opencv/modules/core/test/test_operations.cpp
2012-06-29 07:52:34 +00:00

1105 lines
40 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <string>
#include <iostream>
#include <fstream>
#include <iterator>
#include <limits>
#include <numeric>
using namespace cv;
using namespace std;
class CV_OperationsTest : public cvtest::BaseTest
{
public:
CV_OperationsTest();
~CV_OperationsTest();
protected:
void run(int);
struct test_excep
{
test_excep(const string& _s=string("")) : s(_s) {};
string s;
};
bool SomeMatFunctions();
bool TestMat();
bool TestTemplateMat();
bool TestMatND();
bool TestSparseMat();
bool TestVec();
bool TestMatxMultiplication();
bool TestSubMatAccess();
bool TestSVD();
bool operations1();
void checkDiff(const Mat& m1, const Mat& m2, const string& s)
{
if (norm(m1, m2, NORM_INF) != 0) throw test_excep(s);
}
void checkDiffF(const Mat& m1, const Mat& m2, const string& s)
{
if (norm(m1, m2, NORM_INF) > 1e-5) throw test_excep(s);
}
};
CV_OperationsTest::CV_OperationsTest()
{
}
CV_OperationsTest::~CV_OperationsTest() {}
#define STR(a) STR2(a)
#define STR2(a) #a
#define CHECK_DIFF(a, b) checkDiff(a, b, "(" #a ") != (" #b ") at l." STR(__LINE__))
#define CHECK_DIFF_FLT(a, b) checkDiffF(a, b, "(" #a ") !=(eps) (" #b ") at l." STR(__LINE__))
#if defined _MSC_VER && _MSC_VER < 1400
#define MSVC_OLD 1
#else
#define MSVC_OLD 0
#endif
bool CV_OperationsTest::TestMat()
{
try
{
Mat one_3x1(3, 1, CV_32F, Scalar(1.0));
Mat shi_3x1(3, 1, CV_32F, Scalar(1.2));
Mat shi_2x1(2, 1, CV_32F, Scalar(-1));
Scalar shift = Scalar::all(15);
float data[] = { sqrt(2.f)/2, -sqrt(2.f)/2, 1.f, sqrt(2.f)/2, sqrt(2.f)/2, 10.f };
Mat rot_2x3(2, 3, CV_32F, data);
Mat res = one_3x1 + shi_3x1 + shi_3x1 + shi_3x1;
res = Mat(Mat(2 * rot_2x3) * res - shi_2x1) + shift;
Mat tmp, res2;
add(one_3x1, shi_3x1, tmp);
add(tmp, shi_3x1, tmp);
add(tmp, shi_3x1, tmp);
gemm(rot_2x3, tmp, 2, shi_2x1, -1, res2, 0);
add(res2, Mat(2, 1, CV_32F, shift), res2);
CHECK_DIFF(res, res2);
Mat mat4x4(4, 4, CV_32F);
randu(mat4x4, Scalar(0), Scalar(10));
Mat roi1 = mat4x4(Rect(Point(1, 1), Size(2, 2)));
Mat roi2 = mat4x4(Range(1, 3), Range(1, 3));
CHECK_DIFF(roi1, roi2);
CHECK_DIFF(mat4x4, mat4x4(Rect(Point(0,0), mat4x4.size())));
Mat intMat10(3, 3, CV_32S, Scalar(10));
Mat intMat11(3, 3, CV_32S, Scalar(11));
Mat resMat(3, 3, CV_8U, Scalar(255));
CHECK_DIFF(resMat, intMat10 == intMat10);
CHECK_DIFF(resMat, intMat10 < intMat11);
CHECK_DIFF(resMat, intMat11 > intMat10);
CHECK_DIFF(resMat, intMat10 <= intMat11);
CHECK_DIFF(resMat, intMat11 >= intMat10);
CHECK_DIFF(resMat, intMat11 != intMat10);
CHECK_DIFF(resMat, intMat10 == 10.0);
CHECK_DIFF(resMat, 10.0 == intMat10);
CHECK_DIFF(resMat, intMat10 < 11.0);
CHECK_DIFF(resMat, 11.0 > intMat10);
CHECK_DIFF(resMat, 10.0 < intMat11);
CHECK_DIFF(resMat, 11.0 >= intMat10);
CHECK_DIFF(resMat, 10.0 <= intMat11);
CHECK_DIFF(resMat, 10.0 != intMat11);
CHECK_DIFF(resMat, intMat11 != 10.0);
Mat eye = Mat::eye(3, 3, CV_16S);
Mat maskMat4(3, 3, CV_16S, Scalar(4));
Mat maskMat1(3, 3, CV_16S, Scalar(1));
Mat maskMat5(3, 3, CV_16S, Scalar(5));
Mat maskMat0(3, 3, CV_16S, Scalar(0));
CHECK_DIFF(maskMat0, maskMat4 & maskMat1);
CHECK_DIFF(maskMat0, Scalar(1) & maskMat4);
CHECK_DIFF(maskMat0, maskMat4 & Scalar(1));
Mat m;
m = maskMat4.clone(); m &= maskMat1; CHECK_DIFF(maskMat0, m);
m = maskMat4.clone(); m &= maskMat1 | maskMat1; CHECK_DIFF(maskMat0, m);
m = maskMat4.clone(); m &= (2* maskMat1 - maskMat1); CHECK_DIFF(maskMat0, m);
m = maskMat4.clone(); m &= Scalar(1); CHECK_DIFF(maskMat0, m);
m = maskMat4.clone(); m |= maskMat1; CHECK_DIFF(maskMat5, m);
m = maskMat5.clone(); m ^= maskMat1; CHECK_DIFF(maskMat4, m);
m = maskMat4.clone(); m |= (2* maskMat1 - maskMat1); CHECK_DIFF(maskMat5, m);
m = maskMat5.clone(); m ^= (2* maskMat1 - maskMat1); CHECK_DIFF(maskMat4, m);
m = maskMat4.clone(); m |= Scalar(1); CHECK_DIFF(maskMat5, m);
m = maskMat5.clone(); m ^= Scalar(1); CHECK_DIFF(maskMat4, m);
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & (maskMat1 | maskMat1));
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & maskMat1);
CHECK_DIFF(maskMat0, maskMat4 & (maskMat1 | maskMat1));
CHECK_DIFF(maskMat0, (maskMat1 | maskMat1) & Scalar(4));
CHECK_DIFF(maskMat0, Scalar(4) & (maskMat1 | maskMat1));
CHECK_DIFF(maskMat0, maskMat5 ^ (maskMat4 | maskMat1));
CHECK_DIFF(maskMat0, (maskMat4 | maskMat1) ^ maskMat5);
CHECK_DIFF(maskMat0, (maskMat4 + maskMat1) ^ (maskMat4 + maskMat1));
CHECK_DIFF(maskMat0, Scalar(5) ^ (maskMat4 | Scalar(1)));
CHECK_DIFF(maskMat1, Scalar(5) ^ maskMat4);
CHECK_DIFF(maskMat0, Scalar(5) ^ (maskMat4 + maskMat1));
CHECK_DIFF(maskMat5, Scalar(5) | (maskMat4 + maskMat1));
CHECK_DIFF(maskMat0, (maskMat4 + maskMat1) ^ Scalar(5));
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ maskMat1));
CHECK_DIFF(maskMat5, (maskMat4 ^ maskMat1) | maskMat5);
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ Scalar(1)));
CHECK_DIFF(maskMat5, (maskMat4 | maskMat4) | Scalar(1));
CHECK_DIFF(maskMat5, Scalar(1) | (maskMat4 | maskMat4));
CHECK_DIFF(maskMat5, Scalar(1) | maskMat4);
CHECK_DIFF(maskMat5, (maskMat5 | maskMat5) | (maskMat4 ^ maskMat1));
CHECK_DIFF(maskMat1, min(maskMat1, maskMat5));
CHECK_DIFF(maskMat1, min(Mat(maskMat1 | maskMat1), maskMat5 | maskMat5));
CHECK_DIFF(maskMat5, max(maskMat1, maskMat5));
CHECK_DIFF(maskMat5, max(Mat(maskMat1 | maskMat1), maskMat5 | maskMat5));
CHECK_DIFF(maskMat1, min(maskMat1, maskMat5 | maskMat5));
CHECK_DIFF(maskMat1, min(maskMat1 | maskMat1, maskMat5));
CHECK_DIFF(maskMat5, max(maskMat1 | maskMat1, maskMat5));
CHECK_DIFF(maskMat5, max(maskMat1, maskMat5 | maskMat5));
CHECK_DIFF(~maskMat1, maskMat1 ^ -1);
CHECK_DIFF(~(maskMat1 | maskMat1), maskMat1 ^ -1);
CHECK_DIFF(maskMat1, maskMat4/4.0);
/////////////////////////////
CHECK_DIFF(1.0 - (maskMat5 | maskMat5), -maskMat4);
CHECK_DIFF((maskMat4 | maskMat4) * 1.0 + 1.0, maskMat5);
CHECK_DIFF(1.0 + (maskMat4 | maskMat4) * 1.0, maskMat5);
CHECK_DIFF((maskMat5 | maskMat5) * 1.0 - 1.0, maskMat4);
CHECK_DIFF(5.0 - (maskMat4 | maskMat4) * 1.0, maskMat1);
CHECK_DIFF((maskMat4 | maskMat4) * 1.0 + 0.5 + 0.5, maskMat5);
CHECK_DIFF(0.5 + ((maskMat4 | maskMat4) * 1.0 + 0.5), maskMat5);
CHECK_DIFF(((maskMat4 | maskMat4) * 1.0 + 2.0) - 1.0, maskMat5);
CHECK_DIFF(5.0 - ((maskMat1 | maskMat1) * 1.0 + 3.0), maskMat1);
CHECK_DIFF( ( (maskMat1 | maskMat1) * 2.0 + 2.0) * 1.25, maskMat5);
CHECK_DIFF( 1.25 * ( (maskMat1 | maskMat1) * 2.0 + 2.0), maskMat5);
CHECK_DIFF( -( (maskMat1 | maskMat1) * (-2.0) + 1.0), maskMat1);
CHECK_DIFF( maskMat1 * 1.0 + maskMat4 * 0.5 + 2.0, maskMat5);
CHECK_DIFF( 1.0 + (maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0), maskMat5);
CHECK_DIFF( (maskMat1 * 1.0 + maskMat4 * 0.5 + 2.0) - 1.0, maskMat4);
CHECK_DIFF(5.0 - (maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0), maskMat1);
CHECK_DIFF((maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0)*1.25, maskMat5);
CHECK_DIFF(1.25 * (maskMat1 * 1.0 + maskMat4 * 0.5 + 1.0), maskMat5);
CHECK_DIFF(-(maskMat1 * 2.0 + maskMat4 * (-1) + 1.0), maskMat1);
CHECK_DIFF((maskMat1 * 1.0 + maskMat4), maskMat5);
CHECK_DIFF((maskMat4 + maskMat1 * 1.0), maskMat5);
CHECK_DIFF((maskMat1 * 3.0 + 1.0) + maskMat1, maskMat5);
CHECK_DIFF(maskMat1 + (maskMat1 * 3.0 + 1.0), maskMat5);
CHECK_DIFF(maskMat1*4.0 + (maskMat1 | maskMat1), maskMat5);
CHECK_DIFF((maskMat1 | maskMat1) + maskMat1*4.0, maskMat5);
CHECK_DIFF((maskMat1*3.0 + 1.0) + (maskMat1 | maskMat1), maskMat5);
CHECK_DIFF((maskMat1 | maskMat1) + (maskMat1*3.0 + 1.0), maskMat5);
CHECK_DIFF(maskMat1*4.0 + maskMat4*2.0, maskMat1 * 12);
CHECK_DIFF((maskMat1*3.0 + 1.0) + maskMat4*2.0, maskMat1 * 12);
CHECK_DIFF(maskMat4*2.0 + (maskMat1*3.0 + 1.0), maskMat1 * 12);
CHECK_DIFF((maskMat1*3.0 + 1.0) + (maskMat1*2.0 + 2.0), maskMat1 * 8);
CHECK_DIFF(maskMat5*1.0 - maskMat4, maskMat1);
CHECK_DIFF(maskMat5 - maskMat1 * 4.0, maskMat1);
CHECK_DIFF((maskMat4 * 1.0 + 4.0)- maskMat4, maskMat4);
CHECK_DIFF(maskMat5 - (maskMat1 * 2.0 + 2.0), maskMat1);
CHECK_DIFF(maskMat5*1.0 - (maskMat4 | maskMat4), maskMat1);
CHECK_DIFF((maskMat5 | maskMat5) - maskMat1 * 4.0, maskMat1);
CHECK_DIFF((maskMat4 * 1.0 + 4.0)- (maskMat4 | maskMat4), maskMat4);
CHECK_DIFF((maskMat5 | maskMat5) - (maskMat1 * 2.0 + 2.0), maskMat1);
CHECK_DIFF(maskMat1*5.0 - maskMat4 * 1.0, maskMat1);
CHECK_DIFF((maskMat1*5.0 + 3.0)- maskMat4 * 1.0, maskMat4);
CHECK_DIFF(maskMat4 * 2.0 - (maskMat1*4.0 + 3.0), maskMat1);
CHECK_DIFF((maskMat1 * 2.0 + 3.0) - (maskMat1*3.0 + 1.0), maskMat1);
CHECK_DIFF((maskMat5 - maskMat4)* 4.0, maskMat4);
CHECK_DIFF(4.0 * (maskMat5 - maskMat4), maskMat4);
CHECK_DIFF(-((maskMat4 | maskMat4) - (maskMat5 | maskMat5)), maskMat1);
CHECK_DIFF(4.0 * (maskMat1 | maskMat1), maskMat4);
CHECK_DIFF((maskMat4 | maskMat4)/4.0, maskMat1);
#if !MSVC_OLD
CHECK_DIFF(2.0 * (maskMat1 * 2.0) , maskMat4);
#endif
CHECK_DIFF((maskMat4 / 2.0) / 2.0 , maskMat1);
CHECK_DIFF(-(maskMat4 - maskMat5) , maskMat1);
CHECK_DIFF(-((maskMat4 - maskMat5) * 1.0), maskMat1);
/////////////////////////////
CHECK_DIFF(maskMat4 / maskMat4, maskMat1);
///// Element-wise multiplication
CHECK_DIFF(maskMat4.mul(maskMat4, 0.25), maskMat4);
CHECK_DIFF(maskMat4.mul(maskMat1 * 4, 0.25), maskMat4);
CHECK_DIFF(maskMat4.mul(maskMat4 / 4), maskMat4);
CHECK_DIFF(maskMat4.mul(maskMat4 / 4), maskMat4);
CHECK_DIFF(maskMat4.mul(maskMat4) * 0.25, maskMat4);
CHECK_DIFF(0.25 * maskMat4.mul(maskMat4), maskMat4);
////// Element-wise division
CHECK_DIFF(maskMat4 / maskMat4, maskMat1);
CHECK_DIFF((maskMat4 & maskMat4) / (maskMat1 * 4), maskMat1);
CHECK_DIFF((maskMat4 & maskMat4) / maskMat4, maskMat1);
CHECK_DIFF(maskMat4 / (maskMat4 & maskMat4), maskMat1);
CHECK_DIFF((maskMat1 * 4) / maskMat4, maskMat1);
CHECK_DIFF(maskMat4 / (maskMat1 * 4), maskMat1);
CHECK_DIFF((maskMat4 * 0.5 )/ (maskMat1 * 2), maskMat1);
CHECK_DIFF(maskMat4 / maskMat4.mul(maskMat1), maskMat1);
CHECK_DIFF((maskMat4 & maskMat4) / maskMat4.mul(maskMat1), maskMat1);
CHECK_DIFF(4.0 / maskMat4, maskMat1);
CHECK_DIFF(4.0 / (maskMat4 | maskMat4), maskMat1);
CHECK_DIFF(4.0 / (maskMat1 * 4.0), maskMat1);
CHECK_DIFF(4.0 / (maskMat4 / maskMat1), maskMat1);
m = maskMat4.clone(); m/=4.0; CHECK_DIFF(m, maskMat1);
m = maskMat4.clone(); m/=maskMat4; CHECK_DIFF(m, maskMat1);
m = maskMat4.clone(); m/=(maskMat1 * 4.0); CHECK_DIFF(m, maskMat1);
m = maskMat4.clone(); m/=(maskMat4 / maskMat1); CHECK_DIFF(m, maskMat1);
/////////////////////////////
float matrix_data[] = { 3, 1, -4, -5, 1, 0, 0, 1.1f, 1.5f};
Mat mt(3, 3, CV_32F, matrix_data);
Mat mi = mt.inv();
Mat d1 = Mat::eye(3, 3, CV_32F);
Mat d2 = d1 * 2;
MatExpr mt_tr = mt.t();
MatExpr mi_tr = mi.t();
Mat mi2 = mi * 2;
CHECK_DIFF_FLT( mi2 * mt, d2 );
CHECK_DIFF_FLT( mi * mt, d1 );
CHECK_DIFF_FLT( mt_tr * mi_tr, d1 );
m = mi.clone(); m*=mt; CHECK_DIFF_FLT(m, d1);
m = mi.clone(); m*= (2 * mt - mt) ; CHECK_DIFF_FLT(m, d1);
m = maskMat4.clone(); m+=(maskMat1 * 1.0); CHECK_DIFF(m, maskMat5);
m = maskMat5.clone(); m-=(maskMat1 * 4.0); CHECK_DIFF(m, maskMat1);
m = maskMat1.clone(); m+=(maskMat1 * 3.0 + 1.0); CHECK_DIFF(m, maskMat5);
m = maskMat5.clone(); m-=(maskMat1 * 3.0 + 1.0); CHECK_DIFF(m, maskMat1);
#if !MSVC_OLD
m = mi.clone(); m+=(3.0 * mi * mt + d1); CHECK_DIFF_FLT(m, mi + d1 * 4);
m = mi.clone(); m-=(3.0 * mi * mt + d1); CHECK_DIFF_FLT(m, mi - d1 * 4);
m = mi.clone(); m*=(mt * 1.0); CHECK_DIFF_FLT(m, d1);
m = mi.clone(); m*=(mt * 1.0 + Mat::eye(m.size(), m.type())); CHECK_DIFF_FLT(m, d1 + mi);
m = mi.clone(); m*=mt_tr.t(); CHECK_DIFF_FLT(m, d1);
CHECK_DIFF_FLT( (mi * 2) * mt, d2);
CHECK_DIFF_FLT( mi * (2 * mt), d2);
CHECK_DIFF_FLT( mt.t() * mi_tr, d1 );
CHECK_DIFF_FLT( mt_tr * mi.t(), d1 );
CHECK_DIFF_FLT( (mi * 0.4) * (mt * 5), d2);
CHECK_DIFF_FLT( mt.t() * (mi_tr * 2), d2 );
CHECK_DIFF_FLT( (mt_tr * 2) * mi.t(), d2 );
CHECK_DIFF_FLT(mt.t() * mi.t(), d1);
CHECK_DIFF_FLT( (mi * mt) * 2.0, d2);
CHECK_DIFF_FLT( 2.0 * (mi * mt), d2);
CHECK_DIFF_FLT( -(mi * mt), -d1);
CHECK_DIFF_FLT( (mi * mt) / 2.0, d1 / 2);
Mat mt_mul_2_plus_1;
gemm(mt, d1, 2, Mat::ones(3, 3, CV_32F), 1, mt_mul_2_plus_1);
CHECK_DIFF( (mt * 2.0 + 1.0) * mi, mt_mul_2_plus_1 * mi); // (A*alpha + beta)*B
CHECK_DIFF( mi * (mt * 2.0 + 1.0), mi * mt_mul_2_plus_1); // A*(B*alpha + beta)
CHECK_DIFF( (mt * 2.0 + 1.0) * (mi * 2), mt_mul_2_plus_1 * mi2); // (A*alpha + beta)*(B*gamma)
CHECK_DIFF( (mi *2)* (mt * 2.0 + 1.0), mi2 * mt_mul_2_plus_1); // (A*gamma)*(B*alpha + beta)
CHECK_DIFF_FLT( (mt * 2.0 + 1.0) * mi.t(), mt_mul_2_plus_1 * mi_tr); // (A*alpha + beta)*B^t
CHECK_DIFF_FLT( mi.t() * (mt * 2.0 + 1.0), mi_tr * mt_mul_2_plus_1); // A^t*(B*alpha + beta)
CHECK_DIFF_FLT( (mi * mt + d2)*5, d1 * 3 * 5);
CHECK_DIFF_FLT( mi * mt + d2, d1 * 3);
CHECK_DIFF_FLT( -(mi * mt) + d2, d1);
CHECK_DIFF_FLT( (mi * mt) + d1, d2);
CHECK_DIFF_FLT( d1 + (mi * mt), d2);
CHECK_DIFF_FLT( (mi * mt) - d2, -d1);
CHECK_DIFF_FLT( d2 - (mi * mt), d1);
CHECK_DIFF_FLT( (mi * mt) + d2 * 0.5, d2);
CHECK_DIFF_FLT( d2 * 0.5 + (mi * mt), d2);
CHECK_DIFF_FLT( (mi * mt) - d1 * 2, -d1);
CHECK_DIFF_FLT( d1 * 2 - (mi * mt), d1);
CHECK_DIFF_FLT( (mi * mt) + mi.t(), mi_tr + d1);
CHECK_DIFF_FLT( mi.t() + (mi * mt), mi_tr + d1);
CHECK_DIFF_FLT( (mi * mt) - mi.t(), d1 - mi_tr);
CHECK_DIFF_FLT( mi.t() - (mi * mt), mi_tr - d1);
CHECK_DIFF_FLT( 2.0 *(mi * mt + d2), d1 * 6);
CHECK_DIFF_FLT( -(mi * mt + d2), d1 * -3);
CHECK_DIFF_FLT(mt.inv() * mt, d1);
CHECK_DIFF_FLT(mt.inv() * (2*mt - mt), d1);
#endif
}
catch (const test_excep& e)
{
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
bool CV_OperationsTest::SomeMatFunctions()
{
try
{
Mat rgba( 10, 10, CV_8UC4, Scalar(1,2,3,4) );
Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
Mat out[] = { bgr, alpha };
// rgba[0] -> bgr[2], rgba[1] -> bgr[1],
// rgba[2] -> bgr[0], rgba[3] -> alpha[0]
int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
mixChannels( &rgba, 1, out, 2, from_to, 4 );
Mat bgr_exp( rgba.size(), CV_8UC3, Scalar(3,2,1));
Mat alpha_exp( rgba.size(), CV_8UC1, Scalar(4));
CHECK_DIFF(bgr_exp, bgr);
CHECK_DIFF(alpha_exp, alpha);
}
catch (const test_excep& e)
{
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
bool CV_OperationsTest::TestSubMatAccess()
{
try
{
Mat_<float> T_bs(4,4);
Vec3f cdir(1.f, 1.f, 0.f);
Vec3f ydir(1.f, 0.f, 1.f);
Vec3f fpt(0.1f, 0.7f, 0.2f);
T_bs.setTo(0);
T_bs(Range(0,3),Range(2,3)) = 1.0*Mat(cdir); // wierd OpenCV stuff, need to do multiply
T_bs(Range(0,3),Range(1,2)) = 1.0*Mat(ydir);
T_bs(Range(0,3),Range(0,1)) = 1.0*Mat(cdir.cross(ydir));
T_bs(Range(0,3),Range(3,4)) = 1.0*Mat(fpt);
T_bs(3,3) = 1.0;
//std::cout << "[Nav Grok] S frame =" << std::endl << T_bs << std::endl;
// set up display coords, really just the S frame
std::vector<float>coords;
for (int i=0; i<16; i++)
{
coords.push_back(T_bs(i));
//std::cout << T_bs1(i) << std::endl;
}
CV_Assert( norm(coords, T_bs.reshape(1,1), NORM_INF) == 0 );
}
catch (const test_excep& e)
{
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
bool CV_OperationsTest::TestTemplateMat()
{
try
{
Mat_<float> one_3x1(3, 1, 1.0f);
Mat_<float> shi_3x1(3, 1, 1.2f);
Mat_<float> shi_2x1(2, 1, -2);
Scalar shift = Scalar::all(15);
float data[] = { sqrt(2.f)/2, -sqrt(2.f)/2, 1.f, sqrt(2.f)/2, sqrt(2.f)/2, 10.f };
Mat_<float> rot_2x3(2, 3, data);
Mat_<float> res = Mat(Mat(2 * rot_2x3) * Mat(one_3x1 + shi_3x1 + shi_3x1 + shi_3x1) - shi_2x1) + shift;
Mat_<float> resS = rot_2x3 * one_3x1;
Mat_<float> tmp, res2, resS2;
add(one_3x1, shi_3x1, tmp);
add(tmp, shi_3x1, tmp);
add(tmp, shi_3x1, tmp);
gemm(rot_2x3, tmp, 2, shi_2x1, -1, res2, 0);
add(res2, Mat(2, 1, CV_32F, shift), res2);
gemm(rot_2x3, one_3x1, 1, shi_2x1, 0, resS2, 0);
CHECK_DIFF(res, res2);
CHECK_DIFF(resS, resS2);
Mat_<float> mat4x4(4, 4);
randu(mat4x4, Scalar(0), Scalar(10));
Mat_<float> roi1 = mat4x4(Rect(Point(1, 1), Size(2, 2)));
Mat_<float> roi2 = mat4x4(Range(1, 3), Range(1, 3));
CHECK_DIFF(roi1, roi2);
CHECK_DIFF(mat4x4, mat4x4(Rect(Point(0,0), mat4x4.size())));
Mat_<int> intMat10(3, 3, 10);
Mat_<int> intMat11(3, 3, 11);
Mat_<uchar> resMat(3, 3, 255);
CHECK_DIFF(resMat, intMat10 == intMat10);
CHECK_DIFF(resMat, intMat10 < intMat11);
CHECK_DIFF(resMat, intMat11 > intMat10);
CHECK_DIFF(resMat, intMat10 <= intMat11);
CHECK_DIFF(resMat, intMat11 >= intMat10);
CHECK_DIFF(resMat, intMat10 == 10.0);
CHECK_DIFF(resMat, intMat10 < 11.0);
CHECK_DIFF(resMat, intMat11 > 10.0);
CHECK_DIFF(resMat, intMat10 <= 11.0);
CHECK_DIFF(resMat, intMat11 >= 10.0);
Mat_<uchar> maskMat4(3, 3, 4);
Mat_<uchar> maskMat1(3, 3, 1);
Mat_<uchar> maskMat5(3, 3, 5);
Mat_<uchar> maskMat0(3, 3, (uchar)0);
CHECK_DIFF(maskMat0, maskMat4 & maskMat1);
CHECK_DIFF(maskMat0, Scalar(1) & maskMat4);
CHECK_DIFF(maskMat0, maskMat4 & Scalar(1));
Mat_<uchar> m;
m = maskMat4.clone(); m&=maskMat1; CHECK_DIFF(maskMat0, m);
m = maskMat4.clone(); m&=Scalar(1); CHECK_DIFF(maskMat0, m);
m = maskMat4.clone(); m|=maskMat1; CHECK_DIFF(maskMat5, m);
m = maskMat4.clone(); m^=maskMat1; CHECK_DIFF(maskMat5, m);
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & (maskMat1 | maskMat1));
CHECK_DIFF(maskMat0, (maskMat4 | maskMat4) & maskMat1);
CHECK_DIFF(maskMat0, maskMat4 & (maskMat1 | maskMat1));
CHECK_DIFF(maskMat0, maskMat5 ^ (maskMat4 | maskMat1));
CHECK_DIFF(maskMat0, Scalar(5) ^ (maskMat4 | Scalar(1)));
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ maskMat1));
CHECK_DIFF(maskMat5, maskMat5 | (maskMat4 ^ Scalar(1)));
CHECK_DIFF(~maskMat1, maskMat1 ^ 0xFF);
CHECK_DIFF(~(maskMat1 | maskMat1), maskMat1 ^ 0xFF);
CHECK_DIFF(maskMat1 + maskMat4, maskMat5);
CHECK_DIFF(maskMat1 + Scalar(4), maskMat5);
CHECK_DIFF(Scalar(4) + maskMat1, maskMat5);
CHECK_DIFF(Scalar(4) + (maskMat1 & maskMat1), maskMat5);
CHECK_DIFF(maskMat1 + 4.0, maskMat5);
CHECK_DIFF((maskMat1 & 0xFF) + 4.0, maskMat5);
CHECK_DIFF(4.0 + maskMat1, maskMat5);
m = maskMat4.clone(); m+=Scalar(1); CHECK_DIFF(m, maskMat5);
m = maskMat4.clone(); m+=maskMat1; CHECK_DIFF(m, maskMat5);
m = maskMat4.clone(); m+=(maskMat1 | maskMat1); CHECK_DIFF(m, maskMat5);
CHECK_DIFF(maskMat5 - maskMat1, maskMat4);
CHECK_DIFF(maskMat5 - Scalar(1), maskMat4);
CHECK_DIFF((maskMat5 | maskMat5) - Scalar(1), maskMat4);
CHECK_DIFF(maskMat5 - 1, maskMat4);
CHECK_DIFF((maskMat5 | maskMat5) - 1, maskMat4);
CHECK_DIFF((maskMat5 | maskMat5) - (maskMat1 | maskMat1), maskMat4);
CHECK_DIFF(maskMat1, min(maskMat1, maskMat5));
CHECK_DIFF(maskMat5, max(maskMat1, maskMat5));
m = maskMat5.clone(); m-=Scalar(1); CHECK_DIFF(m, maskMat4);
m = maskMat5.clone(); m-=maskMat1; CHECK_DIFF(m, maskMat4);
m = maskMat5.clone(); m-=(maskMat1 | maskMat1); CHECK_DIFF(m, maskMat4);
m = maskMat4.clone(); m |= Scalar(1); CHECK_DIFF(maskMat5, m);
m = maskMat5.clone(); m ^= Scalar(1); CHECK_DIFF(maskMat4, m);
CHECK_DIFF(maskMat1, maskMat4/4.0);
Mat_<float> negf(3, 3, -3.0);
Mat_<float> posf = -negf;
Mat_<float> posf2 = posf * 2;
Mat_<int> negi(3, 3, -3);
CHECK_DIFF(abs(negf), -negf);
CHECK_DIFF(abs(posf - posf2), -negf);
CHECK_DIFF(abs(negi), -(negi & negi));
CHECK_DIFF(5.0 - maskMat4, maskMat1);
CHECK_DIFF(maskMat4.mul(maskMat4, 0.25), maskMat4);
CHECK_DIFF(maskMat4.mul(maskMat1 * 4, 0.25), maskMat4);
CHECK_DIFF(maskMat4.mul(maskMat4 / 4), maskMat4);
////// Element-wise division
CHECK_DIFF(maskMat4 / maskMat4, maskMat1);
CHECK_DIFF(4.0 / maskMat4, maskMat1);
m = maskMat4.clone(); m/=4.0; CHECK_DIFF(m, maskMat1);
////////////////////////////////
typedef Mat_<int> TestMat_t;
const TestMat_t cnegi = negi.clone();
TestMat_t::iterator beg = negi.begin();
TestMat_t::iterator end = negi.end();
TestMat_t::const_iterator cbeg = cnegi.begin();
TestMat_t::const_iterator cend = cnegi.end();
int sum = 0;
for(; beg!=end; ++beg)
sum+=*beg;
for(; cbeg!=cend; ++cbeg)
sum-=*cbeg;
if (sum != 0) throw test_excep();
CHECK_DIFF(negi.col(1), negi.col(2));
CHECK_DIFF(negi.row(1), negi.row(2));
CHECK_DIFF(negi.col(1), negi.diag());
if (Mat_<Point2f>(1, 1).elemSize1() != sizeof(float)) throw test_excep();
if (Mat_<Point2f>(1, 1).elemSize() != 2 * sizeof(float)) throw test_excep();
if (Mat_<Point2f>(1, 1).depth() != CV_32F) throw test_excep();
if (Mat_<float>(1, 1).depth() != CV_32F) throw test_excep();
if (Mat_<int>(1, 1).depth() != CV_32S) throw test_excep();
if (Mat_<double>(1, 1).depth() != CV_64F) throw test_excep();
if (Mat_<Point3d>(1, 1).depth() != CV_64F) throw test_excep();
if (Mat_<signed char>(1, 1).depth() != CV_8S) throw test_excep();
if (Mat_<unsigned short>(1, 1).depth() != CV_16U) throw test_excep();
if (Mat_<unsigned short>(1, 1).channels() != 1) throw test_excep();
if (Mat_<Point2f>(1, 1).channels() != 2) throw test_excep();
if (Mat_<Point3f>(1, 1).channels() != 3) throw test_excep();
if (Mat_<Point3d>(1, 1).channels() != 3) throw test_excep();
Mat_<uchar> eye = Mat_<uchar>::zeros(2, 2); CHECK_DIFF(Mat_<uchar>::zeros(Size(2, 2)), eye);
eye.at<uchar>(Point(0,0)) = 1; eye.at<uchar>(1, 1) = 1;
CHECK_DIFF(Mat_<uchar>::eye(2, 2), eye);
CHECK_DIFF(eye, Mat_<uchar>::eye(Size(2,2)));
Mat_<uchar> ones(2, 2, (uchar)1);
CHECK_DIFF(ones, Mat_<uchar>::ones(Size(2,2)));
CHECK_DIFF(Mat_<uchar>::ones(2, 2), ones);
Mat_<Point2f> pntMat(2, 2, Point2f(1, 0));
if(pntMat.stepT() != 2) throw test_excep();
uchar uchar_data[] = {1, 0, 0, 1};
Mat_<uchar> matFromData(1, 4, uchar_data);
const Mat_<uchar> mat2 = matFromData.clone();
CHECK_DIFF(matFromData, eye.reshape(1, 1));
if (matFromData(Point(0,0)) != uchar_data[0])throw test_excep();
if (mat2(Point(0,0)) != uchar_data[0]) throw test_excep();
if (matFromData(0,0) != uchar_data[0])throw test_excep();
if (mat2(0,0) != uchar_data[0]) throw test_excep();
Mat_<uchar> rect(eye, Rect(0, 0, 1, 1));
if (rect.cols != 1 || rect.rows != 1 || rect(0,0) != uchar_data[0]) throw test_excep();
//cv::Mat_<_Tp>::adjustROI(int,int,int,int)
//cv::Mat_<_Tp>::cross(const Mat_&) const
//cv::Mat_<_Tp>::Mat_(const vector<_Tp>&,bool)
//cv::Mat_<_Tp>::Mat_(int,int,_Tp*,size_t)
//cv::Mat_<_Tp>::Mat_(int,int,const _Tp&)
//cv::Mat_<_Tp>::Mat_(Size,const _Tp&)
//cv::Mat_<_Tp>::mul(const Mat_<_Tp>&,double) const
//cv::Mat_<_Tp>::mul(const MatExpr_<MatExpr_Op2_<Mat_<_Tp>,double,Mat_<_Tp>,MatOp_DivRS_<Mat> >,Mat_<_Tp> >&,double) const
//cv::Mat_<_Tp>::mul(const MatExpr_<MatExpr_Op2_<Mat_<_Tp>,double,Mat_<_Tp>,MatOp_Scale_<Mat> >,Mat_<_Tp> >&,double) const
//cv::Mat_<_Tp>::operator Mat_<T2>() const
//cv::Mat_<_Tp>::operator MatExpr_<Mat_<_Tp>,Mat_<_Tp> >() const
//cv::Mat_<_Tp>::operator()(const Range&,const Range&) const
//cv::Mat_<_Tp>::operator()(const Rect&) const
//cv::Mat_<_Tp>::operator=(const MatExpr_Base&)
//cv::Mat_<_Tp>::operator[](int) const
///////////////////////////////
float matrix_data[] = { 3, 1, -4, -5, 1, 0, 0, 1.1f, 1.5f};
Mat_<float> mt(3, 3, matrix_data);
Mat_<float> mi = mt.inv();
Mat_<float> d1 = Mat_<float>::eye(3, 3);
Mat_<float> d2 = d1 * 2;
Mat_<float> mt_tr = mt.t();
Mat_<float> mi_tr = mi.t();
Mat_<float> mi2 = mi * 2;
CHECK_DIFF_FLT( mi2 * mt, d2 );
CHECK_DIFF_FLT( mi * mt, d1 );
CHECK_DIFF_FLT( mt_tr * mi_tr, d1 );
Mat_<float> mf;
mf = mi.clone(); mf*=mt; CHECK_DIFF_FLT(mf, d1);
////// typedefs //////
if (Mat1b(1, 1).elemSize() != sizeof(uchar)) throw test_excep();
if (Mat2b(1, 1).elemSize() != 2 * sizeof(uchar)) throw test_excep();
if (Mat3b(1, 1).elemSize() != 3 * sizeof(uchar)) throw test_excep();
if (Mat1f(1, 1).elemSize() != sizeof(float)) throw test_excep();
if (Mat2f(1, 1).elemSize() != 2 * sizeof(float)) throw test_excep();
if (Mat3f(1, 1).elemSize() != 3 * sizeof(float)) throw test_excep();
if (Mat1f(1, 1).depth() != CV_32F) throw test_excep();
if (Mat3f(1, 1).depth() != CV_32F) throw test_excep();
if (Mat3f(1, 1).type() != CV_32FC3) throw test_excep();
if (Mat1i(1, 1).depth() != CV_32S) throw test_excep();
if (Mat1d(1, 1).depth() != CV_64F) throw test_excep();
if (Mat1b(1, 1).depth() != CV_8U) throw test_excep();
if (Mat3b(1, 1).type() != CV_8UC3) throw test_excep();
if (Mat1w(1, 1).depth() != CV_16U) throw test_excep();
if (Mat1s(1, 1).depth() != CV_16S) throw test_excep();
if (Mat1f(1, 1).channels() != 1) throw test_excep();
if (Mat1b(1, 1).channels() != 1) throw test_excep();
if (Mat1i(1, 1).channels() != 1) throw test_excep();
if (Mat1w(1, 1).channels() != 1) throw test_excep();
if (Mat1s(1, 1).channels() != 1) throw test_excep();
if (Mat2f(1, 1).channels() != 2) throw test_excep();
if (Mat2b(1, 1).channels() != 2) throw test_excep();
if (Mat2i(1, 1).channels() != 2) throw test_excep();
if (Mat2w(1, 1).channels() != 2) throw test_excep();
if (Mat2s(1, 1).channels() != 2) throw test_excep();
if (Mat3f(1, 1).channels() != 3) throw test_excep();
if (Mat3b(1, 1).channels() != 3) throw test_excep();
if (Mat3i(1, 1).channels() != 3) throw test_excep();
if (Mat3w(1, 1).channels() != 3) throw test_excep();
if (Mat3s(1, 1).channels() != 3) throw test_excep();
{
Mat a(2,2,CV_32F,1.f);
Mat b(1,2,CV_32F,1.f);
Mat c = (a*b.t()).t();
CV_Assert( norm(c, CV_L1) == 4. );
}
}
catch (const test_excep& e)
{
ts->printf(cvtest::TS::LOG, "%s\n", e.s.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
bool CV_OperationsTest::TestMatND()
{
int sizes[] = { 3, 3, 3};
cv::MatND nd(3, sizes, CV_32F);
return true;
}
bool CV_OperationsTest::TestSparseMat()
{
try
{
int sizes[] = { 10, 10, 10};
int dims = sizeof(sizes)/sizeof(sizes[0]);
SparseMat mat(dims, sizes, CV_32FC2);
if (mat.dims() != dims) throw test_excep();
if (mat.channels() != 2) throw test_excep();
if (mat.depth() != CV_32F) throw test_excep();
SparseMat mat2 = mat.clone();
}
catch (const test_excep&)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
bool CV_OperationsTest::TestMatxMultiplication()
{
try
{
Matx33f mat(1, 1, 1, 0, 1, 1, 0, 0, 1); // Identity matrix
Point2f pt(3, 4);
Point3f res = mat * pt; // Correctly assumes homogeneous coordinates
Vec3f res2 = mat*Vec3f(res.x, res.y, res.z);
if(res.x != 8.0) throw test_excep();
if(res.y != 5.0) throw test_excep();
if(res.z != 1.0) throw test_excep();
if(res2[0] != 14.0) throw test_excep();
if(res2[1] != 6.0) throw test_excep();
if(res2[2] != 1.0) throw test_excep();
Matx44f mat44f(1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1);
Matx44d mat44d(1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1);
Scalar s(4, 3, 2, 1);
Scalar sf = mat44f*s;
Scalar sd = mat44d*s;
if(sf[0] != 10.0) throw test_excep();
if(sf[1] != 6.0) throw test_excep();
if(sf[2] != 3.0) throw test_excep();
if(sf[3] != 1.0) throw test_excep();
if(sd[0] != 10.0) throw test_excep();
if(sd[1] != 6.0) throw test_excep();
if(sd[2] != 3.0) throw test_excep();
if(sd[3] != 1.0) throw test_excep();
}
catch(const test_excep&)
{
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return false;
}
return true;
}
bool CV_OperationsTest::TestVec()
{
try
{
cv::Mat hsvImage_f(5, 5, CV_32FC3), hsvImage_b(5, 5, CV_8UC3);
int i = 0,j = 0;
cv::Vec3f a;
//these compile
cv::Vec3b b = a;
hsvImage_f.at<cv::Vec3f>(i,j) = cv::Vec3f((float)i,0,1);
hsvImage_b.at<cv::Vec3b>(i,j) = cv::Vec3b(cv::Vec3f((float)i,0,1));
//these don't
b = cv::Vec3f(1,0,0);
cv::Vec3b c;
c = cv::Vec3f(0,0,1);
hsvImage_b.at<cv::Vec3b>(i,j) = cv::Vec3f((float)i,0,1);
hsvImage_b.at<cv::Vec3b>(i,j) = a;
hsvImage_b.at<cv::Vec3b>(i,j) = cv::Vec3f(1,2,3);
}
catch(const test_excep&)
{
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
return false;
}
return true;
}
bool CV_OperationsTest::operations1()
{
try
{
Point3d p1(1, 1, 1), p2(2, 2, 2), p4(4, 4, 4);
p1*=2;
if (!(p1 == p2)) throw test_excep();
if (!(p2 * 2 == p4)) throw test_excep();
if (!(p2 * 2.f == p4)) throw test_excep();
if (!(p2 * 2.f == p4)) throw test_excep();
Point2d pi1(1, 1), pi2(2, 2), pi4(4, 4);
pi1*=2;
if (!(pi1 == pi2)) throw test_excep();
if (!(pi2 * 2 == pi4)) throw test_excep();
if (!(pi2 * 2.f == pi4)) throw test_excep();
if (!(pi2 * 2.f == pi4)) throw test_excep();
Vec2d v12(1, 1), v22(2, 2);
v12*=2.0;
if (!(v12 == v22)) throw test_excep();
Vec3d v13(1, 1, 1), v23(2, 2, 2);
v13*=2.0;
if (!(v13 == v23)) throw test_excep();
Vec4d v14(1, 1, 1, 1), v24(2, 2, 2, 2);
v14*=2.0;
if (!(v14 == v24)) throw test_excep();
Size sz(10, 20);
if (sz.area() != 200) throw test_excep();
if (sz.width != 10 || sz.height != 20) throw test_excep();
if (((CvSize)sz).width != 10 || ((CvSize)sz).height != 20) throw test_excep();
Vec<double, 5> v5d(1, 1, 1, 1, 1);
Vec<double, 6> v6d(1, 1, 1, 1, 1, 1);
Vec<double, 7> v7d(1, 1, 1, 1, 1, 1, 1);
Vec<double, 8> v8d(1, 1, 1, 1, 1, 1, 1, 1);
Vec<double, 9> v9d(1, 1, 1, 1, 1, 1, 1, 1, 1);
Vec<double,10> v10d(1, 1, 1, 1, 1, 1, 1, 1, 1, 1);
Vec<double,10> v10dzero;
for (int ii = 0; ii < 10; ++ii) {
if (!v10dzero[ii] == 0.0)
throw test_excep();
}
}
catch(const test_excep&)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
bool CV_OperationsTest::TestSVD()
{
try
{
Mat A = (Mat_<double>(3,4) << 1, 2, -1, 4, 2, 4, 3, 5, -1, -2, 6, 7);
Mat x;
SVD::solveZ(A,x);
if( norm(A*x, CV_C) > FLT_EPSILON )
throw test_excep();
SVD svd(A, SVD::FULL_UV);
if( norm(A*svd.vt.row(3).t(), CV_C) > FLT_EPSILON )
throw test_excep();
Mat Dp(3,3,CV_32FC1);
Mat Dc(3,3,CV_32FC1);
Mat Q(3,3,CV_32FC1);
Mat U,Vt,R,T,W;
Dp.at<float>(0,0)=0.86483884; Dp.at<float>(0,1)= -0.3077251; Dp.at<float>(0,2)=-0.55711365;
Dp.at<float>(1,0)=0.49294353; Dp.at<float>(1,1)=-0.24209651; Dp.at<float>(1,2)=-0.25084701;
Dp.at<float>(2,0)=0; Dp.at<float>(2,1)=0; Dp.at<float>(2,2)=0;
Dc.at<float>(0,0)=0.75632739; Dc.at<float>(0,1)= -0.38859656; Dc.at<float>(0,2)=-0.36773083;
Dc.at<float>(1,0)=0.9699229; Dc.at<float>(1,1)=-0.49858192; Dc.at<float>(1,2)=-0.47134098;
Dc.at<float>(2,0)=0.10566688; Dc.at<float>(2,1)=-0.060333252; Dc.at<float>(2,2)=-0.045333147;
Q=Dp*Dc.t();
SVD decomp;
decomp=SVD(Q);
U=decomp.u;
Vt=decomp.vt;
W=decomp.w;
Mat I = Mat::eye(3, 3, CV_32F);
if( norm(U*U.t(), I, CV_C) > FLT_EPSILON ||
norm(Vt*Vt.t(), I, CV_C) > FLT_EPSILON ||
W.at<float>(2) < 0 || W.at<float>(1) < W.at<float>(2) ||
W.at<float>(0) < W.at<float>(1) ||
norm(U*Mat::diag(W)*Vt, Q, CV_C) > FLT_EPSILON )
throw test_excep();
}
catch(const test_excep&)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return false;
}
return true;
}
void CV_OperationsTest::run( int /* start_from */)
{
if (!TestMat())
return;
if (!SomeMatFunctions())
return;
if (!TestTemplateMat())
return;
/* if (!TestMatND())
return;*/
if (!TestSparseMat())
return;
if (!TestVec())
return;
if (!TestMatxMultiplication())
return;
if (!TestSubMatAccess())
return;
if (!TestSVD())
return;
if (!operations1())
return;
ts->set_failed_test_info(cvtest::TS::OK);
}
TEST(Core_Array, expressions) { CV_OperationsTest test; test.safe_run(); }
class CV_SparseMatTest : public cvtest::BaseTest
{
public:
CV_SparseMatTest() {}
~CV_SparseMatTest() {}
protected:
void run(int)
{
try
{
RNG& rng = theRNG();
const int MAX_DIM=3;
int sizes[MAX_DIM], idx[MAX_DIM];
for( int iter = 0; iter < 100; iter++ )
{
ts->printf(cvtest::TS::LOG, ".");
ts->update_context(this, iter, true);
int k, dims = rng.uniform(1, MAX_DIM+1), p = 1;
for( k = 0; k < dims; k++ )
{
sizes[k] = rng.uniform(1, 30);
p *= sizes[k];
}
int j, nz = rng.uniform(0, (p+2)/2), nz0 = 0;
SparseMat_<int> v(dims,sizes);
CV_Assert( (int)v.nzcount() == 0 );
SparseMatIterator_<int> it = v.begin();
SparseMatIterator_<int> it_end = v.end();
for( k = 0; it != it_end; ++it, ++k )
;
CV_Assert( k == 0 );
int sum0 = 0, sum = 0;
for( j = 0; j < nz; j++ )
{
int val = rng.uniform(1, 100);
for( k = 0; k < dims; k++ )
idx[k] = rng.uniform(0, sizes[k]);
if( dims == 1 )
{
CV_Assert( v.ref(idx[0]) == v(idx[0]) );
}
else if( dims == 2 )
{
CV_Assert( v.ref(idx[0], idx[1]) == v(idx[0], idx[1]) );
}
else if( dims == 3 )
{
CV_Assert( v.ref(idx[0], idx[1], idx[2]) == v(idx[0], idx[1], idx[2]) );
}
CV_Assert( v.ref(idx) == v(idx) );
v.ref(idx) += val;
if( v(idx) == val )
nz0++;
sum0 += val;
}
CV_Assert( (int)v.nzcount() == nz0 );
it = v.begin();
it_end = v.end();
for( k = 0; it != it_end; ++it, ++k )
sum += *it;
CV_Assert( k == nz0 && sum == sum0 );
v.clear();
CV_Assert( (int)v.nzcount() == 0 );
it = v.begin();
it_end = v.end();
for( k = 0; it != it_end; ++it, ++k )
;
CV_Assert( k == 0 );
}
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
}
};
TEST(Core_SparseMat, iterations) { CV_SparseMatTest test; test.safe_run(); }