opencv/modules/objdetect/include/opencv2/objdetect/barcode.hpp
Cristian Dobre e05ad56f6e
Merge pull request #24903 from cristidbr-adapta:feature-barcode-detector-parameters
Feature barcode detector parameters #24903

Attempt to solve #24902 without changing the default detector behaviour. 
Megre with extra: https://github.com/opencv/opencv_extra/pull/1150

**Introduces new parameters and methods to `cv::barcode::BarcodeDetector`**.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-05-20 09:53:22 +03:00

112 lines
5.1 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (c) 2020-2021 darkliang wangberlinT Certseeds
#ifndef OPENCV_OBJDETECT_BARCODE_HPP
#define OPENCV_OBJDETECT_BARCODE_HPP
#include <opencv2/core.hpp>
#include <opencv2/objdetect/graphical_code_detector.hpp>
namespace cv {
namespace barcode {
//! @addtogroup objdetect_barcode
//! @{
class CV_EXPORTS_W_SIMPLE BarcodeDetector : public cv::GraphicalCodeDetector
{
public:
/** @brief Initialize the BarcodeDetector.
*/
CV_WRAP BarcodeDetector();
/** @brief Initialize the BarcodeDetector.
*
* Parameters allow to load _optional_ Super Resolution DNN model for better quality.
* @param prototxt_path prototxt file path for the super resolution model
* @param model_path model file path for the super resolution model
*/
CV_WRAP BarcodeDetector(CV_WRAP_FILE_PATH const std::string &prototxt_path, CV_WRAP_FILE_PATH const std::string &model_path);
~BarcodeDetector();
/** @brief Decodes barcode in image once it's found by the detect() method.
*
* @param img grayscale or color (BGR) image containing bar code.
* @param points vector of rotated rectangle vertices found by detect() method (or some other algorithm).
* For N detected barcodes, the dimensions of this array should be [N][4].
* Order of four points in vector<Point2f> is bottomLeft, topLeft, topRight, bottomRight.
* @param decoded_info UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.
* @param decoded_type vector strings, specifies the type of these barcodes
* @return true if at least one valid barcode have been found
*/
CV_WRAP bool decodeWithType(InputArray img,
InputArray points,
CV_OUT std::vector<std::string> &decoded_info,
CV_OUT std::vector<std::string> &decoded_type) const;
/** @brief Both detects and decodes barcode
* @param img grayscale or color (BGR) image containing barcode.
* @param decoded_info UTF8-encoded output vector of string(s) or empty vector of string if the codes cannot be decoded.
* @param decoded_type vector of strings, specifies the type of these barcodes
* @param points optional output vector of vertices of the found barcode rectangle. Will be empty if not found.
* @return true if at least one valid barcode have been found
*/
CV_WRAP bool detectAndDecodeWithType(InputArray img,
CV_OUT std::vector<std::string> &decoded_info,
CV_OUT std::vector<std::string> &decoded_type,
OutputArray points = noArray()) const;
/** @brief Get detector downsampling threshold.
*
* @return detector downsampling threshold
*/
CV_WRAP double getDownsamplingThreshold() const;
/** @brief Set detector downsampling threshold.
*
* By default, the detect method resizes the input image to this limit if the smallest image size is is greater than the threshold.
* Increasing this value can improve detection accuracy and the number of results at the expense of performance.
* Correlates with detector scales. Setting this to a large value will disable downsampling.
* @param thresh downsampling limit to apply (default 512)
* @see setDetectorScales
*/
CV_WRAP BarcodeDetector& setDownsamplingThreshold(double thresh);
/** @brief Returns detector box filter sizes.
*
* @param sizes output parameter for returning the sizes.
*/
CV_WRAP void getDetectorScales(CV_OUT std::vector<float>& sizes) const;
/** @brief Set detector box filter sizes.
*
* Adjusts the value and the number of box filters used in the detect step.
* The filter sizes directly correlate with the expected line widths for a barcode. Corresponds to expected barcode distance.
* If the downsampling limit is increased, filter sizes need to be adjusted in an inversely proportional way.
* @param sizes box filter sizes, relative to minimum dimension of the image (default [0.01, 0.03, 0.06, 0.08])
*/
CV_WRAP BarcodeDetector& setDetectorScales(const std::vector<float>& sizes);
/** @brief Get detector gradient magnitude threshold.
*
* @return detector gradient magnitude threshold.
*/
CV_WRAP double getGradientThreshold() const;
/** @brief Set detector gradient magnitude threshold.
*
* Sets the coherence threshold for detected bounding boxes.
* Increasing this value will generate a closer fitted bounding box width and can reduce false-positives.
* Values between 16 and 1024 generally work, while too high of a value will remove valid detections.
* @param thresh gradient magnitude threshold (default 64).
*/
CV_WRAP BarcodeDetector& setGradientThreshold(double thresh);
};
//! @}
}} // cv::barcode::
#endif // OPENCV_OBJDETECT_BARCODE_HPP