opencv/3rdparty/openexr/Imath/ImathPlane.h
Alexander Alekhin 878af7ada8
Merge pull request #14725 from alalek:update_openexr_2.3.0
3rdparty: update OpenEXR 2.3.0 (#14725)

* openexr 2.2.1

* openexr 2.3.0

* openexr: build fixes

* openexr: build dwa tables on-demand
2019-06-10 20:04:23 +03:00

258 lines
6.8 KiB
C++

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#ifndef INCLUDED_IMATHPLANE_H
#define INCLUDED_IMATHPLANE_H
//----------------------------------------------------------------------
//
// template class Plane3
//
// The Imath::Plane3<> class represents a half space, so the
// normal may point either towards or away from origin. The
// plane P can be represented by Imath::Plane3 as either p or -p
// corresponding to the two half-spaces on either side of the
// plane. Any function which computes a distance will return
// either negative or positive values for the distance indicating
// which half-space the point is in. Note that reflection, and
// intersection functions will operate as expected.
//
//----------------------------------------------------------------------
#include "ImathVec.h"
#include "ImathLine.h"
#include "ImathNamespace.h"
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
template <class T>
class Plane3
{
public:
Vec3<T> normal;
T distance;
Plane3() {}
Plane3(const Vec3<T> &normal, T distance);
Plane3(const Vec3<T> &point, const Vec3<T> &normal);
Plane3(const Vec3<T> &point1,
const Vec3<T> &point2,
const Vec3<T> &point3);
//----------------------
// Various set methods
//----------------------
void set(const Vec3<T> &normal,
T distance);
void set(const Vec3<T> &point,
const Vec3<T> &normal);
void set(const Vec3<T> &point1,
const Vec3<T> &point2,
const Vec3<T> &point3 );
//----------------------
// Utilities
//----------------------
bool intersect(const Line3<T> &line,
Vec3<T> &intersection) const;
bool intersectT(const Line3<T> &line,
T &parameter) const;
T distanceTo(const Vec3<T> &) const;
Vec3<T> reflectPoint(const Vec3<T> &) const;
Vec3<T> reflectVector(const Vec3<T> &) const;
};
//--------------------
// Convenient typedefs
//--------------------
typedef Plane3<float> Plane3f;
typedef Plane3<double> Plane3d;
//---------------
// Implementation
//---------------
template <class T>
inline Plane3<T>::Plane3(const Vec3<T> &p0,
const Vec3<T> &p1,
const Vec3<T> &p2)
{
set(p0,p1,p2);
}
template <class T>
inline Plane3<T>::Plane3(const Vec3<T> &n, T d)
{
set(n, d);
}
template <class T>
inline Plane3<T>::Plane3(const Vec3<T> &p, const Vec3<T> &n)
{
set(p, n);
}
template <class T>
inline void Plane3<T>::set(const Vec3<T>& point1,
const Vec3<T>& point2,
const Vec3<T>& point3)
{
normal = (point2 - point1) % (point3 - point1);
normal.normalize();
distance = normal ^ point1;
}
template <class T>
inline void Plane3<T>::set(const Vec3<T>& point, const Vec3<T>& n)
{
normal = n;
normal.normalize();
distance = normal ^ point;
}
template <class T>
inline void Plane3<T>::set(const Vec3<T>& n, T d)
{
normal = n;
normal.normalize();
distance = d;
}
template <class T>
inline T Plane3<T>::distanceTo(const Vec3<T> &point) const
{
return (point ^ normal) - distance;
}
template <class T>
inline Vec3<T> Plane3<T>::reflectPoint(const Vec3<T> &point) const
{
return normal * distanceTo(point) * -2.0 + point;
}
template <class T>
inline Vec3<T> Plane3<T>::reflectVector(const Vec3<T> &v) const
{
return normal * (normal ^ v) * 2.0 - v;
}
template <class T>
inline bool Plane3<T>::intersect(const Line3<T>& line, Vec3<T>& point) const
{
T d = normal ^ line.dir;
if ( d == 0.0 ) return false;
T t = - ((normal ^ line.pos) - distance) / d;
point = line(t);
return true;
}
template <class T>
inline bool Plane3<T>::intersectT(const Line3<T>& line, T &t) const
{
T d = normal ^ line.dir;
if ( d == 0.0 ) return false;
t = - ((normal ^ line.pos) - distance) / d;
return true;
}
template<class T>
std::ostream &operator<< (std::ostream &o, const Plane3<T> &plane)
{
return o << "(" << plane.normal << ", " << plane.distance
<< ")";
}
template<class T>
Plane3<T> operator* (const Plane3<T> &plane, const Matrix44<T> &M)
{
// T
// -1
// Could also compute M but that would suck.
//
Vec3<T> dir1 = Vec3<T> (1, 0, 0) % plane.normal;
T dir1Len = dir1 ^ dir1;
Vec3<T> tmp = Vec3<T> (0, 1, 0) % plane.normal;
T tmpLen = tmp ^ tmp;
if (tmpLen > dir1Len)
{
dir1 = tmp;
dir1Len = tmpLen;
}
tmp = Vec3<T> (0, 0, 1) % plane.normal;
tmpLen = tmp ^ tmp;
if (tmpLen > dir1Len)
{
dir1 = tmp;
}
Vec3<T> dir2 = dir1 % plane.normal;
Vec3<T> point = plane.distance * plane.normal;
return Plane3<T> ( point * M,
(point + dir2) * M,
(point + dir1) * M );
}
template<class T>
Plane3<T> operator- (const Plane3<T> &plane)
{
return Plane3<T>(-plane.normal,-plane.distance);
}
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
#endif // INCLUDED_IMATHPLANE_H