mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
34 lines
1.0 KiB
Python
34 lines
1.0 KiB
Python
from __future__ import print_function
|
|
import numpy as np
|
|
import cv2
|
|
from cv2 import dnn
|
|
import timeit
|
|
|
|
def prepare_image(img):
|
|
img = cv2.resize(img, (224, 224))
|
|
#convert interleaved image (RGBRGB) to planar(RRGGBB)
|
|
blob = np.moveaxis(img, 2, 0)
|
|
blob = np.reshape(blob.astype(np.float32), (-1, 3, 224, 224))
|
|
return blob
|
|
|
|
def timeit_forward(net):
|
|
print("OpenCL:", cv2.ocl.useOpenCL())
|
|
print("Runtime:", timeit.timeit(lambda: net.forward(), number=10))
|
|
|
|
def get_class_list():
|
|
with open('synset_words.txt', 'rt') as f:
|
|
return [ x[x.find(" ") + 1 :] for x in f ]
|
|
|
|
blob = prepare_image(cv2.imread('space_shuttle.jpg'))
|
|
print("Input:", blob.shape, blob.dtype)
|
|
|
|
cv2.ocl.setUseOpenCL(True) #Disable OCL if you want
|
|
net = dnn.readNetFromCaffe('bvlc_googlenet.prototxt', 'bvlc_googlenet.caffemodel')
|
|
net.setBlob(".data", blob)
|
|
net.forward()
|
|
#timeit_forward(net) #Uncomment to check performance
|
|
|
|
prob = net.getBlob("prob")
|
|
print("Output:", prob.shape, prob.dtype)
|
|
classes = get_class_list()
|
|
print("Best match", classes[prob.argmax()]) |