opencv/modules/3d/test/test_ptcloud_utils.cpp
Wanli Zhong b06544bd54
Merge pull request #21918 from No-Plane-Cannot-Be-Detected:5.x-region_growing_3d
Add normal estimation and region growing algorithm for point cloud

* Add normal estimation and region growing algorithm for point cloud

* 1.Modified documentation for normal estimation;2.Converted curvature in region growing to absolute values;3.Changed the data type of threshold from float to double;4.Fixed some bugs;

* Finished documentation

* Add tests for normal estimation. Test the normal and curvature of each point in the plane and sphere of the point cloud.

* Fix some warnings caused by to small numbers in test

* Change the test to calculate the average difference instead of comparing each normal and curvature

* Fixed the bugs found by testing

* Redesigned the interface and fixed problems:
1. Make the interface compatible with radius search.
2. Make region growing optionally sortable on results.
3. Modified the region growing interface.
4. Format reference.
5. Removed sphere test.

* Fix warnings

* Remove flann dependency

* Move the flann dependency to the corresponding test
2022-05-23 14:47:57 +00:00

110 lines
3.5 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021, Wanli Zhong <zhongwl2018@mail.sustech.edu.cn>
#include "test_ptcloud_utils.hpp"
namespace opencv_test {
void generatePlane(OutputArray plane_pts, const vector<float> &model, float thr, int num,
const vector<float> &limit)
{
if (plane_pts.channels() == 3 && plane_pts.isVector())
{
// std::vector<cv::Point3f>
plane_pts.create(1, num, CV_32FC3);
}
else
{
// cv::Mat
plane_pts.create(num, 3, CV_32F);
}
cv::RNG rng(0);
auto *plane_pts_ptr = (float *) plane_pts.getMat().data;
// Part of the points are generated for the specific model
// The other part of the points are used to increase the thickness of the plane
int std_num = (int) (num / 2);
// Difference of maximum d between two parallel planes
float d_thr = thr * sqrt(model[0] * model[0] + model[1] * model[1] + model[2] * model[2]);
for (int i = 0; i < num; i++)
{
// Let d change then generate thickness
float d = i < std_num ? model[3] : rng.uniform(model[3] - d_thr, model[3] + d_thr);
float x, y, z;
// c is 0 means the plane is vertical
if (model[2] == 0)
{
z = rng.uniform(limit[4], limit[5]);
if (model[0] == 0)
{
x = rng.uniform(limit[0], limit[1]);
y = -d / model[1];
}
else if (model[1] == 0)
{
x = -d / model[0];
y = rng.uniform(limit[2], limit[3]);
}
else
{
x = rng.uniform(limit[0], limit[1]);
y = -(model[0] * x + d) / model[1];
}
}
// c is not 0
else
{
x = rng.uniform(limit[0], limit[1]);
y = rng.uniform(limit[2], limit[3]);
z = -(model[0] * x + model[1] * y + d) / model[2];
}
plane_pts_ptr[3 * i] = x;
plane_pts_ptr[3 * i + 1] = y;
plane_pts_ptr[3 * i + 2] = z;
}
}
void generateSphere(OutputArray sphere_pts, const vector<float> &model, float thr, int num,
const vector<float> &limit)
{
if (sphere_pts.channels() == 3 && sphere_pts.isVector())
{
// std::vector<cv::Point3f>
sphere_pts.create(1, num, CV_32FC3);
}
else
{
// cv::Mat
sphere_pts.create(num, 3, CV_32F);
}
cv::RNG rng(0);
auto *sphere_pts_ptr = (float *) sphere_pts.getMat().data;
// Part of the points are generated for the specific model
// The other part of the points are used to increase the thickness of the sphere
int sphere_num = (int) (num / 1.5);
for (int i = 0; i < num; i++)
{
// Let r change then generate thickness
float r = i < sphere_num ? model[3] : rng.uniform(model[3] - thr, model[3] + thr);
// Generate a random vector and normalize it.
Vec3f vec(rng.uniform(limit[0], limit[1]), rng.uniform(limit[2], limit[3]),
rng.uniform(limit[4], limit[5]));
float l = sqrt(vec.dot(vec));
// Normalizes it to have a magnitude of r
vec /= l / r;
sphere_pts_ptr[3 * i] = model[0] + vec[0];
sphere_pts_ptr[3 * i + 1] = model[1] + vec[1];
sphere_pts_ptr[3 * i + 2] = model[2] + vec[2];
}
}
} // opencv_test