opencv/modules/features2d/src/keypoint.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

348 lines
11 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
size_t KeyPoint::hash() const
{
size_t _Val = 2166136261U, scale = 16777619U;
Cv32suf u;
u.f = pt.x; _Val = (scale * _Val) ^ u.u;
u.f = pt.y; _Val = (scale * _Val) ^ u.u;
u.f = size; _Val = (scale * _Val) ^ u.u;
u.f = angle; _Val = (scale * _Val) ^ u.u;
u.f = response; _Val = (scale * _Val) ^ u.u;
_Val = (scale * _Val) ^ ((size_t) octave);
_Val = (scale * _Val) ^ ((size_t) class_id);
return _Val;
}
void write(FileStorage& fs, const std::string& objname, const std::vector<KeyPoint>& keypoints)
{
WriteStructContext ws(fs, objname, CV_NODE_SEQ + CV_NODE_FLOW);
int i, npoints = (int)keypoints.size();
for( i = 0; i < npoints; i++ )
{
const KeyPoint& kpt = keypoints[i];
write(fs, kpt.pt.x);
write(fs, kpt.pt.y);
write(fs, kpt.size);
write(fs, kpt.angle);
write(fs, kpt.response);
write(fs, kpt.octave);
write(fs, kpt.class_id);
}
}
void read(const FileNode& node, std::vector<KeyPoint>& keypoints)
{
keypoints.resize(0);
FileNodeIterator it = node.begin(), it_end = node.end();
for( ; it != it_end; )
{
KeyPoint kpt;
it >> kpt.pt.x >> kpt.pt.y >> kpt.size >> kpt.angle >> kpt.response >> kpt.octave >> kpt.class_id;
keypoints.push_back(kpt);
}
}
void KeyPoint::convert(const std::vector<KeyPoint>& keypoints, std::vector<Point2f>& points2f,
const std::vector<int>& keypointIndexes)
{
if( keypointIndexes.empty() )
{
points2f.resize( keypoints.size() );
for( size_t i = 0; i < keypoints.size(); i++ )
points2f[i] = keypoints[i].pt;
}
else
{
points2f.resize( keypointIndexes.size() );
for( size_t i = 0; i < keypointIndexes.size(); i++ )
{
int idx = keypointIndexes[i];
if( idx >= 0 )
points2f[i] = keypoints[idx].pt;
else
{
CV_Error( CV_StsBadArg, "keypointIndexes has element < 0. TODO: process this case" );
//points2f[i] = Point2f(-1, -1);
}
}
}
}
void KeyPoint::convert( const std::vector<Point2f>& points2f, std::vector<KeyPoint>& keypoints,
float size, float response, int octave, int class_id )
{
keypoints.resize(points2f.size());
for( size_t i = 0; i < points2f.size(); i++ )
keypoints[i] = KeyPoint(points2f[i], size, -1, response, octave, class_id);
}
float KeyPoint::overlap( const KeyPoint& kp1, const KeyPoint& kp2 )
{
float a = kp1.size * 0.5f;
float b = kp2.size * 0.5f;
float a_2 = a * a;
float b_2 = b * b;
Point2f p1 = kp1.pt;
Point2f p2 = kp2.pt;
float c = (float)norm( p1 - p2 );
float ovrl = 0.f;
// one circle is completely encovered by the other => no intersection points!
if( std::min( a, b ) + c <= std::max( a, b ) )
return std::min( a_2, b_2 ) / std::max( a_2, b_2 );
if( c < a + b ) // circles intersect
{
float c_2 = c * c;
float cosAlpha = ( b_2 + c_2 - a_2 ) / ( kp2.size * c );
float cosBeta = ( a_2 + c_2 - b_2 ) / ( kp1.size * c );
float alpha = acos( cosAlpha );
float beta = acos( cosBeta );
float sinAlpha = sin(alpha);
float sinBeta = sin(beta);
float segmentAreaA = a_2 * beta;
float segmentAreaB = b_2 * alpha;
float triangleAreaA = a_2 * sinBeta * cosBeta;
float triangleAreaB = b_2 * sinAlpha * cosAlpha;
float intersectionArea = segmentAreaA + segmentAreaB - triangleAreaA - triangleAreaB;
float unionArea = (a_2 + b_2) * (float)CV_PI - intersectionArea;
ovrl = intersectionArea / unionArea;
}
return ovrl;
}
struct KeypointResponseGreaterThanThreshold
{
KeypointResponseGreaterThanThreshold(float _value) :
value(_value)
{
}
inline bool operator()(const KeyPoint& kpt) const
{
return kpt.response >= value;
}
float value;
};
struct KeypointResponseGreater
{
inline bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) const
{
return kp1.response > kp2.response;
}
};
// takes keypoints and culls them by the response
void KeyPointsFilter::retainBest(std::vector<KeyPoint>& keypoints, int n_points)
{
//this is only necessary if the keypoints size is greater than the number of desired points.
if( n_points > 0 && keypoints.size() > (size_t)n_points )
{
if (n_points==0)
{
keypoints.clear();
return;
}
//first use nth element to partition the keypoints into the best and worst.
std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), KeypointResponseGreater());
//this is the boundary response, and in the case of FAST may be ambigous
float ambiguous_response = keypoints[n_points - 1].response;
//use std::partition to grab all of the keypoints with the boundary response.
std::vector<KeyPoint>::const_iterator new_end =
std::partition(keypoints.begin() + n_points, keypoints.end(),
KeypointResponseGreaterThanThreshold(ambiguous_response));
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
keypoints.resize(new_end - keypoints.begin());
}
}
struct RoiPredicate
{
RoiPredicate( const Rect& _r ) : r(_r)
{}
bool operator()( const KeyPoint& keyPt ) const
{
return !r.contains( keyPt.pt );
}
Rect r;
};
void KeyPointsFilter::runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize )
{
if( borderSize > 0)
{
if (imageSize.height <= borderSize * 2 || imageSize.width <= borderSize * 2)
keypoints.clear();
else
keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(),
RoiPredicate(Rect(Point(borderSize, borderSize),
Point(imageSize.width - borderSize, imageSize.height - borderSize)))),
keypoints.end() );
}
}
struct SizePredicate
{
SizePredicate( float _minSize, float _maxSize ) : minSize(_minSize), maxSize(_maxSize)
{}
bool operator()( const KeyPoint& keyPt ) const
{
float size = keyPt.size;
return (size < minSize) || (size > maxSize);
}
float minSize, maxSize;
};
void KeyPointsFilter::runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize, float maxSize )
{
CV_Assert( minSize >= 0 );
CV_Assert( maxSize >= 0);
CV_Assert( minSize <= maxSize );
keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(), SizePredicate(minSize, maxSize)),
keypoints.end() );
}
class MaskPredicate
{
public:
MaskPredicate( const Mat& _mask ) : mask(_mask) {}
bool operator() (const KeyPoint& key_pt) const
{
return mask.at<uchar>( (int)(key_pt.pt.y + 0.5f), (int)(key_pt.pt.x + 0.5f) ) == 0;
}
private:
const Mat mask;
MaskPredicate& operator=(const MaskPredicate&);
};
void KeyPointsFilter::runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask )
{
if( mask.empty() )
return;
keypoints.erase(std::remove_if(keypoints.begin(), keypoints.end(), MaskPredicate(mask)), keypoints.end());
}
struct KeyPoint_LessThan
{
KeyPoint_LessThan(const std::vector<KeyPoint>& _kp) : kp(&_kp) {}
bool operator()(int i, int j) const
{
const KeyPoint& kp1 = (*kp)[i];
const KeyPoint& kp2 = (*kp)[j];
if( kp1.pt.x != kp2.pt.x )
return kp1.pt.x < kp2.pt.x;
if( kp1.pt.y != kp2.pt.y )
return kp1.pt.y < kp2.pt.y;
if( kp1.size != kp2.size )
return kp1.size > kp2.size;
if( kp1.angle != kp2.angle )
return kp1.angle < kp2.angle;
if( kp1.response != kp2.response )
return kp1.response > kp2.response;
if( kp1.octave != kp2.octave )
return kp1.octave > kp2.octave;
if( kp1.class_id != kp2.class_id )
return kp1.class_id > kp2.class_id;
return i < j;
}
const std::vector<KeyPoint>* kp;
};
void KeyPointsFilter::removeDuplicated( std::vector<KeyPoint>& keypoints )
{
int i, j, n = (int)keypoints.size();
std::vector<int> kpidx(n);
std::vector<uchar> mask(n, (uchar)1);
for( i = 0; i < n; i++ )
kpidx[i] = i;
std::sort(kpidx.begin(), kpidx.end(), KeyPoint_LessThan(keypoints));
for( i = 1, j = 0; i < n; i++ )
{
KeyPoint& kp1 = keypoints[kpidx[i]];
KeyPoint& kp2 = keypoints[kpidx[j]];
if( kp1.pt.x != kp2.pt.x || kp1.pt.y != kp2.pt.y ||
kp1.size != kp2.size || kp1.angle != kp2.angle )
j = i;
else
mask[kpidx[i]] = 0;
}
for( i = j = 0; i < n; i++ )
{
if( mask[i] )
{
if( i != j )
keypoints[j] = keypoints[i];
j++;
}
}
keypoints.resize(j);
}
}