mirror of
https://github.com/opencv/opencv.git
synced 2024-12-04 08:49:14 +08:00
860 lines
28 KiB
C++
860 lines
28 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_imgproc.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
// The function calculates center of gravity and the central second order moments
|
|
static void completeMomentState( Moments* moments )
|
|
{
|
|
double cx = 0, cy = 0;
|
|
double mu20, mu11, mu02;
|
|
double inv_m00 = 0.0;
|
|
assert( moments != 0 );
|
|
|
|
if( fabs(moments->m00) > DBL_EPSILON )
|
|
{
|
|
inv_m00 = 1. / moments->m00;
|
|
cx = moments->m10 * inv_m00;
|
|
cy = moments->m01 * inv_m00;
|
|
}
|
|
|
|
// mu20 = m20 - m10*cx
|
|
mu20 = moments->m20 - moments->m10 * cx;
|
|
// mu11 = m11 - m10*cy
|
|
mu11 = moments->m11 - moments->m10 * cy;
|
|
// mu02 = m02 - m01*cy
|
|
mu02 = moments->m02 - moments->m01 * cy;
|
|
|
|
moments->mu20 = mu20;
|
|
moments->mu11 = mu11;
|
|
moments->mu02 = mu02;
|
|
|
|
// mu30 = m30 - cx*(3*mu20 + cx*m10)
|
|
moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10);
|
|
mu11 += mu11;
|
|
// mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20
|
|
moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20;
|
|
// mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02
|
|
moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02;
|
|
// mu03 = m03 - cy*(3*mu02 + cy*m01)
|
|
moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01);
|
|
|
|
|
|
double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
|
|
double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
|
|
|
|
moments->nu20 = moments->mu20*s2; moments->nu11 = moments->mu11*s2; moments->nu02 = moments->mu02*s2;
|
|
moments->nu30 = moments->mu30*s3; moments->nu21 = moments->mu21*s3; moments->nu12 = moments->mu12*s3; moments->nu03 = moments->mu03*s3;
|
|
|
|
}
|
|
|
|
|
|
static Moments contourMoments( const Mat& contour )
|
|
{
|
|
Moments m;
|
|
int lpt = contour.checkVector(2);
|
|
int is_float = contour.depth() == CV_32F;
|
|
const Point* ptsi = contour.ptr<Point>();
|
|
const Point2f* ptsf = contour.ptr<Point2f>();
|
|
|
|
CV_Assert( contour.depth() == CV_32S || contour.depth() == CV_32F );
|
|
|
|
if( lpt == 0 )
|
|
return m;
|
|
|
|
double a00 = 0, a10 = 0, a01 = 0, a20 = 0, a11 = 0, a02 = 0, a30 = 0, a21 = 0, a12 = 0, a03 = 0;
|
|
double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1;
|
|
|
|
if( !is_float )
|
|
{
|
|
xi_1 = ptsi[lpt-1].x;
|
|
yi_1 = ptsi[lpt-1].y;
|
|
}
|
|
else
|
|
{
|
|
xi_1 = ptsf[lpt-1].x;
|
|
yi_1 = ptsf[lpt-1].y;
|
|
}
|
|
|
|
xi_12 = xi_1 * xi_1;
|
|
yi_12 = yi_1 * yi_1;
|
|
|
|
for( int i = 0; i < lpt; i++ )
|
|
{
|
|
if( !is_float )
|
|
{
|
|
xi = ptsi[i].x;
|
|
yi = ptsi[i].y;
|
|
}
|
|
else
|
|
{
|
|
xi = ptsf[i].x;
|
|
yi = ptsf[i].y;
|
|
}
|
|
|
|
xi2 = xi * xi;
|
|
yi2 = yi * yi;
|
|
dxy = xi_1 * yi - xi * yi_1;
|
|
xii_1 = xi_1 + xi;
|
|
yii_1 = yi_1 + yi;
|
|
|
|
a00 += dxy;
|
|
a10 += dxy * xii_1;
|
|
a01 += dxy * yii_1;
|
|
a20 += dxy * (xi_1 * xii_1 + xi2);
|
|
a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
|
|
a02 += dxy * (yi_1 * yii_1 + yi2);
|
|
a30 += dxy * xii_1 * (xi_12 + xi2);
|
|
a03 += dxy * yii_1 * (yi_12 + yi2);
|
|
a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 +
|
|
xi2 * (yi_1 + 3 * yi));
|
|
a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 +
|
|
yi2 * (xi_1 + 3 * xi));
|
|
xi_1 = xi;
|
|
yi_1 = yi;
|
|
xi_12 = xi2;
|
|
yi_12 = yi2;
|
|
}
|
|
|
|
if( fabs(a00) > FLT_EPSILON )
|
|
{
|
|
double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
|
|
|
|
if( a00 > 0 )
|
|
{
|
|
db1_2 = 0.5;
|
|
db1_6 = 0.16666666666666666666666666666667;
|
|
db1_12 = 0.083333333333333333333333333333333;
|
|
db1_24 = 0.041666666666666666666666666666667;
|
|
db1_20 = 0.05;
|
|
db1_60 = 0.016666666666666666666666666666667;
|
|
}
|
|
else
|
|
{
|
|
db1_2 = -0.5;
|
|
db1_6 = -0.16666666666666666666666666666667;
|
|
db1_12 = -0.083333333333333333333333333333333;
|
|
db1_24 = -0.041666666666666666666666666666667;
|
|
db1_20 = -0.05;
|
|
db1_60 = -0.016666666666666666666666666666667;
|
|
}
|
|
|
|
// spatial moments
|
|
m.m00 = a00 * db1_2;
|
|
m.m10 = a10 * db1_6;
|
|
m.m01 = a01 * db1_6;
|
|
m.m20 = a20 * db1_12;
|
|
m.m11 = a11 * db1_24;
|
|
m.m02 = a02 * db1_12;
|
|
m.m30 = a30 * db1_20;
|
|
m.m21 = a21 * db1_60;
|
|
m.m12 = a12 * db1_60;
|
|
m.m03 = a03 * db1_20;
|
|
|
|
completeMomentState( &m );
|
|
}
|
|
return m;
|
|
}
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Spatial Raster Moments *
|
|
\****************************************************************************************/
|
|
|
|
template<typename T, typename WT, typename MT>
|
|
struct MomentsInTile_SIMD
|
|
{
|
|
int operator() (const T *, int, WT &, WT &, WT &, MT &)
|
|
{
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
#if CV_SSE2
|
|
|
|
template <>
|
|
struct MomentsInTile_SIMD<uchar, int, int>
|
|
{
|
|
MomentsInTile_SIMD()
|
|
{
|
|
useSIMD = checkHardwareSupport(CV_CPU_SSE2);
|
|
}
|
|
|
|
int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3)
|
|
{
|
|
int x = 0;
|
|
|
|
if( useSIMD )
|
|
{
|
|
__m128i qx_init = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7);
|
|
__m128i dx = _mm_set1_epi16(8);
|
|
__m128i z = _mm_setzero_si128(), qx0 = z, qx1 = z, qx2 = z, qx3 = z, qx = qx_init;
|
|
|
|
for( ; x <= len - 8; x += 8 )
|
|
{
|
|
__m128i p = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr + x)), z);
|
|
__m128i sx = _mm_mullo_epi16(qx, qx);
|
|
|
|
qx0 = _mm_add_epi32(qx0, _mm_sad_epu8(p, z));
|
|
qx1 = _mm_add_epi32(qx1, _mm_madd_epi16(p, qx));
|
|
qx2 = _mm_add_epi32(qx2, _mm_madd_epi16(p, sx));
|
|
qx3 = _mm_add_epi32(qx3, _mm_madd_epi16( _mm_mullo_epi16(p, qx), sx));
|
|
|
|
qx = _mm_add_epi16(qx, dx);
|
|
}
|
|
|
|
_mm_store_si128((__m128i*)buf, qx0);
|
|
x0 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
_mm_store_si128((__m128i*)buf, qx1);
|
|
x1 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
_mm_store_si128((__m128i*)buf, qx2);
|
|
x2 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
_mm_store_si128((__m128i*)buf, qx3);
|
|
x3 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
int CV_DECL_ALIGNED(16) buf[4];
|
|
bool useSIMD;
|
|
};
|
|
|
|
#elif CV_NEON
|
|
|
|
template <>
|
|
struct MomentsInTile_SIMD<uchar, int, int>
|
|
{
|
|
MomentsInTile_SIMD()
|
|
{
|
|
ushort CV_DECL_ALIGNED(8) init[4] = { 0, 1, 2, 3 };
|
|
qx_init = vld1_u16(init);
|
|
v_step = vdup_n_u16(4);
|
|
}
|
|
|
|
int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3)
|
|
{
|
|
int x = 0;
|
|
|
|
uint32x4_t v_z = vdupq_n_u32(0), v_x0 = v_z, v_x1 = v_z,
|
|
v_x2 = v_z, v_x3 = v_z;
|
|
uint16x4_t qx = qx_init;
|
|
|
|
for( ; x <= len - 8; x += 8 )
|
|
{
|
|
uint16x8_t v_src = vmovl_u8(vld1_u8(ptr + x));
|
|
|
|
// first part
|
|
uint32x4_t v_qx = vmovl_u16(qx);
|
|
uint16x4_t v_p = vget_low_u16(v_src);
|
|
uint32x4_t v_px = vmull_u16(qx, v_p);
|
|
|
|
v_x0 = vaddw_u16(v_x0, v_p);
|
|
v_x1 = vaddq_u32(v_x1, v_px);
|
|
v_px = vmulq_u32(v_px, v_qx);
|
|
v_x2 = vaddq_u32(v_x2, v_px);
|
|
v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx));
|
|
qx = vadd_u16(qx, v_step);
|
|
|
|
// second part
|
|
v_qx = vmovl_u16(qx);
|
|
v_p = vget_high_u16(v_src);
|
|
v_px = vmull_u16(qx, v_p);
|
|
|
|
v_x0 = vaddw_u16(v_x0, v_p);
|
|
v_x1 = vaddq_u32(v_x1, v_px);
|
|
v_px = vmulq_u32(v_px, v_qx);
|
|
v_x2 = vaddq_u32(v_x2, v_px);
|
|
v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx));
|
|
|
|
qx = vadd_u16(qx, v_step);
|
|
}
|
|
|
|
vst1q_u32(buf, v_x0);
|
|
x0 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
vst1q_u32(buf, v_x1);
|
|
x1 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
vst1q_u32(buf, v_x2);
|
|
x2 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
vst1q_u32(buf, v_x3);
|
|
x3 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
|
|
return x;
|
|
}
|
|
|
|
uint CV_DECL_ALIGNED(16) buf[4];
|
|
uint16x4_t qx_init, v_step;
|
|
};
|
|
|
|
#endif
|
|
|
|
#if CV_SSE4_1
|
|
|
|
template <>
|
|
struct MomentsInTile_SIMD<ushort, int, int64>
|
|
{
|
|
MomentsInTile_SIMD()
|
|
{
|
|
useSIMD = checkHardwareSupport(CV_CPU_SSE4_1);
|
|
}
|
|
|
|
int operator() (const ushort * ptr, int len, int & x0, int & x1, int & x2, int64 & x3)
|
|
{
|
|
int x = 0;
|
|
|
|
if (useSIMD)
|
|
{
|
|
__m128i vx_init0 = _mm_setr_epi32(0, 1, 2, 3), vx_init1 = _mm_setr_epi32(4, 5, 6, 7),
|
|
v_delta = _mm_set1_epi32(8), v_zero = _mm_setzero_si128(), v_x0 = v_zero,
|
|
v_x1 = v_zero, v_x2 = v_zero, v_x3 = v_zero, v_ix0 = vx_init0, v_ix1 = vx_init1;
|
|
|
|
for( ; x <= len - 8; x += 8 )
|
|
{
|
|
__m128i v_src = _mm_loadu_si128((const __m128i *)(ptr + x));
|
|
__m128i v_src0 = _mm_unpacklo_epi16(v_src, v_zero), v_src1 = _mm_unpackhi_epi16(v_src, v_zero);
|
|
|
|
v_x0 = _mm_add_epi32(v_x0, _mm_add_epi32(v_src0, v_src1));
|
|
__m128i v_x1_0 = _mm_mullo_epi32(v_src0, v_ix0), v_x1_1 = _mm_mullo_epi32(v_src1, v_ix1);
|
|
v_x1 = _mm_add_epi32(v_x1, _mm_add_epi32(v_x1_0, v_x1_1));
|
|
|
|
__m128i v_2ix0 = _mm_mullo_epi32(v_ix0, v_ix0), v_2ix1 = _mm_mullo_epi32(v_ix1, v_ix1);
|
|
v_x2 = _mm_add_epi32(v_x2, _mm_add_epi32(_mm_mullo_epi32(v_2ix0, v_src0), _mm_mullo_epi32(v_2ix1, v_src1)));
|
|
|
|
__m128i t = _mm_add_epi32(_mm_mullo_epi32(v_2ix0, v_x1_0), _mm_mullo_epi32(v_2ix1, v_x1_1));
|
|
v_x3 = _mm_add_epi64(v_x3, _mm_add_epi64(_mm_unpacklo_epi32(t, v_zero), _mm_unpackhi_epi32(t, v_zero)));
|
|
|
|
v_ix0 = _mm_add_epi32(v_ix0, v_delta);
|
|
v_ix1 = _mm_add_epi32(v_ix1, v_delta);
|
|
}
|
|
|
|
_mm_store_si128((__m128i*)buf, v_x0);
|
|
x0 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
_mm_store_si128((__m128i*)buf, v_x1);
|
|
x1 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
_mm_store_si128((__m128i*)buf, v_x2);
|
|
x2 = buf[0] + buf[1] + buf[2] + buf[3];
|
|
|
|
_mm_store_si128((__m128i*)buf64, v_x3);
|
|
x3 = buf64[0] + buf64[1];
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
int CV_DECL_ALIGNED(16) buf[4];
|
|
int64 CV_DECL_ALIGNED(16) buf64[2];
|
|
bool useSIMD;
|
|
};
|
|
|
|
#endif
|
|
|
|
template<typename T, typename WT, typename MT>
|
|
#if defined __GNUC__ && __GNUC__ == 4 && __GNUC_MINOR__ >= 5 && __GNUC_MINOR__ < 9
|
|
// Workaround for http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60196
|
|
__attribute__((optimize("no-tree-vectorize")))
|
|
#endif
|
|
static void momentsInTile( const Mat& img, double* moments )
|
|
{
|
|
Size size = img.size();
|
|
int x, y;
|
|
MT mom[10] = {0,0,0,0,0,0,0,0,0,0};
|
|
MomentsInTile_SIMD<T, WT, MT> vop;
|
|
|
|
for( y = 0; y < size.height; y++ )
|
|
{
|
|
const T* ptr = img.ptr<T>(y);
|
|
WT x0 = 0, x1 = 0, x2 = 0;
|
|
MT x3 = 0;
|
|
x = vop(ptr, size.width, x0, x1, x2, x3);
|
|
|
|
for( ; x < size.width; x++ )
|
|
{
|
|
WT p = ptr[x];
|
|
WT xp = x * p, xxp;
|
|
|
|
x0 += p;
|
|
x1 += xp;
|
|
xxp = xp * x;
|
|
x2 += xxp;
|
|
x3 += xxp * x;
|
|
}
|
|
|
|
WT py = y * x0, sy = y*y;
|
|
|
|
mom[9] += ((MT)py) * sy; // m03
|
|
mom[8] += ((MT)x1) * sy; // m12
|
|
mom[7] += ((MT)x2) * y; // m21
|
|
mom[6] += x3; // m30
|
|
mom[5] += x0 * sy; // m02
|
|
mom[4] += x1 * y; // m11
|
|
mom[3] += x2; // m20
|
|
mom[2] += py; // m01
|
|
mom[1] += x1; // m10
|
|
mom[0] += x0; // m00
|
|
}
|
|
|
|
for( x = 0; x < 10; x++ )
|
|
moments[x] = (double)mom[x];
|
|
}
|
|
|
|
typedef void (*MomentsInTileFunc)(const Mat& img, double* moments);
|
|
|
|
Moments::Moments()
|
|
{
|
|
m00 = m10 = m01 = m20 = m11 = m02 = m30 = m21 = m12 = m03 =
|
|
mu20 = mu11 = mu02 = mu30 = mu21 = mu12 = mu03 =
|
|
nu20 = nu11 = nu02 = nu30 = nu21 = nu12 = nu03 = 0.;
|
|
}
|
|
|
|
Moments::Moments( double _m00, double _m10, double _m01, double _m20, double _m11,
|
|
double _m02, double _m30, double _m21, double _m12, double _m03 )
|
|
{
|
|
m00 = _m00; m10 = _m10; m01 = _m01;
|
|
m20 = _m20; m11 = _m11; m02 = _m02;
|
|
m30 = _m30; m21 = _m21; m12 = _m12; m03 = _m03;
|
|
|
|
double cx = 0, cy = 0, inv_m00 = 0;
|
|
if( std::abs(m00) > DBL_EPSILON )
|
|
{
|
|
inv_m00 = 1./m00;
|
|
cx = m10*inv_m00; cy = m01*inv_m00;
|
|
}
|
|
|
|
mu20 = m20 - m10*cx;
|
|
mu11 = m11 - m10*cy;
|
|
mu02 = m02 - m01*cy;
|
|
|
|
mu30 = m30 - cx*(3*mu20 + cx*m10);
|
|
mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20;
|
|
mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02;
|
|
mu03 = m03 - cy*(3*mu02 + cy*m01);
|
|
|
|
double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
|
|
double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
|
|
|
|
nu20 = mu20*s2; nu11 = mu11*s2; nu02 = mu02*s2;
|
|
nu30 = mu30*s3; nu21 = mu21*s3; nu12 = mu12*s3; nu03 = mu03*s3;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
static bool ocl_moments( InputArray _src, Moments& m, bool binary)
|
|
{
|
|
const int TILE_SIZE = 32;
|
|
const int K = 10;
|
|
|
|
ocl::Kernel k = ocl::Kernel("moments", ocl::imgproc::moments_oclsrc,
|
|
format("-D TILE_SIZE=%d%s",
|
|
TILE_SIZE,
|
|
binary ? " -D OP_MOMENTS_BINARY" : ""));
|
|
|
|
if( k.empty() )
|
|
return false;
|
|
|
|
UMat src = _src.getUMat();
|
|
Size sz = src.size();
|
|
int xtiles = (sz.width + TILE_SIZE-1)/TILE_SIZE;
|
|
int ytiles = (sz.height + TILE_SIZE-1)/TILE_SIZE;
|
|
int ntiles = xtiles*ytiles;
|
|
UMat umbuf(1, ntiles*K, CV_32S);
|
|
|
|
size_t globalsize[] = {(size_t)xtiles, (size_t)sz.height}, localsize[] = {1, TILE_SIZE};
|
|
bool ok = k.args(ocl::KernelArg::ReadOnly(src),
|
|
ocl::KernelArg::PtrWriteOnly(umbuf),
|
|
xtiles).run(2, globalsize, localsize, true);
|
|
if(!ok)
|
|
return false;
|
|
Mat mbuf = umbuf.getMat(ACCESS_READ);
|
|
for( int i = 0; i < ntiles; i++ )
|
|
{
|
|
double x = (i % xtiles)*TILE_SIZE, y = (i / xtiles)*TILE_SIZE;
|
|
const int* mom = mbuf.ptr<int>() + i*K;
|
|
double xm = x * mom[0], ym = y * mom[0];
|
|
|
|
// accumulate moments computed in each tile
|
|
|
|
// + m00 ( = m00' )
|
|
m.m00 += mom[0];
|
|
|
|
// + m10 ( = m10' + x*m00' )
|
|
m.m10 += mom[1] + xm;
|
|
|
|
// + m01 ( = m01' + y*m00' )
|
|
m.m01 += mom[2] + ym;
|
|
|
|
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
|
|
m.m20 += mom[3] + x * (mom[1] * 2 + xm);
|
|
|
|
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
|
|
m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
|
|
|
|
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
|
|
m.m02 += mom[5] + y * (mom[2] * 2 + ym);
|
|
|
|
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
|
|
m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
|
|
|
|
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
|
|
m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
|
|
|
|
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
|
|
m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
|
|
|
|
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
|
|
m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
cv::Moments cv::moments( InputArray _src, bool binary )
|
|
{
|
|
const int TILE_SIZE = 32;
|
|
MomentsInTileFunc func = 0;
|
|
uchar nzbuf[TILE_SIZE*TILE_SIZE];
|
|
Moments m;
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
Size size = _src.size();
|
|
|
|
if( size.width <= 0 || size.height <= 0 )
|
|
return m;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
if( !(ocl::useOpenCL() && type == CV_8UC1 &&
|
|
_src.isUMat() && ocl_moments(_src, m, binary)) )
|
|
#endif
|
|
{
|
|
Mat mat = _src.getMat();
|
|
if( mat.checkVector(2) >= 0 && (depth == CV_32F || depth == CV_32S))
|
|
return contourMoments(mat);
|
|
|
|
if( cn > 1 )
|
|
CV_Error( CV_StsBadArg, "Invalid image type (must be single-channel)" );
|
|
|
|
#if IPP_VERSION_X100 >= 810 && IPP_DISABLE_BLOCK
|
|
CV_IPP_CHECK()
|
|
{
|
|
if (!binary)
|
|
{
|
|
IppiSize roi = { mat.cols, mat.rows };
|
|
IppiMomentState_64f * moment = NULL;
|
|
// ippiMomentInitAlloc_64f, ippiMomentFree_64f are deprecated in 8.1, but there are not another way
|
|
// to initialize IppiMomentState_64f. When GetStateSize and Init functions will appear we have to
|
|
// change our code.
|
|
CV_SUPPRESS_DEPRECATED_START
|
|
if (ippiMomentInitAlloc_64f(&moment, ippAlgHintAccurate) >= 0)
|
|
{
|
|
typedef IppStatus (CV_STDCALL * ippiMoments)(const void * pSrc, int srcStep, IppiSize roiSize, IppiMomentState_64f* pCtx);
|
|
ippiMoments ippFunc =
|
|
type == CV_8UC1 ? (ippiMoments)ippiMoments64f_8u_C1R :
|
|
type == CV_16UC1 ? (ippiMoments)ippiMoments64f_16u_C1R :
|
|
type == CV_32FC1? (ippiMoments)ippiMoments64f_32f_C1R : 0;
|
|
|
|
if (ippFunc)
|
|
{
|
|
if (ippFunc(mat.data, (int)mat.step, roi, moment) >= 0)
|
|
{
|
|
IppiPoint point = { 0, 0 };
|
|
ippiGetSpatialMoment_64f(moment, 0, 0, 0, point, &m.m00);
|
|
ippiGetSpatialMoment_64f(moment, 1, 0, 0, point, &m.m10);
|
|
ippiGetSpatialMoment_64f(moment, 0, 1, 0, point, &m.m01);
|
|
|
|
ippiGetSpatialMoment_64f(moment, 2, 0, 0, point, &m.m20);
|
|
ippiGetSpatialMoment_64f(moment, 1, 1, 0, point, &m.m11);
|
|
ippiGetSpatialMoment_64f(moment, 0, 2, 0, point, &m.m02);
|
|
|
|
ippiGetSpatialMoment_64f(moment, 3, 0, 0, point, &m.m30);
|
|
ippiGetSpatialMoment_64f(moment, 2, 1, 0, point, &m.m21);
|
|
ippiGetSpatialMoment_64f(moment, 1, 2, 0, point, &m.m12);
|
|
ippiGetSpatialMoment_64f(moment, 0, 3, 0, point, &m.m03);
|
|
ippiGetCentralMoment_64f(moment, 2, 0, 0, &m.mu20);
|
|
ippiGetCentralMoment_64f(moment, 1, 1, 0, &m.mu11);
|
|
ippiGetCentralMoment_64f(moment, 0, 2, 0, &m.mu02);
|
|
ippiGetCentralMoment_64f(moment, 3, 0, 0, &m.mu30);
|
|
ippiGetCentralMoment_64f(moment, 2, 1, 0, &m.mu21);
|
|
ippiGetCentralMoment_64f(moment, 1, 2, 0, &m.mu12);
|
|
ippiGetCentralMoment_64f(moment, 0, 3, 0, &m.mu03);
|
|
ippiGetNormalizedCentralMoment_64f(moment, 2, 0, 0, &m.nu20);
|
|
ippiGetNormalizedCentralMoment_64f(moment, 1, 1, 0, &m.nu11);
|
|
ippiGetNormalizedCentralMoment_64f(moment, 0, 2, 0, &m.nu02);
|
|
ippiGetNormalizedCentralMoment_64f(moment, 3, 0, 0, &m.nu30);
|
|
ippiGetNormalizedCentralMoment_64f(moment, 2, 1, 0, &m.nu21);
|
|
ippiGetNormalizedCentralMoment_64f(moment, 1, 2, 0, &m.nu12);
|
|
ippiGetNormalizedCentralMoment_64f(moment, 0, 3, 0, &m.nu03);
|
|
|
|
ippiMomentFree_64f(moment);
|
|
CV_IMPL_ADD(CV_IMPL_IPP);
|
|
return m;
|
|
}
|
|
setIppErrorStatus();
|
|
}
|
|
ippiMomentFree_64f(moment);
|
|
}
|
|
else
|
|
setIppErrorStatus();
|
|
CV_SUPPRESS_DEPRECATED_END
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( binary || depth == CV_8U )
|
|
func = momentsInTile<uchar, int, int>;
|
|
else if( depth == CV_16U )
|
|
func = momentsInTile<ushort, int, int64>;
|
|
else if( depth == CV_16S )
|
|
func = momentsInTile<short, int, int64>;
|
|
else if( depth == CV_32F )
|
|
func = momentsInTile<float, double, double>;
|
|
else if( depth == CV_64F )
|
|
func = momentsInTile<double, double, double>;
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "" );
|
|
|
|
Mat src0(mat);
|
|
|
|
for( int y = 0; y < size.height; y += TILE_SIZE )
|
|
{
|
|
Size tileSize;
|
|
tileSize.height = std::min(TILE_SIZE, size.height - y);
|
|
|
|
for( int x = 0; x < size.width; x += TILE_SIZE )
|
|
{
|
|
tileSize.width = std::min(TILE_SIZE, size.width - x);
|
|
Mat src(src0, cv::Rect(x, y, tileSize.width, tileSize.height));
|
|
|
|
if( binary )
|
|
{
|
|
cv::Mat tmp(tileSize, CV_8U, nzbuf);
|
|
cv::compare( src, 0, tmp, CV_CMP_NE );
|
|
src = tmp;
|
|
}
|
|
|
|
double mom[10];
|
|
func( src, mom );
|
|
|
|
if(binary)
|
|
{
|
|
double s = 1./255;
|
|
for( int k = 0; k < 10; k++ )
|
|
mom[k] *= s;
|
|
}
|
|
|
|
double xm = x * mom[0], ym = y * mom[0];
|
|
|
|
// accumulate moments computed in each tile
|
|
|
|
// + m00 ( = m00' )
|
|
m.m00 += mom[0];
|
|
|
|
// + m10 ( = m10' + x*m00' )
|
|
m.m10 += mom[1] + xm;
|
|
|
|
// + m01 ( = m01' + y*m00' )
|
|
m.m01 += mom[2] + ym;
|
|
|
|
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
|
|
m.m20 += mom[3] + x * (mom[1] * 2 + xm);
|
|
|
|
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
|
|
m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
|
|
|
|
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
|
|
m.m02 += mom[5] + y * (mom[2] * 2 + ym);
|
|
|
|
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
|
|
m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
|
|
|
|
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
|
|
m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
|
|
|
|
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
|
|
m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
|
|
|
|
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
|
|
m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
|
}
|
|
}
|
|
}
|
|
|
|
completeMomentState( &m );
|
|
return m;
|
|
}
|
|
|
|
|
|
void cv::HuMoments( const Moments& m, double hu[7] )
|
|
{
|
|
double t0 = m.nu30 + m.nu12;
|
|
double t1 = m.nu21 + m.nu03;
|
|
|
|
double q0 = t0 * t0, q1 = t1 * t1;
|
|
|
|
double n4 = 4 * m.nu11;
|
|
double s = m.nu20 + m.nu02;
|
|
double d = m.nu20 - m.nu02;
|
|
|
|
hu[0] = s;
|
|
hu[1] = d * d + n4 * m.nu11;
|
|
hu[3] = q0 + q1;
|
|
hu[5] = d * (q0 - q1) + n4 * t0 * t1;
|
|
|
|
t0 *= q0 - 3 * q1;
|
|
t1 *= 3 * q0 - q1;
|
|
|
|
q0 = m.nu30 - 3 * m.nu12;
|
|
q1 = 3 * m.nu21 - m.nu03;
|
|
|
|
hu[2] = q0 * q0 + q1 * q1;
|
|
hu[4] = q0 * t0 + q1 * t1;
|
|
hu[6] = q1 * t0 - q0 * t1;
|
|
}
|
|
|
|
void cv::HuMoments( const Moments& m, OutputArray _hu )
|
|
{
|
|
_hu.create(7, 1, CV_64F);
|
|
Mat hu = _hu.getMat();
|
|
CV_Assert( hu.isContinuous() );
|
|
HuMoments(m, hu.ptr<double>());
|
|
}
|
|
|
|
|
|
CV_IMPL void cvMoments( const CvArr* arr, CvMoments* moments, int binary )
|
|
{
|
|
const IplImage* img = (const IplImage*)arr;
|
|
cv::Mat src;
|
|
if( CV_IS_IMAGE(arr) && img->roi && img->roi->coi > 0 )
|
|
cv::extractImageCOI(arr, src, img->roi->coi-1);
|
|
else
|
|
src = cv::cvarrToMat(arr);
|
|
cv::Moments m = cv::moments(src, binary != 0);
|
|
CV_Assert( moments != 0 );
|
|
*moments = m;
|
|
}
|
|
|
|
|
|
CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order )
|
|
{
|
|
int order = x_order + y_order;
|
|
|
|
if( !moments )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( (x_order | y_order) < 0 || order > 3 )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
|
|
return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
|
|
}
|
|
|
|
|
|
CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order )
|
|
{
|
|
int order = x_order + y_order;
|
|
|
|
if( !moments )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
if( (x_order | y_order) < 0 || order > 3 )
|
|
CV_Error( CV_StsOutOfRange, "" );
|
|
|
|
return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] :
|
|
order == 0 ? moments->m00 : 0;
|
|
}
|
|
|
|
|
|
CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order )
|
|
{
|
|
int order = x_order + y_order;
|
|
|
|
double mu = cvGetCentralMoment( moments, x_order, y_order );
|
|
double m00s = moments->inv_sqrt_m00;
|
|
|
|
while( --order >= 0 )
|
|
mu *= m00s;
|
|
return mu * m00s * m00s;
|
|
}
|
|
|
|
|
|
CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
|
|
{
|
|
if( !mState || !HuState )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;
|
|
|
|
double nu20 = mState->mu20 * s2,
|
|
nu11 = mState->mu11 * s2,
|
|
nu02 = mState->mu02 * s2,
|
|
nu30 = mState->mu30 * s3,
|
|
nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3;
|
|
|
|
double t0 = nu30 + nu12;
|
|
double t1 = nu21 + nu03;
|
|
|
|
double q0 = t0 * t0, q1 = t1 * t1;
|
|
|
|
double n4 = 4 * nu11;
|
|
double s = nu20 + nu02;
|
|
double d = nu20 - nu02;
|
|
|
|
HuState->hu1 = s;
|
|
HuState->hu2 = d * d + n4 * nu11;
|
|
HuState->hu4 = q0 + q1;
|
|
HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1;
|
|
|
|
t0 *= q0 - 3 * q1;
|
|
t1 *= 3 * q0 - q1;
|
|
|
|
q0 = nu30 - 3 * nu12;
|
|
q1 = 3 * nu21 - nu03;
|
|
|
|
HuState->hu3 = q0 * q0 + q1 * q1;
|
|
HuState->hu5 = q0 * t0 + q1 * t1;
|
|
HuState->hu7 = q1 * t0 - q0 * t1;
|
|
}
|
|
|
|
|
|
/* End of file. */
|