system flip. If the determinant
|
|
// is -1, then flip the rotation matrix and adjust the scale(Y)
|
|
// and shear(XY) factors to compensate.
|
|
if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
|
|
{
|
|
row[1][0] *= -1;
|
|
row[1][1] *= -1;
|
|
scl[1] *= -1;
|
|
shr *= -1;
|
|
}
|
|
|
|
// Copy over the orthonormal rows into the returned matrix.
|
|
// The upper 2x2 matrix in mat is now a rotation matrix.
|
|
for (int i=0; i < 2; i++)
|
|
{
|
|
mat[i][0] = row[i][0];
|
|
mat[i][1] = row[i][1];
|
|
}
|
|
|
|
scl *= maxVal;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void
|
|
extractEuler (const Matrix33<T> &mat, T &rot)
|
|
{
|
|
//
|
|
// Normalize the local x and y axes to remove scaling.
|
|
//
|
|
|
|
Vec2<T> i (mat[0][0], mat[0][1]);
|
|
Vec2<T> j (mat[1][0], mat[1][1]);
|
|
|
|
i.normalize();
|
|
j.normalize();
|
|
|
|
//
|
|
// Extract the angle, rot.
|
|
//
|
|
|
|
rot = - Math<T>::atan2 (j[0], i[0]);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
extractSHRT (const Matrix33<T> &mat,
|
|
Vec2<T> &s,
|
|
T &h,
|
|
T &r,
|
|
Vec2<T> &t,
|
|
bool exc)
|
|
{
|
|
Matrix33<T> rot;
|
|
|
|
rot = mat;
|
|
if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
|
|
return false;
|
|
|
|
extractEuler (rot, r);
|
|
|
|
t.x = mat[2][0];
|
|
t.y = mat[2][1];
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool
|
|
checkForZeroScaleInRow (const T& scl,
|
|
const Vec2<T> &row,
|
|
bool exc /* = true */ )
|
|
{
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
|
|
{
|
|
if (exc)
|
|
throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
|
|
"from matrix.");
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Matrix33<T>
|
|
outerProduct (const Vec3<T> &a, const Vec3<T> &b )
|
|
{
|
|
return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
|
|
a.y*b.x, a.y*b.y, a.y*b.z,
|
|
a.z*b.x, a.z*b.y, a.z*b.z );
|
|
}
|
|
|
|
|
|
// Computes the translation and rotation that brings the 'from' points
|
|
// as close as possible to the 'to' points under the Frobenius norm.
|
|
// To be more specific, let x be the matrix of 'from' points and y be
|
|
// the matrix of 'to' points, we want to find the matrix A of the form
|
|
// [ R t ]
|
|
// [ 0 1 ]
|
|
// that minimizes
|
|
// || (A*x - y)^T * W * (A*x - y) ||_F
|
|
// If doScaling is true, then a uniform scale is allowed also.
|
|
template <typename T>
|
|
Imath::M44d
|
|
procrustesRotationAndTranslation (const Imath::Vec3<T>* A, // From these
|
|
const Imath::Vec3<T>* B, // To these
|
|
const T* weights,
|
|
const size_t numPoints,
|
|
const bool doScaling = false);
|
|
|
|
// Unweighted:
|
|
template <typename T>
|
|
Imath::M44d
|
|
procrustesRotationAndTranslation (const Imath::Vec3<T>* A,
|
|
const Imath::Vec3<T>* B,
|
|
const size_t numPoints,
|
|
const bool doScaling = false);
|
|
|
|
// Compute the SVD of a 3x3 matrix using Jacobi transformations. This method
|
|
// should be quite accurate (competitive with LAPACK) even for poorly
|
|
// conditioned matrices, and because it has been written specifically for the
|
|
// 3x3/4x4 case it is much faster than calling out to LAPACK.
|
|
//
|
|
// The SVD of a 3x3/4x4 matrix A is defined as follows:
|
|
// A = U * S * V^T
|
|
// where S is the diagonal matrix of singular values and both U and V are
|
|
// orthonormal. By convention, the entries S are all positive and sorted from
|
|
// the largest to the smallest. However, some uses of this function may
|
|
// require that the matrix U*V^T have positive determinant; in this case, we
|
|
// may make the smallest singular value negative to ensure that this is
|
|
// satisfied.
|
|
//
|
|
// Currently only available for single- and double-precision matrices.
|
|
template <typename T>
|
|
void
|
|
jacobiSVD (const Imath::Matrix33<T>& A,
|
|
Imath::Matrix33<T>& U,
|
|
Imath::Vec3<T>& S,
|
|
Imath::Matrix33<T>& V,
|
|
const T tol = Imath::limits<T>::epsilon(),
|
|
const bool forcePositiveDeterminant = false);
|
|
|
|
template <typename T>
|
|
void
|
|
jacobiSVD (const Imath::Matrix44<T>& A,
|
|
Imath::Matrix44<T>& U,
|
|
Imath::Vec4<T>& S,
|
|
Imath::Matrix44<T>& V,
|
|
const T tol = Imath::limits<T>::epsilon(),
|
|
const bool forcePositiveDeterminant = false);
|
|
|
|
// Compute the eigenvalues (S) and the eigenvectors (V) of
|
|
// a real symmetric matrix using Jacobi transformation.
|
|
//
|
|
// Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
|
|
// A = V * S * V^T
|
|
// where V is orthonormal and S is the diagonal matrix of eigenvalues.
|
|
// Input matrix A must be symmetric. A is also modified during
|
|
// the computation so that upper diagonal entries of A become zero.
|
|
//
|
|
template <typename T>
|
|
void
|
|
jacobiEigenSolver (Matrix33<T>& A,
|
|
Vec3<T>& S,
|
|
Matrix33<T>& V,
|
|
const T tol);
|
|
|
|
template <typename T>
|
|
inline
|
|
void
|
|
jacobiEigenSolver (Matrix33<T>& A,
|
|
Vec3<T>& S,
|
|
Matrix33<T>& V)
|
|
{
|
|
jacobiEigenSolver(A,S,V,limits<T>::epsilon());
|
|
}
|
|
|
|
template <typename T>
|
|
void
|
|
jacobiEigenSolver (Matrix44<T>& A,
|
|
Vec4<T>& S,
|
|
Matrix44<T>& V,
|
|
const T tol);
|
|
|
|
template <typename T>
|
|
inline
|
|
void
|
|
jacobiEigenSolver (Matrix44<T>& A,
|
|
Vec4<T>& S,
|
|
Matrix44<T>& V)
|
|
{
|
|
jacobiEigenSolver(A,S,V,limits<T>::epsilon());
|
|
}
|
|
|
|
// Compute a eigenvector corresponding to the abs max/min eigenvalue
|
|
// of a real symmetric matrix using Jacobi transformation.
|
|
template <typename TM, typename TV>
|
|
void
|
|
maxEigenVector (TM& A, TV& S);
|
|
template <typename TM, typename TV>
|
|
void
|
|
minEigenVector (TM& A, TV& S);
|
|
|
|
} // namespace Imath
|
|
|
|
#endif
|