opencv/modules/photo/test/test_denoising.cpp
Leonid Beynenson 6a5d996ca8 Removed the header opencv2/photo/denoising.hpp
All the functions from it are moved to the header
opencv2/photo/photo.hpp
2012-08-22 17:51:52 +04:00

214 lines
7.2 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/photo/photo.hpp"
#include <string>
using namespace cv;
using namespace std;
class CV_DenoisingGrayscaleTest : public cvtest::BaseTest
{
public:
CV_DenoisingGrayscaleTest();
~CV_DenoisingGrayscaleTest();
protected:
void run(int);
};
CV_DenoisingGrayscaleTest::CV_DenoisingGrayscaleTest() {}
CV_DenoisingGrayscaleTest::~CV_DenoisingGrayscaleTest() {}
void CV_DenoisingGrayscaleTest::run( int )
{
string folder = string(ts->get_data_path()) + "denoising/";
Mat orig = imread(folder + "lena_noised_gaussian_sigma=10.png", 0);
Mat exp = imread(folder + "lena_noised_denoised_grayscale_tw=7_sw=21_h=10.png", 0);
if (orig.empty() || exp.empty())
{
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
Mat res;
fastNlMeansDenoising(orig, res, 7, 21, 10);
if (norm(res - exp) > 0) {
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
} else {
ts->set_failed_test_info(cvtest::TS::OK);
}
}
class CV_DenoisingColoredTest : public cvtest::BaseTest
{
public:
CV_DenoisingColoredTest();
~CV_DenoisingColoredTest();
protected:
void run(int);
};
CV_DenoisingColoredTest::CV_DenoisingColoredTest() {}
CV_DenoisingColoredTest::~CV_DenoisingColoredTest() {}
void CV_DenoisingColoredTest::run( int )
{
string folder = string(ts->get_data_path()) + "denoising/";
Mat orig = imread(folder + "lena_noised_gaussian_sigma=10.png", 1);
Mat exp = imread(folder + "lena_noised_denoised_lab12_tw=7_sw=21_h=10_h2=10.png", 1);
if (orig.empty() || exp.empty())
{
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
Mat res;
fastNlMeansDenoisingColored(orig, res, 7, 21, 10, 10);
if (norm(res - exp) > 0) {
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
} else {
ts->set_failed_test_info(cvtest::TS::OK);
}
}
class CV_DenoisingGrayscaleMultiTest : public cvtest::BaseTest
{
public:
CV_DenoisingGrayscaleMultiTest();
~CV_DenoisingGrayscaleMultiTest();
protected:
void run(int);
};
CV_DenoisingGrayscaleMultiTest::CV_DenoisingGrayscaleMultiTest() {}
CV_DenoisingGrayscaleMultiTest::~CV_DenoisingGrayscaleMultiTest() {}
void CV_DenoisingGrayscaleMultiTest::run( int )
{
string folder = string(ts->get_data_path()) + "denoising/";
const int imgs_count = 3;
vector<Mat> src_imgs(imgs_count);
src_imgs[0] = imread(folder + "lena_noised_gaussian_sigma=20_multi_0.png", 0);
src_imgs[1] = imread(folder + "lena_noised_gaussian_sigma=20_multi_1.png", 0);
src_imgs[2] = imread(folder + "lena_noised_gaussian_sigma=20_multi_2.png", 0);
Mat exp = imread(folder + "lena_noised_denoised_multi_tw=7_sw=21_h=15.png", 0);
bool have_empty_src = false;
for (int i = 0; i < imgs_count; i++) {
have_empty_src |= src_imgs[i].empty();
}
if (have_empty_src || exp.empty())
{
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
Mat res;
fastNlMeansDenoisingMulti(src_imgs, imgs_count / 2, imgs_count, res, 7, 21, 15);
if (norm(res - exp) > 0) {
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
} else {
ts->set_failed_test_info(cvtest::TS::OK);
}
}
class CV_DenoisingColoredMultiTest : public cvtest::BaseTest
{
public:
CV_DenoisingColoredMultiTest();
~CV_DenoisingColoredMultiTest();
protected:
void run(int);
};
CV_DenoisingColoredMultiTest::CV_DenoisingColoredMultiTest() {}
CV_DenoisingColoredMultiTest::~CV_DenoisingColoredMultiTest() {}
void CV_DenoisingColoredMultiTest::run( int )
{
string folder = string(ts->get_data_path()) + "denoising/";
const int imgs_count = 3;
vector<Mat> src_imgs(imgs_count);
src_imgs[0] = imread(folder + "lena_noised_gaussian_sigma=20_multi_0.png", 1);
src_imgs[1] = imread(folder + "lena_noised_gaussian_sigma=20_multi_1.png", 1);
src_imgs[2] = imread(folder + "lena_noised_gaussian_sigma=20_multi_2.png", 1);
Mat exp = imread(folder + "lena_noised_denoised_multi_lab12_tw=7_sw=21_h=10_h2=15.png", 1);
bool have_empty_src = false;
for (int i = 0; i < imgs_count; i++) {
have_empty_src |= src_imgs[i].empty();
}
if (have_empty_src || exp.empty())
{
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
Mat res;
fastNlMeansDenoisingColoredMulti(src_imgs, imgs_count / 2, imgs_count, res, 7, 21, 10, 15);
if (norm(res - exp) > 0) {
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
} else {
ts->set_failed_test_info(cvtest::TS::OK);
}
}
TEST(Imgproc_DenoisingGrayscale, regression) { CV_DenoisingGrayscaleTest test; test.safe_run(); }
TEST(Imgproc_DenoisingColored, regression) { CV_DenoisingColoredTest test; test.safe_run(); }
TEST(Imgproc_DenoisingGrayscaleMulti, regression) { CV_DenoisingGrayscaleMultiTest test; test.safe_run(); }
TEST(Imgproc_DenoisingColoredMulti, regression) { CV_DenoisingColoredMultiTest test; test.safe_run(); }