mirror of
https://github.com/opencv/opencv.git
synced 2024-12-27 19:38:16 +08:00
390 lines
14 KiB
C++
390 lines
14 KiB
C++
#if defined _MSC_VER && _MSC_VER >= 1400
|
|
#pragma warning( disable : 4201 4408 4127 4100)
|
|
#endif
|
|
|
|
#include "opencv2/cvconfig.h"
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <cstdio>
|
|
#include "opencv2/core/cuda.hpp"
|
|
#include "opencv2/cudalegacy.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "opencv2/objdetect.hpp"
|
|
#include "opencv2/objdetect/objdetect_c.h"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
|
|
#if !defined(HAVE_CUDA) || defined(__arm__)
|
|
|
|
int main( int, const char** )
|
|
{
|
|
#if !defined(HAVE_CUDA)
|
|
std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true)." << std::endl;
|
|
#endif
|
|
|
|
#if defined(__arm__)
|
|
std::cout << "Unsupported for ARM CUDA library." << std::endl;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
|
|
const Size2i preferredVideoFrameSize(640, 480);
|
|
const cv::String wndTitle = "NVIDIA Computer Vision :: Haar Classifiers Cascade";
|
|
|
|
|
|
static void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const string &ss)
|
|
{
|
|
int fontFace = FONT_HERSHEY_DUPLEX;
|
|
double fontScale = 0.8;
|
|
int fontThickness = 2;
|
|
Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0);
|
|
|
|
Point org;
|
|
org.x = 1;
|
|
org.y = 3 * fontSize.height * (lineOffsY + 1) / 2;
|
|
putText(img, ss, org, fontFace, fontScale, Scalar(0,0,0), 5*fontThickness/2, 16);
|
|
putText(img, ss, org, fontFace, fontScale, fontColor, fontThickness, 16);
|
|
}
|
|
|
|
|
|
static void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bFilter, double fps)
|
|
{
|
|
Scalar fontColorRed(0,0,255);
|
|
Scalar fontColorNV(0,185,118);
|
|
|
|
ostringstream ss;
|
|
ss << "FPS = " << setprecision(1) << fixed << fps;
|
|
matPrint(canvas, 0, fontColorRed, ss.str());
|
|
ss.str("");
|
|
ss << "[" << canvas.cols << "x" << canvas.rows << "], " <<
|
|
(bGpu ? "GPU, " : "CPU, ") <<
|
|
(bLargestFace ? "OneFace, " : "MultiFace, ") <<
|
|
(bFilter ? "Filter:ON" : "Filter:OFF");
|
|
matPrint(canvas, 1, fontColorRed, ss.str());
|
|
|
|
if (bHelp)
|
|
{
|
|
matPrint(canvas, 2, fontColorNV, "Space - switch GPU / CPU");
|
|
matPrint(canvas, 3, fontColorNV, "M - switch OneFace / MultiFace");
|
|
matPrint(canvas, 4, fontColorNV, "F - toggle rectangles Filter");
|
|
matPrint(canvas, 5, fontColorNV, "H - toggle hotkeys help");
|
|
}
|
|
else
|
|
{
|
|
matPrint(canvas, 2, fontColorNV, "H - toggle hotkeys help");
|
|
}
|
|
}
|
|
|
|
|
|
static NCVStatus process(Mat *srcdst,
|
|
Ncv32u width, Ncv32u height,
|
|
NcvBool bFilterRects, NcvBool bLargestFace,
|
|
HaarClassifierCascadeDescriptor &haar,
|
|
NCVVector<HaarStage64> &d_haarStages, NCVVector<HaarClassifierNode128> &d_haarNodes,
|
|
NCVVector<HaarFeature64> &d_haarFeatures, NCVVector<HaarStage64> &h_haarStages,
|
|
INCVMemAllocator &gpuAllocator,
|
|
INCVMemAllocator &cpuAllocator,
|
|
cudaDeviceProp &devProp)
|
|
{
|
|
ncvAssertReturn(!((srcdst == NULL) ^ gpuAllocator.isCounting()), NCV_NULL_PTR);
|
|
|
|
NCVStatus ncvStat;
|
|
|
|
NCV_SET_SKIP_COND(gpuAllocator.isCounting());
|
|
|
|
NCVMatrixAlloc<Ncv8u> d_src(gpuAllocator, width, height);
|
|
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
NCVMatrixAlloc<Ncv8u> h_src(cpuAllocator, width, height);
|
|
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
NCVVectorAlloc<NcvRect32u> d_rects(gpuAllocator, 100);
|
|
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
|
|
NCV_SKIP_COND_BEGIN
|
|
|
|
for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++)
|
|
{
|
|
memcpy(h_src.ptr() + i * h_src.stride(), srcdst->ptr(i), srcdst->cols);
|
|
}
|
|
|
|
ncvStat = h_src.copySolid(d_src, 0);
|
|
ncvAssertReturnNcvStat(ncvStat);
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
|
|
|
NCV_SKIP_COND_END
|
|
|
|
NcvSize32u roi;
|
|
roi.width = d_src.width();
|
|
roi.height = d_src.height();
|
|
|
|
Ncv32u numDetections;
|
|
ncvStat = ncvDetectObjectsMultiScale_device(
|
|
d_src, roi, d_rects, numDetections, haar, h_haarStages,
|
|
d_haarStages, d_haarNodes, d_haarFeatures,
|
|
haar.ClassifierSize,
|
|
(bFilterRects || bLargestFace) ? 4 : 0,
|
|
1.2f, 1,
|
|
(bLargestFace ? NCVPipeObjDet_FindLargestObject : 0)
|
|
| NCVPipeObjDet_VisualizeInPlace,
|
|
gpuAllocator, cpuAllocator, devProp, 0);
|
|
ncvAssertReturnNcvStat(ncvStat);
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
|
|
|
NCV_SKIP_COND_BEGIN
|
|
|
|
ncvStat = d_src.copySolid(h_src, 0);
|
|
ncvAssertReturnNcvStat(ncvStat);
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
|
|
|
for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++)
|
|
{
|
|
memcpy(srcdst->ptr(i), h_src.ptr() + i * h_src.stride(), srcdst->cols);
|
|
}
|
|
|
|
NCV_SKIP_COND_END
|
|
|
|
return NCV_SUCCESS;
|
|
}
|
|
|
|
|
|
int main(int argc, const char** argv)
|
|
{
|
|
cout << "OpenCV / NVIDIA Computer Vision" << endl;
|
|
cout << "Face Detection in video and live feed" << endl;
|
|
cout << "Syntax: exename <cascade_file> <image_or_video_or_cameraid>" << endl;
|
|
cout << "=========================================" << endl;
|
|
|
|
ncvAssertPrintReturn(cv::cuda::getCudaEnabledDeviceCount() != 0, "No GPU found or the library is compiled without CUDA support", -1);
|
|
ncvAssertPrintReturn(argc == 3, "Invalid number of arguments", -1);
|
|
|
|
cv::cuda::printShortCudaDeviceInfo(cv::cuda::getDevice());
|
|
|
|
string cascadeName = argv[1];
|
|
string inputName = argv[2];
|
|
|
|
NCVStatus ncvStat;
|
|
NcvBool bQuit = false;
|
|
VideoCapture capture;
|
|
Size2i frameSize;
|
|
|
|
//open content source
|
|
Mat image = imread(inputName);
|
|
Mat frame;
|
|
if (!image.empty())
|
|
{
|
|
frameSize.width = image.cols;
|
|
frameSize.height = image.rows;
|
|
}
|
|
else
|
|
{
|
|
if (!capture.open(inputName))
|
|
{
|
|
int camid = -1;
|
|
|
|
istringstream ss(inputName);
|
|
int x = 0;
|
|
ss >> x;
|
|
|
|
ncvAssertPrintReturn(capture.open(camid) != 0, "Can't open source", -1);
|
|
}
|
|
|
|
capture >> frame;
|
|
ncvAssertPrintReturn(!frame.empty(), "Empty video source", -1);
|
|
|
|
frameSize.width = frame.cols;
|
|
frameSize.height = frame.rows;
|
|
}
|
|
|
|
NcvBool bUseGPU = true;
|
|
NcvBool bLargestObject = false;
|
|
NcvBool bFilterRects = true;
|
|
NcvBool bHelpScreen = false;
|
|
|
|
CascadeClassifier classifierOpenCV;
|
|
ncvAssertPrintReturn(classifierOpenCV.load(cascadeName) != 0, "Error (in OpenCV) opening classifier", -1);
|
|
|
|
int devId;
|
|
ncvAssertCUDAReturn(cudaGetDevice(&devId), -1);
|
|
cudaDeviceProp devProp;
|
|
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1);
|
|
cout << "Using GPU: " << devId << "(" << devProp.name <<
|
|
"), arch=" << devProp.major << "." << devProp.minor << endl;
|
|
|
|
//==============================================================================
|
|
//
|
|
// Load the classifier from file (assuming its size is about 1 mb)
|
|
// using a simple allocator
|
|
//
|
|
//==============================================================================
|
|
|
|
NCVMemNativeAllocator gpuCascadeAllocator(NCVMemoryTypeDevice, static_cast<Ncv32u>(devProp.textureAlignment));
|
|
ncvAssertPrintReturn(gpuCascadeAllocator.isInitialized(), "Error creating cascade GPU allocator", -1);
|
|
NCVMemNativeAllocator cpuCascadeAllocator(NCVMemoryTypeHostPinned, static_cast<Ncv32u>(devProp.textureAlignment));
|
|
ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1);
|
|
|
|
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
|
|
ncvStat = ncvHaarGetClassifierSize(cascadeName, haarNumStages, haarNumNodes, haarNumFeatures);
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1);
|
|
|
|
NCVVectorAlloc<HaarStage64> h_haarStages(cpuCascadeAllocator, haarNumStages);
|
|
ncvAssertPrintReturn(h_haarStages.isMemAllocated(), "Error in cascade CPU allocator", -1);
|
|
NCVVectorAlloc<HaarClassifierNode128> h_haarNodes(cpuCascadeAllocator, haarNumNodes);
|
|
ncvAssertPrintReturn(h_haarNodes.isMemAllocated(), "Error in cascade CPU allocator", -1);
|
|
NCVVectorAlloc<HaarFeature64> h_haarFeatures(cpuCascadeAllocator, haarNumFeatures);
|
|
|
|
ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1);
|
|
|
|
HaarClassifierCascadeDescriptor haar;
|
|
ncvStat = ncvHaarLoadFromFile_host(cascadeName, haar, h_haarStages, h_haarNodes, h_haarFeatures);
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1);
|
|
|
|
NCVVectorAlloc<HaarStage64> d_haarStages(gpuCascadeAllocator, haarNumStages);
|
|
ncvAssertPrintReturn(d_haarStages.isMemAllocated(), "Error in cascade GPU allocator", -1);
|
|
NCVVectorAlloc<HaarClassifierNode128> d_haarNodes(gpuCascadeAllocator, haarNumNodes);
|
|
ncvAssertPrintReturn(d_haarNodes.isMemAllocated(), "Error in cascade GPU allocator", -1);
|
|
NCVVectorAlloc<HaarFeature64> d_haarFeatures(gpuCascadeAllocator, haarNumFeatures);
|
|
ncvAssertPrintReturn(d_haarFeatures.isMemAllocated(), "Error in cascade GPU allocator", -1);
|
|
|
|
ncvStat = h_haarStages.copySolid(d_haarStages, 0);
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
|
|
ncvStat = h_haarNodes.copySolid(d_haarNodes, 0);
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
|
|
ncvStat = h_haarFeatures.copySolid(d_haarFeatures, 0);
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
|
|
|
|
//==============================================================================
|
|
//
|
|
// Calculate memory requirements and create real allocators
|
|
//
|
|
//==============================================================================
|
|
|
|
NCVMemStackAllocator gpuCounter(static_cast<Ncv32u>(devProp.textureAlignment));
|
|
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", -1);
|
|
NCVMemStackAllocator cpuCounter(static_cast<Ncv32u>(devProp.textureAlignment));
|
|
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", -1);
|
|
|
|
ncvStat = process(NULL, frameSize.width, frameSize.height,
|
|
false, false, haar,
|
|
d_haarStages, d_haarNodes,
|
|
d_haarFeatures, h_haarStages,
|
|
gpuCounter, cpuCounter, devProp);
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
|
|
|
|
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<Ncv32u>(devProp.textureAlignment));
|
|
ncvAssertPrintReturn(gpuAllocator.isInitialized(), "Error creating GPU memory allocator", -1);
|
|
NCVMemStackAllocator cpuAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<Ncv32u>(devProp.textureAlignment));
|
|
ncvAssertPrintReturn(cpuAllocator.isInitialized(), "Error creating CPU memory allocator", -1);
|
|
|
|
printf("Initialized for frame size [%dx%d]\n", frameSize.width, frameSize.height);
|
|
|
|
//==============================================================================
|
|
//
|
|
// Main processing loop
|
|
//
|
|
//==============================================================================
|
|
|
|
namedWindow(wndTitle, 1);
|
|
Mat frameDisp;
|
|
|
|
do
|
|
{
|
|
Mat gray;
|
|
cvtColor((image.empty() ? frame : image), gray, cv::COLOR_BGR2GRAY);
|
|
|
|
//
|
|
// process
|
|
//
|
|
|
|
NcvSize32u minSize = haar.ClassifierSize;
|
|
if (bLargestObject)
|
|
{
|
|
Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width;
|
|
Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height;
|
|
Ncv32u ratioSmallest = min(ratioX, ratioY);
|
|
ratioSmallest = max((Ncv32u)(ratioSmallest / 2.5f), (Ncv32u)1);
|
|
minSize.width *= ratioSmallest;
|
|
minSize.height *= ratioSmallest;
|
|
}
|
|
|
|
Ncv32f avgTime;
|
|
NcvTimer timer = ncvStartTimer();
|
|
|
|
if (bUseGPU)
|
|
{
|
|
ncvStat = process(&gray, frameSize.width, frameSize.height,
|
|
bFilterRects, bLargestObject, haar,
|
|
d_haarStages, d_haarNodes,
|
|
d_haarFeatures, h_haarStages,
|
|
gpuAllocator, cpuAllocator, devProp);
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
|
|
}
|
|
else
|
|
{
|
|
vector<Rect> rectsOpenCV;
|
|
|
|
classifierOpenCV.detectMultiScale(
|
|
gray,
|
|
rectsOpenCV,
|
|
1.2f,
|
|
bFilterRects ? 4 : 0,
|
|
(bLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0)
|
|
| CV_HAAR_SCALE_IMAGE,
|
|
Size(minSize.width, minSize.height));
|
|
|
|
for (size_t rt = 0; rt < rectsOpenCV.size(); ++rt)
|
|
rectangle(gray, rectsOpenCV[rt], Scalar(255));
|
|
}
|
|
|
|
avgTime = (Ncv32f)ncvEndQueryTimerMs(timer);
|
|
|
|
cvtColor(gray, frameDisp, cv::COLOR_GRAY2BGR);
|
|
displayState(frameDisp, bHelpScreen, bUseGPU, bLargestObject, bFilterRects, 1000.0f / avgTime);
|
|
imshow(wndTitle, frameDisp);
|
|
|
|
//handle input
|
|
switch (cv::waitKey(3))
|
|
{
|
|
case ' ':
|
|
bUseGPU = !bUseGPU;
|
|
break;
|
|
case 'm':
|
|
case 'M':
|
|
bLargestObject = !bLargestObject;
|
|
break;
|
|
case 'f':
|
|
case 'F':
|
|
bFilterRects = !bFilterRects;
|
|
break;
|
|
case 'h':
|
|
case 'H':
|
|
bHelpScreen = !bHelpScreen;
|
|
break;
|
|
case 27:
|
|
bQuit = true;
|
|
break;
|
|
}
|
|
|
|
// For camera and video file, capture the next image
|
|
if (capture.isOpened())
|
|
{
|
|
capture >> frame;
|
|
if (frame.empty())
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
} while (!bQuit);
|
|
|
|
cv::destroyWindow(wndTitle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif //!defined(HAVE_CUDA)
|