opencv/samples/python/houghcircles.py
Aleksandar Atanasov cf0df733da Fix houghcircles.py when no circles found
In the C++ equivalent of this example a check is made whether the vector (here in Python we have a list) actually has any circles in it that is whether the Hough circles function has managed to find any in the given image. This check is missing for the Python example and if no circles are found the application breaks.
2016-06-02 10:58:46 +02:00

42 lines
1.2 KiB
Python
Executable File

#!/usr/bin/python
'''
This example illustrates how to use cv2.HoughCircles() function.
Usage:
houghcircles.py [<image_name>]
image argument defaults to ../data/board.jpg
'''
# Python 2/3 compatibility
from __future__ import print_function
import cv2
import numpy as np
import sys
if __name__ == '__main__':
print(__doc__)
try:
fn = sys.argv[1]
except IndexError:
fn = "../data/board.jpg"
src = cv2.imread(fn, 1)
img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
img = cv2.medianBlur(img, 5)
cimg = src.copy() # numpy function
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)
if circles != None: # Check if circles have been found and only then iterate over these and add them to the image
a, b, c = circles.shape
for i in range(b):
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv2.LINE_AA)
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv2.LINE_AA) # draw center of circle
cv2.imshow("source", src)
cv2.imshow("detected circles", cimg)
cv2.waitKey(0)