mirror of
https://github.com/opencv/opencv.git
synced 2024-12-27 11:28:14 +08:00
234 lines
8.2 KiB
C++
234 lines
8.2 KiB
C++
#include "opencv2/objdetect.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
static void help()
|
|
{
|
|
cout << "\nThis program demonstrates the smile detector.\n"
|
|
"Usage:\n"
|
|
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n"
|
|
" [--smile-cascade=[<smile_cascade_path>]]\n"
|
|
" [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n"
|
|
" [--try-flip]\n"
|
|
" [video_filename|camera_index]\n\n"
|
|
"Example:\n"
|
|
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n"
|
|
"During execution:\n\tHit any key to quit.\n"
|
|
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
|
}
|
|
|
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|
CascadeClassifier& nestedCascade,
|
|
double scale, bool tryflip );
|
|
|
|
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
|
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml";
|
|
|
|
int main( int argc, const char** argv )
|
|
{
|
|
VideoCapture capture;
|
|
Mat frame, image;
|
|
const string scaleOpt = "--scale=";
|
|
size_t scaleOptLen = scaleOpt.length();
|
|
const string cascadeOpt = "--cascade=";
|
|
size_t cascadeOptLen = cascadeOpt.length();
|
|
const string nestedCascadeOpt = "--smile-cascade";
|
|
size_t nestedCascadeOptLen = nestedCascadeOpt.length();
|
|
const string tryFlipOpt = "--try-flip";
|
|
size_t tryFlipOptLen = tryFlipOpt.length();
|
|
string inputName;
|
|
bool tryflip = false;
|
|
|
|
help();
|
|
|
|
CascadeClassifier cascade, nestedCascade;
|
|
double scale = 1;
|
|
|
|
for( int i = 1; i < argc; i++ )
|
|
{
|
|
cout << "Processing " << i << " " << argv[i] << endl;
|
|
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
|
|
{
|
|
cascadeName.assign( argv[i] + cascadeOptLen );
|
|
cout << " from which we have cascadeName= " << cascadeName << endl;
|
|
}
|
|
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 )
|
|
{
|
|
if( argv[i][nestedCascadeOpt.length()] == '=' )
|
|
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
|
|
}
|
|
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
|
|
{
|
|
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
|
|
scale = 1;
|
|
cout << " from which we read scale = " << scale << endl;
|
|
}
|
|
else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 )
|
|
{
|
|
tryflip = true;
|
|
cout << " will try to flip image horizontally to detect assymetric objects\n";
|
|
}
|
|
else if( argv[i][0] == '-' )
|
|
{
|
|
cerr << "WARNING: Unknown option " << argv[i] << endl;
|
|
}
|
|
else
|
|
inputName.assign( argv[i] );
|
|
}
|
|
|
|
if( !cascade.load( cascadeName ) )
|
|
{
|
|
cerr << "ERROR: Could not load face cascade" << endl;
|
|
help();
|
|
return -1;
|
|
}
|
|
if( !nestedCascade.load( nestedCascadeName ) )
|
|
{
|
|
cerr << "ERROR: Could not load smile cascade" << endl;
|
|
help();
|
|
return -1;
|
|
}
|
|
|
|
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
|
{
|
|
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
|
if(!capture.open(c))
|
|
cout << "Capture from camera #" << c << " didn't work" << endl;
|
|
}
|
|
else if( inputName.size() )
|
|
{
|
|
if(!capture.open( inputName ))
|
|
cout << "Could not read " << inputName << endl;
|
|
}
|
|
|
|
if( capture.isOpened() )
|
|
{
|
|
cout << "Video capturing has been started ..." << endl;
|
|
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl;
|
|
|
|
for(;;)
|
|
{
|
|
capture >> frame;
|
|
if( frame.empty() )
|
|
break;
|
|
|
|
Mat frame1 = frame.clone();
|
|
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );
|
|
|
|
int c = waitKey(10);
|
|
if( c == 27 || c == 'q' || c == 'Q' )
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cerr << "ERROR: Could not initiate capture" << endl;
|
|
help();
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|
CascadeClassifier& nestedCascade,
|
|
double scale, bool tryflip)
|
|
{
|
|
vector<Rect> faces, faces2;
|
|
const static Scalar colors[] =
|
|
{
|
|
Scalar(255,0,0),
|
|
Scalar(255,128,0),
|
|
Scalar(255,255,0),
|
|
Scalar(0,255,0),
|
|
Scalar(0,128,255),
|
|
Scalar(0,255,255),
|
|
Scalar(0,0,255),
|
|
Scalar(255,0,255)
|
|
};
|
|
Mat gray, smallImg;
|
|
|
|
cvtColor( img, gray, COLOR_BGR2GRAY );
|
|
|
|
double fx = 1 / scale;
|
|
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
|
|
equalizeHist( smallImg, smallImg );
|
|
|
|
cascade.detectMultiScale( smallImg, faces,
|
|
1.1, 2, 0
|
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
|
//|CASCADE_DO_ROUGH_SEARCH
|
|
|CASCADE_SCALE_IMAGE,
|
|
Size(30, 30) );
|
|
if( tryflip )
|
|
{
|
|
flip(smallImg, smallImg, 1);
|
|
cascade.detectMultiScale( smallImg, faces2,
|
|
1.1, 2, 0
|
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
|
//|CASCADE_DO_ROUGH_SEARCH
|
|
|CASCADE_SCALE_IMAGE,
|
|
Size(30, 30) );
|
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
|
{
|
|
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
|
|
}
|
|
}
|
|
|
|
for ( size_t i = 0; i < faces.size(); i++ )
|
|
{
|
|
Rect r = faces[i];
|
|
Mat smallImgROI;
|
|
vector<Rect> nestedObjects;
|
|
Point center;
|
|
Scalar color = colors[i%8];
|
|
int radius;
|
|
|
|
double aspect_ratio = (double)r.width/r.height;
|
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
|
{
|
|
center.x = cvRound((r.x + r.width*0.5)*scale);
|
|
center.y = cvRound((r.y + r.height*0.5)*scale);
|
|
radius = cvRound((r.width + r.height)*0.25*scale);
|
|
circle( img, center, radius, color, 3, 8, 0 );
|
|
}
|
|
else
|
|
rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
|
|
cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
|
|
color, 3, 8, 0);
|
|
|
|
const int half_height=cvRound((float)r.height/2);
|
|
r.y=r.y + half_height;
|
|
r.height = half_height-1;
|
|
smallImgROI = smallImg( r );
|
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
|
1.1, 0, 0
|
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
|
//|CASCADE_DO_ROUGH_SEARCH
|
|
//|CASCADE_DO_CANNY_PRUNING
|
|
|CASCADE_SCALE_IMAGE,
|
|
Size(30, 30) );
|
|
|
|
// The number of detected neighbors depends on image size (and also illumination, etc.). The
|
|
// following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be
|
|
//accurate only after a first smile has been displayed by the user.
|
|
const int smile_neighbors = (int)nestedObjects.size();
|
|
static int max_neighbors=-1;
|
|
static int min_neighbors=-1;
|
|
if (min_neighbors == -1) min_neighbors = smile_neighbors;
|
|
max_neighbors = MAX(max_neighbors, smile_neighbors);
|
|
|
|
// Draw rectangle on the left side of the image reflecting smile intensity
|
|
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1);
|
|
int rect_height = cvRound((float)img.rows * intensityZeroOne);
|
|
Scalar col = Scalar((float)255 * intensityZeroOne, 0, 0);
|
|
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
|
|
}
|
|
|
|
imshow( "result", img );
|
|
}
|